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Abstract. Security incidents in smart contracts still occur frequent-
ly, as the underlying code is often vulnerable to attacks. However,
traditional methods to detect vulnerabilities in smart contracts are
limited by certain rigid rules, reducing accuracy and scalability. In
this work, we propose GraphSA, which combines Graph neural net-
works (GNNs) and Static Analysis for smart contract vulnerability
detection. First, we present the contract tree, which is obtained by
converting the control flow graph (CFG) of a smart contract. Each
node in the tree represents a crucial operation code (opcode) block,
and each edge represents the control flow (execution order) between
code blocks. Then, we propose an extended SAGConv and Topkpool-
ing graph neural network (ST-GNN) to learn the features of each
node in the tree. To enhance detection accuracy, we eliminate and
merge some non-crucial nodes to highlight key nodes and execution
orders. Finally, we evaluate our approach on 7,962 real-world smart
contracts running on Ethereum and compare it with state-of-the-art
approaches on six types of vulnerabilities. Experimental results show
that our approach achieves higher detection accuracy than others.

1 Introduction

Blockchain is a distributed ledger technology that is revolutioniz-
ing the way that we store and exchange information. It is a digital
ledger of transactions maintained by a network of computers rather
than a central authority. Each block in the chain contains a cryp-
tographic hash of the previous block, a timestamp, and transaction
data, ensuring that the data is secure and tamper-proof. Blockchain
technology was first introduced in 2008 with the creation of Bitcoin
[21], a digital currency that operates on a blockchain network. Since
then, blockchain technology has evolved, and it is now being wide-
ly applied, including in finance [32], healthcare [24], supply chain
management [16], and knowledge graph domain [3], etc.

Smart contract and security incidents. Smart contracts, self-
executing computer programs, are created using advanced program-
s like Solidity [9] running on Ethereum [23]. They contain a set
of rules and conditions that are automatically executed without the
need for intermediaries or notaries. Smart contracts have been widely
adopted on various blockchain platforms, where millions of contracts
are currently deployed. This has enabled a diverse range of applica-
tions such as wallets [1], crowdfunding, decentralized gambling [6],
and cross-industry finance [15]. According to the latest report from
Alchemy [27], the number of smart contracts deployed on Ethereum
in 2022 increased by 293% compared to those in 2021.
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Applications based on smart contracts are becoming more popular
in many fields, with these contracts holding over $10 billion worth
of virtual coins. The high value of smart contracts has resulted in nu-
merous security incidents. The reentrancy vulnerability of the DAO
contract [33] was exploited by attackers in June 2016, resulting in the
theft of 3.6 million ethers, equivalent to about $60 million. Besides,
an integer overflow bug in the BEC campaign [2] resulted in the sud-
den disappearance of more than $900 million. Instances of security
vulnerabilities in smart contracts are not isolated, and new exploits
are discovered and utilized every few months. According to statis-
tics from SlowMist Hacked [25], blockchain networks have suffered
losses of more than $29 billion due to security issues in smart con-
tracts, with losses reaching $4.3 billion in 2022. So far, there have
been a total of 968 recorded security incidents on Ethereum, with
308 of them occurred in 2022, accounting for around one-third of all
security incidents.

Causes of smart contract prone to errors. There are several fac-
tors that make smart contracts particularly error-prone. First, smart
contracts are designed to automate complex business processes, and
as a result, their code can be highly intricate and challenging to write
and audit. Second, the rapid evolution of smart contract technolo-
gy means that developers are often working with new and untested
frameworks and tools, which can introduce new risks and vulnerabil-
ities. Last, traditional programs can be modified when encountering
bugs during runtime. However, due to the tamper-proofing of smart
contracts, they cannot be modified once deployed. Therefore, it is
necessary to use an effective and efficient tool for vulnerability de-
tection before deploying smart contracts.

