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Abstract. Leximin is a common approach to multi-objective opti-
mization, frequently employed in fair division applications. In lex-
imin optimization, one first aims to maximize the smallest objective
value; subject to this, one maximizes the second-smallest objective;
and so on. Often, even the single-objective problem of maximizing
the smallest value cannot be solved accurately. What can we hope to
accomplish for leximin optimization in this situation? Recently, Hen-
zinger et al. (2022) defined a notion of approximate leximin optimal-
ity. Their definition, however, considers only an additive approxima-
tion.

In this work, we first define the notion of approximate leximin op-
timality, allowing both multiplicative and additive errors. We then
show how to compute, in polynomial time, such an approximate lex-
imin solution, using an oracle that finds an approximation to a single-
objective problem. The approximation factors of the algorithms
are closely related: an (α, ε)-approximation for the single-objective
problem (where α ∈ (0, 1] and ε ≥ 0 are the multiplicative and ad-

ditive factors respectively) translates into an
(

α2

1−α+α2 ,
ε

1−α+α2

)
-

approximation for the multi-objective leximin problem, regardless of
the number of objectives.

Finally, we apply our algorithm to obtain an approximate lex-
imin solution for the problem of stochastic allocations of indivisible
goods.

1 Introduction

Many real life scenarios involve more than one objective. These sit-
uations are often modeled as multi-objective optimization problems,
which include defining the set of possible decisions, along with func-
tions that describe the different objectives. As a concrete example, we
use the context of social choice, in which the objective functions rep-
resent people’s utilities. Different criteria can be used to determine
optimality when considering multi-objectives. For example, the util-
itarian criterium aims to maximize the sum of utilities, while the
egalitarian criterium aims to maximize the least utility. This paper
focuses on the leximin criterium, according to which one aims to
maximize the least utility, and, subject to this, maximize the second-
smallest utility, and so on. In the context of social choice, the leximin
criterium is usually mentioned in the context of fairness, as strives to
benefit, as much as possible, the least fortunate in society.

∗ A full version of this paper can be found in https://arxiv.org/
abs/2303.12506. Contact information: eden.r.hartman@gmail.com,
avinatan@cs.biu.ac.il, aumann@cs.biu.ac.il, erelsgl@gmail.com.

Common algorithms for finding a leximin optimal solution are it-
erative, optimizing one or more single-objective optimization prob-
lems at each iteration (for example [1, 2, 3, 16, 17, 21]). Often, these
single-objective problems cannot be solved exactly (e.g. when they
are computationally hard, or when there are numeric inaccuracies in
the solver), but can be solved approximately. In this work, we define
an approximate variant of leximin and show how such an approxima-
tion can be computed, given approximate single-objective solvers.

The Challenge When single-objective solvers only approximate
the optimal value, existing methods for extending the solvers to lex-
imin optimally may fail, as we illustrate next.

A common algorithm, independently proposed many times,
e.g. [1, 16, 17, 21], is based on the notion of saturation, operates
roughly as follows. In the first iteration, the algorithm looks for the
maximum value that all objective functions can achieve simultane-
ously, z1, and then it determines which of the objective-functions are
saturated — that is, cannot achieve more than z1 given that the oth-
ers do. Afterwards, in each iteration t, given that for any i < t the
objective-functions that were determined saturated in the i’th itera-
tion achieve at least zi, it looks for the maximum value that all other
objective-functions can achieve simultaneously, zt, and then deter-
mines which of those functions are saturated. When all functions be-
come saturated, the algorithm ends.

Now, the following simple example demonstrates the problem that
may arise when the individual solver may return sub-optimal results.
Consider the following problem:

lexmaxmin {f1(x) = x1, f2(x) = x2}
s.t. (1) x1 + x2 ≤ 1, (2) x ∈ R

2
+

As f1 and f2 are symmetric, the leximin optimal solution in this case
is (0.5, 0.5). Now suppose that rather than finding the exact value
0.5, the solver returns the value 0.49. The optimal value of f1 given
that f2 achieves at least 0.49 is 0.51, and vice versa for f2. As a
consequence, none of the objective functions would be determined
saturated, and the algorithm may not terminate. One could perhaps
define an objective as ”saturated” if its maximum attainable value is
close to the maximum zt, but there is no guarantee that this would
lead to a good approximation1.

Contributions This paper studies the problem of leximin opti-
mization in multi-objective optimization problems, focusing on prob-

1 An example will be given on request.
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lems for which even the single-objective problems cannot be solved
exactly in polynomial time. Our contribution is threefold.

First, a new definition of leximin approximation is presented. It
captures both multiplicative and additive errors. The definition has
several desirable properties, including that a leximin optimal solution
is also approximately-optimal (for any approximation factor), and
that the definition is equivalent to the original one in the absence of
errors.

Second, an algorithm is provided that, given an approximation
algorithm for a single-objective problem, computes a leximin ap-
proximation to the multi-objective problem. The algorithm was
first presented by Ogryczak and Śliwiński [18] for exact leximin-
optimization. In contrast to the saturation-based algorithm described
in the Introduction, this algorithm always terminates, even when
the single-objective solver is inaccurate. Moreover, the accuracy of
the returned solution is closely correlated with the accuracy of the
single-objective solver — given an (α, ε)-approximation algorithm
for the single-objective problem (where α and ε describe the multi-
plicative and additive factors respectively), the returned solution is
an

(
α2

1−α+α2 ,
ε

1−α+α2

)
-approximation of leximin. Importantly, this

holds for any number of objectives. It should also be noted that the
algorithm is applicable in many cases, for example, when the feasible
region is convex and all the objectives are concave (and polynomially
computable).