Limitations of traditional methods. Traditional methods for s-
mart contract vulnerability detection mainly include symbolic exe-
cution [20], formal verification [4], intermediate representation [10],
and fuzzy testing [31]. Symbolic execution is a method for analyzing
software by treating program variables as symbols and systematically
exploring all possible execution paths. It is a powerful technique for
analyzing software behavior, but its effectiveness depends on the size
and complexity of the program being analyzed. Formal verification is
used to check the correctness of smart contracts by mathematically
proving that they behave as intended. It can help effectively iden-
tify potential vulnerabilities, but the techniques require significant
expertise to apply effectively. Intermediate representation is used to
transform smart contract source code into a more amenable form for
analysis. However, the method may lead to a loss of precision when
analyzing the source code. Fuzzy testing involves randomly gener-
ating input data to simulate various scenarios used for testing the
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security of smart contracts. However, fuzzing testing results depend
on the quality of the input generator.

Recently, however, efforts have been made to adopt deep neural
networks for the detection of smart contract vulnerabilities, resulting
in increased accuracy. [26] utilizes the Long Short Term Memory
(LSTM) networks to sequentially process source code. [34] mod-
els graphs to represent both syntactic and semantic structures of s-
mart contract functions. [18] uses graph neural networks and expert
knowledge for smart contract vulnerability detection. However, the
above-mentioned approaches either only consider the textual fea-
tures of operation code or construct semantic and control informa-
tion flows at the source code level. These limitations result in a loss
of precision in the detection of smart contract vulnerabilities while
making the models complex to use. In addition, based on statistic-
s, among the top 1.5 million smart contracts deployed, only 32,499
(about 2%) have their source code on Etherscan [12], where their
bytecode is public to ensure transparency.

In this work, we used traditional tools for generating the control
flow graph (CFG) of a smart contract, such as Oyente [20], Mythril
[8], and Vandal [5], to analyze over 1,500 real-world operation codes
of smart contracts, and presented a fully automated and scalable
method for detecting smart contract vulnerabilities with higher accu-
racy at the operation code level. In a CFG, nodes represent the com-
plete semantic information of basic blocks, and edges represent the
execution order. However, not all basic blocks and edges in the CFG
are equally important, and most of the GNN is essentially flat dur-
ing information propagation. Therefore, we designed a non-critical
basic block simplification and aggregation phase to normalize the
CFG and highlight key nodes and the order of execution. Then, we
transformed the basic blocks, control flow dependencies, and data
flow information in the CFG into a novel contract tree. Next, we
extracted the features of the contract tree and utilized them as in-
put for the ST-GNN network, which comprises the extended SAG-
Conv [11] and Topkpooling [7] components. The ST-GNN network
learned the features of the contract tree and employed them to detect
vulnerabilities in the smart contracts. Finally, experiments on 7,962
real-world smart contracts from Ethereum concluded that the accu-
racy of GraphSA, which we proposed, has significantly improved in
detecting reentrancy, self-destruct, delegate-call, transaction-order
dependency, timestamp dependency, and integer overflow vulnera-
bilities.

Contributions. The key contributions are listed as follows:

• We proposed a novel concept contract tree, converted by CFG of
a smart contract, and combined it with GNNs for vulnerability
analysis.

• We proposed two algorithms based on CFG to better capture infor-
mation from contract trees, highlighting key nodes and execution
sequences, and maximizing the reconstruction of the static pro-
gram analysis process.

• We proposed the ST-GNN network model for training. Experimen-
tal results showed that our method has significant advantages in
detecting six specific types of vulnerabilities in smart contracts.

2 Background

In this section, we briefly review relevant knowledge.

2.1 Control Flow Graph

The CFG is a graphical representation for describing the control flow
of code in smart contracts. It can help us better understand the behav-
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Figure 1. A simple contract tree example.

ior of smart contracts and identify vulnerabilities. Each smart con-
tract can be represented as a CFG, composed of nodes and directed
edges. Nodes represent basic blocks, which are a group of opcode in-
structions executed in sequence. Edges represent the flow of control,
the order of execution between basic blocks. There are two execu-
tion sequences: the first is sequential execution between adjacent ba-
sic blocks, dependent only on the type of opcode. The second is jump
execution between non-adjacent basic blocks, dependent on the anal-
ysis of the relationship between instruction opcodes and operands
in the execution process to determine the position of specific jump
blocks.

2.2 Graph Neural Networks

GNNs have gained widespread attention in recent years as a type
of machine learning model used for processing graph data. Unlike
traditional neural network models that take vectors or matrices as
inputs, GNNs take graphs in their representation as inputs. This fea-
ture allows GNNs to perform forward and backward propagation on
graphs of any size and shape, making them suitable for processing
no-fixed-structure data. The core idea behind GNNs is to model the
interaction between nodes as an information passing process to ob-
tain global graph structural features. At each node, GNNs combine
the features of the node and its neighboring nodes into a new feature
vector, which is then passed on to the next node. This process can be
repeated multiple times until a certain termination condition is met.

3 GraphSA

In this section, we firstly present a new concept contract tree, and
based on which, we then introduce our proposed method GraphSA
in detail.

3.1 Contract tree

Definition 1. Given a smart contract c and its CFG, a Contract Tree
of c is a tree, defined as follows:

• Each node is a code block and carries a unique identifier, and each
edge is the control flow passing from one code block to another.

• The root node is the starting point of the program execution flow.
• Each leaf node is the termination of the program execution flow.
• A sequence of adjacent edges between nodes is referred to as a

path, with each path representing a scenario during program exe-
cution.

L. He et al. / GraphSA: Smart Contract Vulnerability Detection Combining Graph Neural Networks and Static Analysis 1021
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Figure 2. The overall architecture of GraphSA. (a) The simplification of the CFG phase; (b) the cotract tree building phase; (c) the feature extraction phase;
(d) the vulnerability detection phase.

An example of a contract tree. An example of a simple contract
tree is shown in Fig. 1. ei indicates the number of the node control
flow. In each path, the order from smallest to largest of i represents
the actual operation order of the control flow. Mi represents the node
number, and nodes with the same subscript i are copies of the same
code block. In Fig. 1, there are two M3 nodes in the left branch of
M0, indicating that there are two different paths to reach M3. In the
right branch of M0 in Fig. 1, there are multiple control flows from
M4 to M5 that correspond to the cyclic structure in the CFG. In Fig.
1, e1 and e5 are conditional branches of program execution that will
not be carried out concurrently in the process of program execution.
Therefore, the information passing process from M0 to M1 and M0

to M4 in the contract tree can be carried out simultaneously.
The feature of contract tree. Based on Definition 1 and the ex-

ample in Fig. 1, we can summarize the characteristics of a contract
tree as follows:

• Integrality - The contract tree contains all paths of program exe-
cution, and each path just represents a situation.

• Temporality - Each path in the contract tree is constructed in the
order of each code block in one execution.

• Efficiency - Nodes in each path that are unrelated to vulnerabil-
ities are simplified and aggregated, while identical and unrelated
paths are merged to improve message passing efficiency.

In this work, we will use contract trees as inputs to ST-GNN training
and detection, in subsequent sections.

3.2 GraphSA

Method overview. The main idea of our proposed method for smart
contract vulnerability detection is to combine Graph neural networks
and Static Analysis (GraphSA). The overall architecture of GraphSA
is shown in Fig. 2, including four phases:

(1) Simplification of CFG: We first simplify the CFG paths irrelevant
to vulnerability detection, and then perform information aggrega-
tion on the simplified CFG.

(2) Contract tree building: Next, we build the contract tree from the
simplified and aggregated CFG.

(3) Feature extraction: Feature extraction includes extracting opcode
semantics and data flow features from each node.

(4) Vulnerability detection: We use ST-GNN to train the features of
the contract tree and output the detection results.

In the following sub-sections, we will provide detailed explanations
of these four steps one by one.