Lastly, we consider a more challenging case. We apply our results
to the problem of stochastic allocations of indivisible goods. When
agents have submodular utilities, approximating the egalitarian value
to a (multiplicative) factor better than 1− 1

e
≈ 0.632 is NP-hard [13].

That is, even the first-objective of leximin, i.e., maximizing the small-
est objective, is NP-hard. We demonstrate that our method enables
extending an approximation algorithm for the egalitarian welfare to
an approximation for leximin with only a multiplicative error. In par-
ticular, we prove that a 1

3
-approximation can be obtained determin-

istically, whereas a (e−1)2

e2−e+1
≈ 0.52-approximation can be obtained

w.h.p.

Organization Section 2 gives preliminary knowledge and basic
definitions. Section 3 presents the definition of leximin approxima-
tion. An algorithm for computing such an approximation is presented
in Section 4. The problem of stochastic allocations of indivisible
goods is considered in Section 5. Section 6 concludes with some fu-
ture work directions.

1.1 Related Work

This paper is related to a large body of research, which can be clas-
sified into three main fields: multi-objective optimization problems,
approximation variants of known solution concepts, and algorithms
for finding optimal leximin solutions.

In general multi-objective2 optimization problems, finding a lex-
imin3 optimal solution is quite common goal [8], which is still an
open challenge. Studies on this topic are usually focused on a specific
problem and leverages its special characteristics — the structure of
the feasible region and objective-functions that describe the concrete
problem at hand. In this paper, we focus on the widely studied do-
main of resource allocation problems [15]. In that context, as leximin

2 Multi-objective is also called multi-criteria (for example in [8]).
3 Leximin is also called Max-Min fairness (for example in [16]), Lexico-

graphic Min-Max (for example in [18]), Lexicographic max-ordering (for
example in [8]) and Leximax (for example in [11]).

maximization is an extension of egalitarian welfare maximization, it
is usually mentioned when fairness is desired.

There are cases where a leximin optimal solution can be calcu-
lated in polynomial time, for example in: fair allocation of divisi-
ble items [21], giveaway lotteries [2], portioning with ordinal prefer-
ences [1], cake sharing [3], multi-commodity flow networks [16], and
location problems [19]. However, even when algorithms are theoreti-
cally polynomial, they can still be inaccurate in practice, for example
due to numeric round-off errors.

In other cases, calculating a leximin optimal solution is NP-hard,
for example in: representative cohort selection [11], fair combina-
torial auctions [4], package upgrade-ability [7], allocating papers to
referees [10, 14], and stochastic allocations of indivisible goods (Sec-
tion 5 in this paper). However, to our knowledge, studies of this kind
typically suggest non-polynomial algorithms and heuristics for solv-
ing small instances of the general problem and empirically evaluate
their efficiency, rather than suggesting polynomial-time approxima-
tion algorithms.

Another approach to leximin optimization is to represent the lex-
imin ordering by an aggregation function. Such a function takes a
utility vector and returns a number, such that a solution is leximin-
preferred over another if-and-only-if its aggregate number is higher.
Finding such a function will of course reduce the problem to solving
only one single-objective optimization problem. Unfortunately, it is
known that no aggregate function can represent the leximin ordering
in all problems [15, 17]. Still, there are interesting cases in which
such functions can be found. For example, Yager [22] suggested that
the ordered weighted averaging (OWA) technique can be used when
there is a lower bound on the difference between any two possible
utilities. However, it is unclear how (and whether) approximating the
aggregate function would translate to approximating leximin.

To the best of our knowledge, other general approximations of lex-
imin exist but they are less common. They are usually mentioned in
the context of robustness or noise (e.g. [11, 12]) and lack character-
istics that we emphasize within the context of errors.

Most similar to our work is the recent paper by Henzinger et
al. [11]. This paper presents several approximation variants of lex-
imin for the case of additive errors in the single-objective problems.
Their motivation is different than ours — they use approximation as
a method to improve efficiency and ensure robustness to noise. How-
ever, one of their definitions, (ε-tradeoff Leximax) fits our motivation
of achieving the best possible leximin-approximation in the presence
of errors. In fact, our approximation definition can be viewed as a
generalization of their definition to include both multiplicative and
additive errors. It should also be noted that the authors mention mul-
tiplicative approximation in the their Future Work Section.

2 Preliminaries

We denote the set {1, . . . , n} by [n] for n ∈ N.

Single-objective optimization A single-objective maximization
(resp. minimization) problem is a tuple (S, f) where S is the set
of all feasible solutions to the problem (usually S ⊆ Rm for some
m ∈ N) and f : S → R≥0 is a function describing the objective
value of a solution x ∈ S. The goal in such problems is to find an
optimal solution, that is, a feasible solution x∗ ∈ S that has the max-
imum (resp. minimum) objective value, that is f(x∗) ≥ f(x) (resp.
f(x∗) ≤ f(x)) for any other solution x ∈ S.