3.2.1 Simplification of CFG

Observations. For analyzing the smart contracts in detail, we used
existing software debugging tools to generate CFGs over 1,500 real-
world smart contracts. We observed the presence of quantities of non-
relevant paths for smart contract vulnerability detection in CFGs.
Therefore, simplifying these paths will improve the accuracy and ef-
ficiency of feature extraction for vulnerability detection. In addition,
to highlight the key nodes and control flows of CFGs, we further
aggregated information on simplified CFGs.

Nodes construction and definition. Major nodes represent the
basic block that is closely related to the vulnerability. It includes the
basic block that directly or indirectly contains opcodes related to the
vulnerability. For example, ADD, TIMESTAMP , etc., can lead
to integer overflow and timestamp dependency vulnerabilities. For-
mally, we describe all key opcode blocks as major nodes, which are
denoted by M1, M2, ..., Mn. Secondary nodes are used to describe
basic code blocks that do not contain opcodes related to vulnerabil-
ities. Formally, secondary nodes are defined as S1, S2, ..., Sn. Leaf
nodes represent nodes with an out-degree of 0. Formally, leaf nodes
are defined as L1, L2, ..., Ln. Edges include two types: the basic
control flow edge and the special control flow edge. The basic con-
trol flow is a common control flow that exists in CFG. However, some
special structures in CFG are closely related to vulnerabilities, such
as cyclic structures, etc. We define the control flows related to these
structures as special control flows.

For convenience, in subsequent descriptions, some definitions in
CFG are given as follows: A branch node is a node with out-degree
greater than 1. A root node is a node with in-degree of 0.

Simplifying CFGs. As shown in the left and middle sub-figures
of Fig. 3, we applied Algorithm 1 to simplify the CFG. In this algo-
rithm, we adopted a bottom-up recursive tactic to process the CFG
paths, ensuring the integrity of the major nodes and special struc-
tures. The recursive termination condition of the algorithm is that all
leaf nodes are major nodes, that is, the subset of major nodes consists
of leaf nodes. The first line of the algorithm is the recursive termina-
tion condition, while lines 4-10 are used to check whether the current
leaf node is a major node and, if not, delete the node and its associat-
ed edges. Line 12 regains the new leaf nodes in the current CFG after
one round of simplification. Line 13 serves as the entry point for the
recursion process.

Aggregating information. As shown in the middle subgraph of
Fig. 3, the simplified CFG preserves the major nodes and their con-
trol flows. However, there are still numerous secondary nodes in
the simplified CFG. Moreover, most GNNs are inherently flat when

L. He et al. / GraphSA: Smart Contract Vulnerability Detection Combining Graph Neural Networks and Static Analysis1022
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Figure 3. The detailed process of CFG preprocessing includes the complete CFG (left), the simplified CFG (middle), and the aggregated subgraph (right).

Algorithm 1 SCFG(E ,L): Simplifying CFG.
Input: E : the set of edges that make up the CFG; L: the set of leaf

nodes in the CFG.
Output: SE(E ,L) - the set of edges that make up the simplified CFG.

1: if L consists of only node(major) then

2: return E ;
3: else

4: for each node2 ∈ L do

5: if node2 �= node(major) then

6: for each edge < node1, node2 >∈ E do

7: E ← E \ {edge(node1, node2)};
8: end for

9: end if

10: end for

11: end if

12: L = get_leaf_nodes(E);
13: SCFG(E ,L);

propagating information. To highlight major nodes and reserve each
important control flow of program execution paths, we use informa-
tion aggregation as follows: As illustrated in the right of Fig. 3, infor-
mation aggregation operations are applied to Si of three structures.
First, the nodes of consecutively connected Si, e.g., 0x41 and 0xbd,
are aggregated directly. Second, the Si of related to branch nodes,
e.g., 0x51 and 0x58, reserve branch nodes and aggregate sequential
Si nodes. Last, Si is related to a special structure, such as 0xbf and
0xce, where 0xbf is a branch node and a node from a loop structure,
so Si is aggregated while retaining branch nodes.

3.2.2 Contract Tree Building

In this section, we generate contract trees using simplified and ag-
gregated CFGs by Algorithm 1. As shown in Fig. 4, there are two
key steps to building a contract tree. First, we obtain the execution
order of all paths in CFG (Fig. 4-b), where each path represents a
situation in program execution. Then, we merge the same paths that
are unrelated during program execution to form a contract tree (Fig.
4-c).

The detailed process of building a contract tree is shown in Algo-

Algorithm 2 BCT(E ,L): Building contract tree.
Input: E : The edges set of simplified and aggregated CFG; L: The

leaf nodes set of simplified and aggregated CFG.
Output: CT (E) - The edges composing the contract tree.

1: P ← all paths from root to each leaf node in L.
2: V ← number of incoming edges to each node in E .
3: Visit first path, counting visited count of each node.
4: for p in P starting from second path do

5: for n in p do

6: if n meets conditions for visitation then

7: V [n] ← V [n]− 1;
8: else

9: Remove n from p.
10: end if

11: end for

12: end for

13: E ← Merge remaining paths in P .
14: return E;
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Figure 4. The process of building a contract tree: (a) simplified and
aggregated CFG; (b) all paths of the contract tree; (c) contract tree.

rithm 2. In line 1, we obtain all possible paths from the root node to
each leaf node. In line 2, we calculate the number of incoming edges
for each node on all edges. In line 3, we visit the nodes in the first
path and count the number of times each node is visited. Next, lines
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Figure 5. Overall structure of the vulnerability detection model. (a) Input in the form of a contract tree; (b) contract tree feature convolution and pooling; (c)
output of vulnerability detection results.
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Figure 6. The process of extracting semantic and data flow information
features from nodes.

4-12 traverse each path starting from the second path. For each node
in the path, if it meets the conditions for visitation (line 6), its vis-
it count is decremented by 1 (line 7). If the node does not meet the
conditions, it is removed from the path (line 8). The conditions for a
node to be visited are as follows: First, the node has not been visited
before. Second, the node has an out-degree greater than the number
of times it has been visited. Last, if the node is a leaf node and has an
in-degree greater than the number of times it has been visited, it can
also be visited. Finally, line 13 merges the remaining paths to form
the contract tree.

3.2.3 Feature Extraction

In order to capture the semantic and data flow information of opera-
tion codes in each node, which is crucial to preserving the essential
information of the contract tree, we employ feature extraction. In this
section, we will provide a detailed description of the process of se-
mantic and data flow information extraction.

As shown in Fig. 6, we first extract the semantic information from
the opcode. We use the decimal value of the bytecode corresponding
to each opcode as the opcode feature, and map it to an index posi-
tion in the feature vector based on the execution order of the opcode
in the node. Each value in the feature vector represents an opcode
instruction contained in the current node, and the index position of
the opcode feature vector corresponds to the execution order of the
opcode. However, since the number of operation codes in each n-
ode may differ, we set the maximum dimension of the feature vector
and use 0x00 to represent unfilled operation code feature positions.
Furthermore, we consider special structures when building features
between nodes. Through our investigation of traditional static anal-
ysis tools, such as Oyente [20], we found that the maximum depth
of path exploration is 50. Therefore, we set the maximum number of
loops for special loop structures to 50 during the analysis process.

To further enrich the node feature, we parse each instruction in the
order of execution and retain the relevant money flow information
that is most significant to the vulnerability. The money flow repre-
sents the balance of the sender and receiver, for instance, Oyente [20]
uses the money flow to describe the money state in each execution
path. As illustrated in Fig. 6, IS_t and IA_t are used to simulate the
balance of the sender and receiver after the execution of the t-th code
block. Unlike traditional static analysis methods, we fix the amount
of each transfer and set the initial values of IS_t and IA_t based on
the execution frequency of the corresponding special structure nodes
in the contract tree, such as the loop structure related to reentrancy
vulnerability.

Once the feature extraction process is completed, we obtain se-
mantic and money flow features for the nodes. We utilize these fea-
tures as node features to generate datasets for the contract tree and
feed the constructed datasets into a deep learning model for training.