A (α, ε)-approximation algorithm for a single-objective maxi-
mization problem (S, f) is one that returns a solution x ∈ S,
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which approximates the optimal solution x∗ from below. That is,
f(x) ≥ α · f(x∗) − ε for α ∈ (0, 1] and ε ≥ 0 (that describe
the multiplicative and additive approximation factors respectively).

Similarly, a (1 + β, ε)-approximation algorithm for a single-
objective minimization problem is one that returns a feasible solu-
tion x that approximates the optimal solution x∗ from above. That is,
f(x) ≤ (1 + β) · f(x∗) + ε for β ≥ 0 and ε ≥ 0.

A p-randomized approximation algorithm, for p ∈ (0, 1], is one
that returns a solution x ∈ S such that, with probability p, the objec-
tive value f(x) is approximately-optimal.

The term "with high probability" (w.h.p.) is used when the success
probability is at least 1 − 1/poly(X) where X describes the input
size.

Multi-objective optimization A multi-objective maximization
problem [5] can be described as follows:

max {f1(x), f2(x), . . . fn(x)}
s.t. x ∈ S

Where S ⊆ Rm for some m ∈ N is the feasible region and
f1, f2, . . . , fn are n objective-functions fi : S → R≥0

4. An example
application is group decision making: some n people have to decide
on an issue that affects all of them. The set of possible decisions is S,
and the utility each person i derives from a decision x ∈ S is fi(x).

Ordered outcomes notation The j’th smallest objective value ob-
tained by a solution x ∈ S is denoted by V ↑j (x), i.e.,

V ↑1 (x) ≤ V ↑2 (x) ≤ · · · ≤ V ↑n (x).

The corresponding sorted utility vector is denoted by V↑(x) =
(V ↑1 (x), . . . ,V ↑n (x)).

The leximin order A solution y is considered leximin-preferred
over a solution x, denoted y � x, if there exists an integer 1 ≤ k ≤ n
such that the smallest (k − 1) objective values of both are equal,
whereas the k’th smallest objective value of y is higher:

∀j < k : V ↑j (y) = V ↑j (x)

V ↑k (y) > V ↑k (x)

Two solutions, x, y, are leximin equivalent if V↑(x) = V↑(y). The
leximin order is a total order, and strict between any two solutions
that yield different sorted utility vectors (V↑(x) 
= V↑(y)). A max-
imum element of the leximin order is a solution over which no solu-
tion is preferred (including solutions that yield the same utilities).

Leximin optimal A leximin optimal solution is a maximum ele-
ment of the leximin order. Given a feasible region S, as the order is
determined only by the utilities, we denote this optimization problem
as follows.

lexmaxmin {f1(x), f2(x), . . . fn(x)}
s.t. x ∈ S

4 Note that the number of objectives in multi-objective optimization is com-
monly assumed to be constant. However, in this paper, we use a more gen-
eral setting in which the number of objectives is a parameter of the problem.

3 Approximate Leximin Optimality

In this section, we present our definition of leximin approximation in
the presence of multiplicative and additive errors, in the context of
multi-objective optimization problems.

3.1 Motivation: Unsatisfactory Definitions

Which solutions should be considered approximately-optimal in
terms of leximin? Several definitions appear intuitive at first glance.
As an example, suppose we are interested in approximations with
an allowable multiplicative error of 0.1. Denote the utilities in the
leximin-optimal solution by (u1, . . . , un). A first potential defini-
tion is that any solution in which the sorted utility vector is at least
(0.9 ·u1, . . . , 0.9 ·un) should be considered approximately-optimal.
For example, if the utilities in the optimal solution are (1, 2, 3),
then a solution with utilities (0.9, 1.8, 2.7) is approximately-optimal.
However, allowing the smallest utility to take the value 0.9 may
substantially increase the maximum possible value of the second
(and third) smallest utility — e.g. a solution that yields utilities
(0.9, 1000, 1000) might exist. In that case, a solution with utilities
(0.9, 1.8, 2.7) is very far from optimal. We expect a good approxi-
mation notion to consider the fact that an error in one utility might
change the optimal value of the others.

The following, second attempt at a definition, captures this re-
quirement. An approximately-optimal solution is one that yields util-
ities at least (0.9 · m1, 0.9 · m2, . . . , 0.9 · mn), where m1 is the
maximum value of the smallest utility, m2 is the maximum value of
the second-smallest utility among all solutions whose smallest utility
is at least 0.9 · m1; m3 is the maximum value of the third-smallest
utility among all solutions whose smallest utility is at least 0.9 ·m1

and their second-smallest utility is at least 0.9 ·m2; and so on. In the
above example, to be considered approximately-optimal, the small-
est utility should be at least 0.9 and the second-smallest should be at
least 900. Thus, a solution with utilities (0.9, 1.8, 2.7) is not consid-
ered approximately-optimal. Unfortunately, according to this defini-
tion, even the leximin-optimal solution — with utilities (1, 2, 3) —
is not considered approximately-optimal. We expect a good approx-
imation notion to be a relaxation of leximin-optimality.

3.2 Our Definition

Let α ∈ (0, 1] and ε ≥ 0 be multiplicative and additive approxima-
tion factors, respectively.

Comparison of values As we focus on maximization problems,
given two values v2 ≥ v1 ≥ 0, we say that v1 approximates v2
if v1 ≥ α · v2 − ε. In this case, v1 is an approximate replace-
ment for v2. However, when v1 < α · v2 − ε, we say that v2 is
(α, ε)-substantially-higher than v1. In this case, v1 is smaller than
any (α, ε)-approximation of v2.