3.2.4 Vulnerability Detection

Shown in Fig. 5 are the overall steps for vulnerability detection by
GraphSA. Here, we proposed the ST-GNN network model based on
the characteristics of static analysis of smart contracts. The mod-
el combines and extends the SAGConv and TopKpooling. Combin-
ing SAGConv with Topkpooling has numerous benefits for GNNs.
This combination improves large-scale graph processing, local infor-
mation learning, and computational efficiency while preserving the
clarity and interpretability of the model. Our network model takes
the contract tree T of the smart contract as input and outputs the la-
bel ŷ ∈ {0, 1}, indicating whether the contract has a certain type of
vulnerability.

Contract tree feature convolution and pooling. In the ST-GNN
network model, the feature of each node is updated through convolu-
tion layers. As shown in Equation 1, the new feature xi

′
of node xi

is obtained by the feature of node xi itself and the mean of the fea-
tures of its neighbor nodes, where W1 and W2 represent two train-
able weight matrixes.

xi

′
= W1xi +W2 ·meanj∈N(i)xj (1)

Furthermore, Equations 2-5 illustrate the scoring mechanism,
which calculates the score of each node and selects the nodes with
high scores to reconstruct their adjacency matrix. During this pro-
cess, the convolved node representation is aggregated, and the most
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important nodes are selected for the next layer of operation. Through
multiple rounds of convolution and pooling, the model can gradually
extract node features.

si = WT
3 maxj∈N(i)(xj

′
) (2)

ai

′
=

exp(si)∑
j∈N(i)

exp(sj)
(3)

hi

′
=

∑
j∈N(i)

ai

′
xj

′
(4)

A
′
= σ(ATD−1AD) (5)

where si is the score of node i, W3 is a trainable weight matrix, ai
′

is the weight for node i, hi
′

is the aggregated feature vector of node
i, A is the adjacency matrix of the original graph, σ is the sigmoid
function, and D is the diagonal matrix of node degrees.

Readout phase. After the multiple rounds of convolution and
pooling in T, ST-GNN get a label for T by reading out the final fea-
tures of all nodes. Let h

′′
i be the final pooled node feature of all n-

odes, we may generate the prediction label ŷ by

ŷ = σ(

|V |∑
i=1

Wh
′′
i + b) (6)

where W and b are the weight matrix and bias vector of the fully con-
nected layer, |V | denotes the number of nodes obtained after multiple
rounds of convolution and pooling, and σ is the sigmoid function.

The ST-GNN is trained to detect vulnerabilities in contracts. The
network is trained using numerous contract trees, along with their
corresponding ground truth labels. Then, the trained model is em-
ployed to absorb a contract tree and yields a vulnerability detection
label. It is worth noting that we have created automated tools capable
of converting source code into contract trees, hence the entire process
is fully automated.

4 Experiments

4.1 Datasets and Experimental Settings

Datasets. In this experiment, we chose a dataset consisting of 7,962
real-world smart contracts in versions 0.4-0.8 of Ethereum. To en-
sure the reliability of the dataset, we made appropriate adjustments
to the distribution of six vulnerabilities in it. Choosing this particular
dataset was based on several factors. First, smart contract bytecode
is often unreadable, and different testing tools have varying level-
s of support for different versions of smart contracts. Second, it is
difficult to classify and manually review smart contracts, adding to
the complexity of the selection process. Finally, the uneven distribu-
tion of vulnerabilities in the dataset requires appropriate adjustments
to ensure accurate results. During the analysis and review of the s-
mart contracts, we found that over 80% of the contracts had complex
calling relationships, and almost all had special contract structures.
Therefore, the aggregation and simplification mentioned in Section 3
are worthy of this dataset.