The approximate leximin order The first step is defining the fol-
lowing partial order5: a solution y is (α, ε)-leximin-preferred over a
solution x, denoted y �(α,ε) x, if there exists an integer 1 ≤ k ≤ n
such that the smallest (k− 1) objective values of y are at least those

5 A proof that the approximate leximin order is a strict partial order can be
found in Appendix A of the full version.

E. Hartman et al. / Leximin Approximation: From Single-Objective to Multi-Objective998



of x, and the k’th smallest objective value of y is (α, ε)-substantially-
higher than the k’th smallest objective value of x, that is:

∀j < k : V ↑j (y) ≥ V ↑j (x)

V ↑k (y) >
1

α

(
V ↑k (x) + ε

)

A maximal element of this order is a solution over which no solution
is (α, ε)-leximin-preferred. For clearity, we define the corresponding
relation set as follows:

R(α,ε) = {(y, x) | x, y ∈ S, y �(α,ε) x}
Before describing the approximation definition, we present two

observations about this relation that will be useful later, followed by
an example to illustrate how it works. The proofs are straightforward
and are omitted.

The first observation is that the leximin order is equivalent to the
approximate leximin order for α = 1 and ε = 0 (that is, in the
absence of errors).

Lemma 1. Let x, y ∈ S. Then, y � x ⇐⇒ y �(1,0) x

The second observation relates different approximate leximin or-
ders according to their error factors. Notice that, for additive errors,
ε also describes the error size; whereas for multiplicative errors, one
minus α describes it. Throughout the remainder of this section, we
denote the multiplicative error factor by α = 1− α.

Observation 2. Let 0 ≤ α1 ≤ α2 < 1 and 0 ≤ ε1 ≤ ε2. Then,
y �(α2,ε2) x ⇒ y �(α1,ε1) x.

One can easily verify that it follows directly from the definition as
1
α2

≥ 1
α1

. Accordingly, by considering the relation sets R(α1,ε1) and
R(α2,ε2), we can conclude that R(α2,ε2) ⊆ R(α1,ε1). This means
that as the error parameters α and ε increase, the relation becomes
more partial: when α = 0 and ε = 0 it is a total order, any two
elements that yield different utilities appear as a pair in R(1,0); but
as they increase, the set R(α,ε) potentially becomes smaller, as fewer
pairs are comparable.

Example To illustrate, consider a group of 3 agents, that has to
select one out of three options x, y, z, with sorted utility vectors
V↑(x) = (1, 10, 15),V↑(y) = (1, 40, 60),V↑(z) = (2, 20, 30).
Table 1 indicates what is R(α,ε) for different choices of α and ε.

It is easy to verify that, indeed, R(1,0) is a total order —
(z, x), (z, y) ∈ R(1,0) since 2 > 1 and (y, x) ∈ R(1,0) since 1 = 1
and 40 > 10.

In accordance with Observation 2, the relation set remains the
same or becomes smaller as either α decreases (and the error fac-
tor α increases) or ε increases. As an example, we provide a partial
calculation of R(0.75,1).

First, by Observation 2, we know that R(0.75,1) ⊆ R(1,0), and so,
it is sufficient to consider only the pairs in R(1,0).

Consider the pair (z, x). In order to be included in the relation set,
there must be a 1 ≤ k ≤ 3 that meets the requirements. For k = 1,
as 2 ≯ 1

0.75
(1 + 1), the requirement for k does not hold. However,

for k = 2, it does. As 2 ≥ 1, the requirement for i < k holds;
and as 20 > 1

0.75
(10 + 1), the requirement for k holds. Therefore,

(z, x) ∈ R(0.75,1). Similarly, one can check that (y, x) ∈ R(0.75,1).
Next, consider the pair (z, y). For k = 1, as before, since 2 ≯
1

0.75
(1+1), the requirement for k does not hold. For k = 2 and k =

3, it is sufficient to notice that 20 < 40, therefore the requirements
for both does not hold. And so, (z, y) /∈ R(0.75,1).

The leximin approximation can now be defined.

Table 1: Different relation sets result from different choices of α and ε in the
example above. Each cell contains the corresponding relation set R(α,ε).

α
ε 0 1 15 45

1 {(z,x),(z,y),(y,x)} {(z,x),(y,x)} {(y,x)} {}
0.75 {(z,x),(z,y),(y,x)} {(z,x),(y,x)} {(y,x)} {}
0.5 {(y,x)} {(y,x)} {} {}
0.25 {} {} {} {}

Leximin approximation We say that a solution x ∈ S is (α, ε)-
approximately leximin-optimal if it is a maximum element of the
order �(α,ε) in S for α ∈ (0, 1] and ε ≥ 0. That is, if there is
no solution in S that is (α, ε)-leximin-preferred over it. For brevity,
we use the term leximin approximation to describe an approximately
leximin-optimal solution.

This definition has some important properties. Lemma 3 proves
that in the absence of errors (α = ε = 0) it is equivalent to the exact
leximin optimal definition. Then, Lemma 4 shows that an (α1, ε1)-
leximin-approximation is also an (α2, ε2)-leximin-approximation
when 0 ≤ α1 ≤ α2 < 1 and 0 ≤ ε1 ≤ ε2. Finally, Lemma 5 proves
that a leximin optimal solution is also a leximin approximation for
all factors.

Lemma 3. A solution is a (1, 0)-leximin-approximation if and only
if it is leximin optimal.

Proof. By definition, a solution x∗ is a (1, 0)-leximin-approximation
if and only if x �(1,0) x∗ for any solution x ∈ S. This holds if and
only if x � x∗ for any solution x ∈ S (by Lemma 1). Thus, by
definition, x∗ is also leximin optimal.

Lemma 4. Let 0 ≤ α1 ≤ α2 < 1, 0 ≤ ε1 ≤ ε2, and x ∈ S be an
(α1, ε1)-leximin-approximation. Then x is also an (α2, ε2)-leximin-
approximation.

Proof. Since x is an (α1, ε1)-leximin-approximation, by definition,
y �(α1,ε1) x for any solution y ∈ S. Observation 2 implies that
y �(α2,ε2) x for any solution y ∈ S. This means, by definition, that
x is an (α2, ε2)-leximin-approximation.

Lemma 5. Let x∗ ∈ S be a leximin optimal solution. Then x∗ is
also an (α, ε)-leximin-approximation for any α ∈ [0, 1) and ε ≥ 0.

Proof. By Lemma 3, x∗ is an (1, 0)-leximin-approximation. Thus,
according to Lemma 4, x∗ is also an (α, ε)-leximin-approximation
for any 0 ≤ α < 1 and ε ≥ 0.

Using the example given previously, we shall now demonstrate
that as the error parameters α and ε increase, the quality of the ap-
proximation decreases. Consider table 1 once again.

If the corresponding relation set for α and ε is the total order
{(z, x), (z, y), (y, x)}, the only solution over which no other solu-
tion is (α, ε)-leximin-preferred is z. Therefore, z is the only (α, ε)-
leximin-approximation for these factors. Indeed, it is the only group
decision that maximizes the welfare of the agent with the smallest
utility. If the corresponding relation set is either {(z, x), (y, x)} or
{(y, x)}, as no solution is (α, ε)-leximin-preferred over z and y,
both are (α, ε)-leximin-approximations. For example, for α = 0.5
and ε = 0, z still maximizes the utility of the poorest agent (2),
and y gives the poorest agent a utility of 1, which is acceptable as
it is half the maximum possible value (2), and subject to giving
the poorest agent at least 1, maximizes the second-smallest utility
(40). In contrast, while x, too, gives the poorest agent utility 1, its
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Algorithm 1 The Ordered Outcomes Algorithm

1: for t = 1 to n do

2: (xt, zt) ← OP(z1, . . . , zt−1)
3: end for

4: return xn (with objective values f1(xn), . . . , fn(xn)).

second-smallest utility is 10, which is less than half the maximum
possible in this case (40), and therefore, x is not a (α, ε)-leximin-
approximation. Lastly, if the relation set is the empty set, then no
solution is (α, ε)-leximin-preferred over the other, and all are (α, ε)-
leximin-approximations.

Egalitarian generalization Another property of our definition is
that a leximin-approximation also approximates the optimal egalitar-
ian welfare to the same approximation factors. Formally:

Observation 6. Let x be an (α, ε)-leximin-approximation. Then,
the egalitarian value of x (i.e., mini∈[n] fi(x) = V ↑1 (x)) is
an (α, ε)-approximation of the optimal egalitarian value (i.e.,
maxy∈S mini∈[n] fi(y)).

4 Approximation Algorithm

We now present an algorithm for computing a leximin approxima-
tion. The algorithm is an adaptation of one of the algorithms of
Ogryczak and Śliwiński [18] for finding exact leximin optimal so-
lutions.

4.1 Preliminary: exact leximin-optimal solution

Following the definition of leximin, the core algorithm for finding
a leximin optimal solution is iterative, wherein one first maximizes
the least objective function, then the second, and so forth. In each
iteration, t = 1, . . . , n, it looks for the value that maximizes the t-th
smallest objective, zt, given that for any i < t the i-th smallest objec-
tive is at least zi (the value that was computed in the i-th iteration).
The core, single-objective optimization problem is thus:

max zt (P1)

s.t. (P1.1) x ∈ S

(P1.2) V ↑� (x) ≥ z� ∀� ∈ [t− 1]

(P1.3) V ↑t (x) ≥ zt

where the variables are the scalar zt and the vector x, whereas
z1, . . . zt−1 are constants (computed in previous iterations).

Suppose we are given a procedure OP(z1, . . . , zt−1), which,
given z1, . . . , zt−1, outputs (x, zt) that is the exact optimal solution
to (P1). Then, the leximin optimal solution is obtained by iterating
this process for t = 1, . . . , n, as described in Algorithm 1. The al-
gorithm first maximizes the smallest objective V ↑1 (x), and puts the
result in z1. Then it maximizes the second-smallest objective V ↑2 (x),
subject to V ↑1 (x) being at least z1, and puts the result in z2; and so
on.

Since constraints (P1.2) and (P1.3) are not linear with respect to
the objective-functions, it is difficult to solve the program (P1) as is.
Thus, [18] suggests a way to “linearize“ the program in two steps.