Experimental settings. Most smart contract vulnerability detec-
tion methods using neural networks are non-open source, while run-
ning projects that provide source code locally is challenging. There-
fore, we compared our method with three existing smart contract de-
tection tools and two neural network-based methods. In this way, we

indirectly compare our approach with others not involved in this ex-
periment. For the dataset, we randomly divided it into 60% of them
as the training set, 20% of them as the validation set, and the other
20% as the testing set several times and reported the averaged re-
sult. We evaluated the results using accuracy, precision, recall, and
F1-score metrics. As Oyente is unable to detect smart contracts with
versions above 0.4.26, we included all smart contracts with versions
below 0.4.26 in the dataset, and adjusted the vulnerability distribu-
tion accordingly.

4.2 Comparison with Existing Methods

In this section, we first compare GraphSA with three state-of-the-art
methods: Mythril [8], Oyente [20], and Smartcheck [28]. Then, we
further compare GraphSA with two methods based on alternative
neural networks: Vanilla Graph Neural Networks (Vanillia-GNN)
[19] and Graph Convolutional Networks (GCN) [14].

4.2.1 Comparison with State-of-the-Art Existing Methods

We compared GraphSA with existing no-deep-learning methods,
namely Smartcheck [28], Oyente [20], and Mythril [8] on detecting
six types of vulnerabilities. The performance of them is presented in
the top of Tables 1 and 2, where metrics accuracy, recall, precision,
and F1-score are engaged.

Based on the statistical analysis presented in Tables 1 and 2, we
can conclude as follows. First, the state-of-the-art tools exhibit un-
satisfactory accuracy in detecting these six types of vulnerabilities,
with the highest accuracy rate among them being only 71.69%. Sec-
ond, GraphSA achieved the highest accuracy rate of 85.52%, which
is 13.83% higher than the others. Moreover, on average, our method
achieved a detection accuracy rate of over 80%. However, there ex-
ists a significant difference in the detection accuracy rate of these
six vulnerabilities among the existing tools, with the lowest accuracy
rate being only 40.39%. To further compare our method with theirs,
we visualized the experimental data, as shown in Fig. 7.

We conducted further research on the existing tools for smart con-
tract vulnerability detection to explore the reasons behind these ob-
servations. Smartcheck primarily relies on strict and simple logic
rules to detect vulnerabilities, resulting in lower accuracy and F1-
scores. Oyente uses data flow analysis to improve accuracy, but the
underlying patterns for detecting vulnerabilities are not very accu-
rate. In contrast to other methods, Mythril integrates complex tech-
niques such as symbolic execution, taint analysis, and manual audit-
ing to detect vulnerabilities. As a result, Mythril performs better in
terms of vulnerability detection accuracy.

4.2.2 Comparison with Neural Network-Based Methods

In the following, we further compared GraphSA with other approach-
es based on neural network models, namely Vanilla-RNN and GCN.
Experimental results are presented in the lower half of Tables 1 and 2.
Based on the statistical results, we can conclude that the accuracy of
alternative neural network models is better than that of state-of-the-
art tools not based on neural network models but still falls short of
our method’s accuracy. The highest accuracy achieved was 77.85%,
which still showed a certain gap compared to our method. To provide
a more intuitive and clear comparison between GraphSA and other-
s, we visualized the experimental data in Fig. 7. The visualization
reveals that our method outperforms both Vanilla-RNN and GCN
in terms of accuracy, highlighting the effectiveness of our approach.
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Table 1. Performance comparison of five methods for Reentrancy, Self-Destruct, and Delegate-call vulnerabilities using accuracy, recall, precision, and
F1-score metrics, including state-of-the-art detection methods, neural network-based alternatives, and our method ST-GNN.‘-’ denotes not applicable.