First, we replace (P1) with the following program, that considers
sums instead of individual values (where again the variables are zt

and x):

max zt (P2)

s.t. (P2.1) x ∈ S

(P2.2)
∑
i∈F ′

fi(x) ≥
|F ′|∑
i=1

zi ∀F ′ ⊆ [n], |F ′| < t

(P2.3)
∑
i∈F ′

fi(x) ≥
t−1∑
i=1

zi + zt ∀F ′ ⊆ [n], |F ′| = t

Here, constraints (P1.2) and (P1.3) are replaced with constraints
(P2.2) and (P2.3), respectively. Constraint (P2.2) says that for any
� < t, the sum of any � objectives is at least the sum of the first �
constants zi (equivalently: the sum of the smallest � objectives is at
least the sum of the first � constants zi6). Similarly, (P2.3) says that
the sum of any t objectives (equivalently: the sum of the smallest t
objectives) is at least the sum of the first t− 1 constants zi, plus the
variable zt.

Suppose (P1) is replaced with (P2) in Algorithm1. Then, in the first
iteration, the algorithm still maximizes the smallest objective V ↑1 (x),
and puts the result in z1. In the second iteration, it maximizes the
difference between the sum of the two smallest objectives V ↑1 (x) +
V ↑2 (x) and z1, subject to V ↑1 (x) being at least z1, and puts the result
in z2. Since z1 is the maximum value of V ↑1 (x), being at least z1
becomes being exactly z1, which means that, as was for (P1), the
algorithm actually maximizes V ↑2 (x), subject to V ↑1 (x) being at least
z1. Similarly for any iteration 1 < t ≤ n, as the sum

∑�
i=1 zi

is the maximum value of
∑�

i=1 V ↑i (x) for all 1 ≤ � < t, it can
be concluded that the algorithm actually maximizes V ↑t (x), subject
to V ↑� (x) being at least z� for 1 ≤ � < t (as if (P1) was used).
Accordingly, the algorithm still finds a leximin-optimal solution.

While (P2) is linear with respect to the objective-functions, it has
an exponential number of constraints. To overcome this challenge,
auxiliary variables were used in the second program (y� and m�,j for
all 1 ≤ � ≤ t and 1 ≤ j ≤ n):

max zt (P3)

s.t. (P3.1) x ∈ S

(P3.2) �y� −
n∑

j=1

m�,j ≥
�∑

i=1

zi ∀� ∈ [t− 1]

(P3.3) tyt −
n∑

j=1

mt,j ≥
t−1∑
i=1

zi + zt

(P3.4) m�,j ≥ y� − fj(x) ∀� ∈ [t], ∀j ∈ [n]

(P3.5) m�,j ≥ 0 ∀� ∈ [t], ∀j ∈ [n]

The meaning of the auxiliary variables in (P3) is explained in the
proof of Lemma 7 below.

The importance of the programs (P2) and (P3) for leximin is shown
by the following theorem (that combines Theorem 4 in [17] and The-
orem 1 in [18]):

Theorem. If Algorithm 1 is applied with a solver for (P2) or (P3)7

(instead of for (P1)), the algorithm still outputs a leximin-optimal
solution.

We shall later see that our main result (Theorem 9) extends and
implies their theorem.
6 A formal proof of this claim is given in Appendix B.2 of the full version.
7 If the algorithm uses a solver for (P3), it takes only the assignment of the

variables x and zt , ignoring the auxiliary variables.
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4.2 Using an approximate solver

Now we assume that, instead of an exact solver in Algorithm 1,
we only have an approximate solver. In this case, the constants
z1, . . . , zt−1 are only approximately-optimal solutions for the previ-
ous iterations. It is easy to see that if OP is an (α, ε)-approximation
algorithm to (P1), then Algorithm 1 outputs an (α, ε)-leximin-
approximation8.

In contrast, for (P2) and (P3), we shall see that Algorithm 1 may
output a solution that is not an (α, ε)-leximin-approximation. How-
ever, we will prove that it is not too far from that — in this case, the
output is always an

(
α2

1−α+α2 ,
ε

1−α+α2

)
-leximin-approximation.

To demonstrate both claims more clearly, we start by proving that
the programs (P2) and (P3) are equivalent in the following sense:

Lemma 7. Let 1 ≤ t ≤ n and let z1, . . . zt−1 ∈ R. Then, (x, zt) is
feasible for (P2) if and only if there exist y� and m�,j for 1 ≤ � ≤ t
and 1 ≤ j ≤ n such that (x, zt, (y1, . . . , yt), (m1,1, . . .mt,n)) is
feasible for (P3).

The proof is provided in Appendix B.2 of the full version.
Since both (P2) and (P3) have the same objective function

(max zt), the lemma implies that (x, zt) is an (α, ε)-approximate so-
lution for (P2) if and only if (x, zt) is a part of an (α, ε)-approximate
solution for (P3). Thus, it is sufficient to prove the theorems for only
one of the problems. We will prove them for (P2).

Theorem 8. There exist α ∈ (0, 1], ε ≥ 0 and OP that is an (α, ε)-
approximation procedure to (P2), such that if Algorithm 1 is applied
with this procedure, it might return a solution that is not an (α, ε)-
leximin-approximation.

Proof. Consider the following multi-objective optimization problem
with n = 2:

max {f1(x) := x1, f2(x) := x2}
s.t. (1.1) x1 ≤ 100, (1.2) x1 + x2 ≤ 200, (1.3) x ∈ R

2
+

In the corresponding (P2), constraint (P2.1) will be replaced with
constraints (1.1)-(1.3). The following is a possible run of the algo-
rithm with OP that is a (0.9, 0)-approximate solver.