Method
Reentrancy Self-destruct Delegate-call

Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%)
Smartcheck 52.97 30.10 25.00 28.10 40.39 32.16 36.11 40.59 - - - -

Oyente 61.26 54.71 38.16 44.96 - - - - - - - -
Mythril 60.54 71.69 39.58 51.02 71.69 55.61 50.84 51.23 59.25 46.15 60.28 50.48

Vanilla-RNN 49.64 58.78 49.82 50.71 53.06 51.89 43.25 41.02 45.18 43.49 43.10 42.69
GCN 77.85 78.79 70.02 74.15 74.20 74.56 70.86 67.32 63.52 63.04 59.26 60.49

GraphSA 85.52 81.25 77.33 76.56 84.81 83.75 78.82 78.95 82.16 80.81 74.62 70.25

Table 2. Performance comparison of five methods for Transaction-order dependency, Timestamp-dependency, and Integer overflow vulnerabilities using
accuracy, recall, precision, and F1-score metrics, including state-of-the-art detection methods, neural network-based alternatives, and our method ST-GNN.‘-’

denotes not applicable.

Method
Transaction-order dependency Timestamp-dependency Integer overflow

Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%) Acc(%) Recall(%) Precision(%) F1(%)
Smartcheck - - - - 51.32 37.25 39.16 38.18 58.48 54.20 55.68 54.96

Oyente 53.68 67.82 51.56 58.64 59.45 38.44 45.16 41.53 66.85 57.23 58.06 59.64
Mythril - - - - 61.08 41.72 50.00 45.49 77.25 58.49 56.20 53.26

Vanilla-RNN 49.57 47.86 43.10 42.69 49.77 44.59 51.59 45.62 52.10 50.26 48.52 49.76
GCN 72.35 70.02 63.04 59.96 74.21 75.97 68.35 71.96 68.34 67.82 64.39 66.37

GraphSA 83.33 81.64 76.49 71.80 85.71 82.50 77.09 70.07 80.00 79.86 76.52 71.80
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Figure 7. Visual comparison results. (a)-(f) respectively show the comparison results of six smart contract vulnerability detection methods in six aspects:
reentrancy, self-destruct, delegate-call, transaction-order dependence, and integer overflow. In each subplot, the x-axis from left to right represents accuracy,

recall, precision, and F1-score, and the y-axis from front to back respectively represents Smartcheck, Oyente, Mythril, Vanillia-RNN, GCN, and ST-GNN.

In addition, in other experiments, the F1-score of Vanilla-RNN and
GCN, was also lower than that of GraphSA.

5 Related Work

The security of smart contracts is one of the most critical issues in
blockchain. Many research teams have delved into the security prob-
lems of Solidity smart contracts. In terms of symbolic execution, ma-
ture tools have been developed, such as Oyente [20], Maian [22], and
Securify [29], which can help researchers discover potential vulner-
abilities in obscure paths within contracts. However, when dealing
with complex and large smart contracts, there is a high risk of false
negative rates. Because current tools require extensive computing re-
sources and time, and may fail to execute due to “path explosion.”
As a result, researchers need to fine-tune the tools and verify the re-
sults of their detection. In dynamic analysis, recent work by [17] ex-
plores dynamical imitation attacks for retreency vulnerability. They
divided the type of retreency vulnerability into three sections and
constructed a relative attacker contract. However, the test data for
input was generated with fuzzing test tools, which may have led to
incomplete analysis. Deep learning technology has been applied in
various ways to detect vulnerabilities, such as vulnerability detec-
tion based on natural language processing (e.g., ContractWard [30]),
non-Euclidean graph-based vulnerability detection (e.g., CCGraph

[35]), and image-based vulnerability detection (e.g., R2-D2 [13]).
Nonetheless, deep learning techniques still face several challenges in
detecting smart contract vulnerabilities. For example, smart contract
data has a highly intricate structure, and the model training process
demands a substantial amount of computing resources and sample
data. Additionally, researchers need to address the complexity and
interpretability issues of deep learning models.

6 Conclusion

In this paper, we present a fully automated method for detecting vul-
nerabilities in smart contracts that combines deep learning and static
analysis. In contrast to existing approaches, we aim to preserve the
semantics and data flow characteristics of contracts to the greatest ex-
tent, and we validated the feasibility of using a novel contract tree for
vulnerability detection. Experiments demonstrate that our approach
outperforms state-of-the-art methods.
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