• In iteration t = 1, condition (P2.2) is empty, and the optimal value
of z1 is 100, so OP may output z1 = 0.9 · 100 = 90.

• In iteration t = 2, given z1 = 90, condition (P2.2) says that each
of x1 and x2 must be at least 90; the optimal value of z2 under
these constraints is 110, so OP may output z2 = 99, for example
with x1 = x2 = 94.5.

• Since n = 2, the algorithm ends and returns the solution
(94.5, 94.5).

But (x1, x2) = (94.5, 105.5) is also a feasible solution, and it is
(0.9, 0)-leximin-preferred since 105.4 > 1

0.9
· 94.5 = 105. Hence,

the returned solution is not a (0.9, 0)-leximin-approximation.

Note that, while the above solution is not a (0.9, 0)-leximin-
approximation, it is for α = 0.896. Our main theorem below shows
that this is not a coincidence: using an approximate solver to (P2) or
(P3) in Algorithm 1 guarantees a non-trivial leximin approximation.

Theorem 9. Let α ∈ (0, 1], ε ≥ 0, and OP be an (α, ε)-
approximation procedure to (P2) or (P3). Then Algorithm 1 outputs
an

(
α2

1−α+α2 ,
ε

1−α+α2

)
-leximin-approximation.

8 A formal proof is given in Appendix B.1 of the full version.

For the above example, it guarantees an ( 81
91
, 0) ≈ (0.89, 0)-

leximin-approximation.
A complete proof of Theorem 9 is given in Appendix B.3 of the

full version. Here we provide a high level overview of the main steps.
First, we note that the value of the variable zt is completely deter-

mined by the variable x. This is because the program aims to max-
imize zt that appears only in constraint (P2.3), which is equivalent
to zt ≤ ∑t

i=1 V ↑i (x) −
∑t−1

i=1 zi. Thus, this constraint will always
hold with equality.

Next, we show that the returned solution, x∗, is feasible to all
single-objective problems that were solved during the algorithm run.
This allows us to relate the objective values attained by x∗ and the zi
values. Since the solver used in iteration t is (α, ε)-approximately-
optimal, it follows that the objective value attained by x∗ is at most
1
α
(zt + ε), where zt is the approximation obtained to that problem.
We then assume for contradiction that x∗ is not a leximin approx-

imation as claimed in the theorem. By definition, there exits a solu-
tion y ∈ S and an integer 1 ≤ k ≤ n such that V ↑i (y) ≥ V ↑i (x

∗)

for any i < k, while V ↑k (y) is
(

α2

1−α+α2 ,
ε

1−α+α2

)
–substantially-

higher9 than V ↑k (x
∗). Accordingly, we prove that y is feasible to the

program that was solved in the k-th iteration, and that its objective
value in this problem is higher than the optimal value z∗t , which is a
contradiction.

Theorem 9 implies that if OP only has a multiplicative error
(ε = 0), the solution returned by Algorithm 1 will only have a multi-
plicative error as well, and if OP only has an additive error (α = 1),
the solution returned by Algorithm 1 will have only the same additive
error ε.

Note that there are many cases in which the required procedure
(OP) can be implemented easily. For example, when the S is con-
vex and all fi’s are concave (and polynomially computable), using
convex optimization techniques.

4.3 Using a randomized solver

Next, we assume that the solver is not only approximate but also
randomized — it always returns a feasible solution to the single-
objective problem, but only with probability p ∈ [0, 1] it is also
approximately-optimal. As Algorithm 1 activates the solver n times
overall, assuming the success events of different activations are in-
dependent, there is a probability of pn that the solver returns an
approximately-optimal solution in every iteration and so, Algorithm
1 performs as in the previous subsection. This leads to the following
conclusion:

Corollary 10. Let α ∈ (0, 1], ε ≥ 0, p ∈ (0, 1], and OP be a
p-randomized (α, ε)-approximation procedure to (P2) or (P3). Then

Algorithm 1 outputs an
(

α2

1−α+α2 ,
ε

1−α+α2

)
-leximin-approximation

with probability pn.

Notice that, since the procedure OP always returns a feasible so-
lution to the single-objective problem, Algorithm 1 always returns a
feasible solution as well.

The following section applies such a solver to obtain a leximin
approximation to the problem of stochastic allocations of indivisible
goods w.h.p.

9 See Section 3.2 for formal definition.
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5 Stochastic Allocations of Indivisible Goods

In this section, we consider a particular application of our results, for
the problem of stochastic allocations of indivisible goods. We prove
that, under the setting described bellow, a leximin approximation
with only a multiplicative error can be obtained in polynomial time.
Specifically, we prove that a 1

3
-approximation10 can be obtained de-

terministically, whereas a (e−1)2

e2−e+1
≈ 0.52-approximation can be ob-

tained w.h.p. As a reference point, it is worth noting that the problem
of maximizing the egalitarian welfare in the same settings has been
shown to be NP-hard to approximate to a (multiplicative) factor bet-
ter than 1 − 1

e
≈ 0.632 [13]. However, as an α-approximation to

leximin is first and foremost an α-approximation to the egalitarian
welfare11, the same hardness result applies to our problem as well.

The setting postulates a set of n agents 1, . . . , n, and m items,
1, . . . ,m, to be distributed amongst the agents. A deterministic al-
location of the items to the agents is a mapping A : [m] → [n],
determining which agent gets each item. Note that as the term "de-
terministic" is used in this section also when discussing algorithms,
we will use the term simple allocation from now on. We denote by A
the set of simple allocations. Each agent j is associated with a func-
tion uj : A → R≥0 that describes its utility from a simple allocation.

A stochastic allocation, d, is a distribution over the simple alloca-
tions. The set of all possible stochastic allocations is:

D = {d | pd : A → [0, 1],
∑
A∈A

pd(A) = 1}

Agents are assumed to care only about their own share (allow-
ing us to use the following abuse of notation in which uj takes
a bundle b of items), their utilities are assumed to be normalized
(uj(∅) = 0), monotone (uj(b1) ≤ uj(b2) if b1 ⊆ b2), and submod-
ular (uj(b1) + uj(b2) ≥ uj(b1 ∪ b2) + uj(b1 ∩ b2) for any bundles
b1, b2). It is assumed that each agent assigns a positive utility to the
set of all items. The utilities (ui)

n
i=1 are assumed to be given in the

value oracle model, meaning that we do not have a direct access to
them, but only to an oracle that indicates the value of an agent from
a given simple allocation. Lastly, the agents are assumed to be risk-
neutral. This means that, given a stochastic allocation d, the utility of
each agent j is given by the expected value:

Ej(d) =
∑
A∈A

pd(A) · uj(A).

The goal is to find a stochastic allocation that maximizes the set of
functions E1, . . . , En. Formally, we consider the following problem:

lexmaxmin {E1(d), E2(x), . . . En(d)}
s.t. d ∈ D

That is, the feasible region is the set of stochastic allocations (S =
D) and the objective functions are the expected utilities (fi = Ei for
any i ∈ [N ]).

Kawase and Sumita [13] present an approximation algorithm,
which relates the problem of finding a stochastic allocation that ap-
proximates the egalitarian welfare, to the problem of finding a simple
allocation that approximates the utilitarian welfare (i.e., the sum of
utilities):

max
n∑

i=1

ui(A) s.t. A ∈ A. (U1)

10 This section discusses only multiplicative approximations; so, for brevity,
we use the term "α-approximation" to refer to "(α, 0)-approximation".

11 See Observation 6.

We adapt their algorithm to find an approximately leximin-optimal
allocation as follows:

Theorem 11. Given a (randomized) algorithm that returns a sim-
ple allocation that α-approximates the utilitarian welfare (with suc-
cess probability p). Then, Algorithm 1 can be used to obtain a

α2

1−α+α2 -leximin-approximation for the problem of stochastic allo-
cations (with the same probability).

A complete proof is given in Appendix C of the full version. Here
we provide an outline. We start by taking (P3) and replacing the
constraint (P3.1) with the constraints describing a feasible stochas-
tic allocation. Here we face a computational challenge: the number
of variables describing a stochastic allocation is exponential in the
input size, as we need a variable for each simple allocation. We ad-
dress this challenge by moving to the dual of a closely related pro-
gram. The dual has polynomially-many variables but exponentially-
many constraints. However, we prove that a randomized approximate
separation-oracle for this program can be designed and used within
a variant of the ellipsoid method to approximate (P3).

Theorem 11 yields two immediate corollaries, using known algo-
rithms to approximate the utilitarian welfare when the agents’ utility
functions are monotone and submodular.

First, there are deterministic 1
2

-approximation algorithms [6, 9],
and therefore:

Corollary 12. Algorithm 1 can be used to obtain a 0.52

1−0.5+0.52
= 1

3
-

leximin-approximation for the problem of stochastic allocations.

Second, there is a randomized (1 − 1
e
)-approximation algorithm

w.h.p [20], and therefore:

Corollary 13. Algorithm 1 can be used to obtain
(1−1/e)2

1−(1−1/e)+(1−1/e)2
= (e−1)2

e2−e+1
≈ 0.52-leximin-approximation for

the problem of stochastic allocations w.h.p.

6 Conclusion and Future Work

We presented a practical solution to the problem of leximin optimiza-
tion when only an approximate single-objective solver is available.
The algorithm is guaranteed to terminate in polynomial time, and its
approximation ratio degrades gracefully as a function of the approx-
imation ratio of the single-objective solver.

It may be interesting to identify more problems (in addition to
stochastic allocations), where an approximate egalitarian solution
can be converted into an approximate leximin solution using the ap-
proach in this paper. In particular, in the problem of stochastic al-
locations (in Section 5), to extend the approximation algorithm for
the egalitarian welfare, we had to change some steps within. What
if an algorithm for egalitarian welfare is provided as a black box —
could it be used to design the appropriate procedure to approximate
leximin?

In the context of fair division, this study assumes that there is an
access to the true valuations of the agents involved. In reality, people
may lie about their valuations. Can our definition of approximate-
leximin be related to some approximate version of truthfulness?

Another question is whether it is possible to obtain a better ap-
proximation factor for leximin, given an (α, ε)-approximation algo-
rithm for the single-objective problem. Specifically, can an (α, ε)-
approximation to leximin can be obtained in polynomial time? If not,
what would be the best possible approximation in this case?
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