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Abstract.  Multi-domain learning (MDL) refers to simultane-
ously constructing a model or a set of models on datasets col-
lected from different domains. Conventional approaches emphasize
domain-shared information extraction and domain-private informa-
tion preservation, following the shared-private framework (SP mod-
els), which offers significant advantages over single-domain learn-
ing. However, the limited availability of annotated data in each do-
main considerably hinders the effectiveness of conventional super-
vised MDL approaches in real-world applications. In this paper, we
introduce a novel method called multi-domain contrastive learning
(MDCL) to alleviate the impact of insufficient annotations by cap-
turing both semantic and structural information from both labeled
and unlabeled data. Specifically, MDCL comprises two modules:
inter-domain semantic alignment and intra-domain contrast. The for-
mer aims to align annotated instances of the same semantic cate-
gory from distinct domains within a shared hidden space, while the
latter focuses on learning a cluster structure of unlabeled instances
in a private hidden space for each domain. MDCL is readily com-
patible with many SP models, requiring no additional model pa-
rameters and allowing for end-to-end training. Experimental results
across five textual and image multi-domain datasets demonstrate that
MDCL brings noticeable improvement over various SP models. Fur-
thermore, MDCL can further be employed in multi-domain active
learning (MDAL) to achieve a superior initialization, eventually lead-
ing to better overall performance.

1 Introduction

In many machine learning tasks, models are built on datasets col-
lected from various data sources with different distributions, known
as domains. For instance, texts from different sources like news arti-
cles, social media posts, and scientific papers constitute distinct do-
mains in natural language processing. In computer vision, images of
differing styles, such as sketches, cartoons, art paintings, and cam-
era photos [1] are considered distinct domains. While each domain
possesses unique information, they often share a significant amount
of information with other domains. Naive solutions involve jointly
building a single model across domains or independently construct-
ing models for each domain, as is done in conventional single do-
main learning (SDL) approaches. However, joint training may ne-
glect the unique information on each domain, while independent
training disregards the correlations among domains [2]. To address
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these shortcomings, multi-domain learning (MDL)[3] has been pro-
posed to simultaneously capture domain-shared and domain-private
information. Most existing MDL works concentrate on sharing in-
formation among domains while preserving domain-private informa-
tion through models under the shared-private framework (SP models)
[2, 4]. Typically, following the concept of domain adaptation (DA)
[5], shared information can be captured through distribution align-
ment across domains, allowing several DA methods to be utilized in
MDL. Besides, private information is usually managed by a private
component of the model for each domain. Accounting for both types
of information has led to significant performance improvements over
joint and independent training in the past decade [2].

In real-world applications, obtaining a sufficiently labeled dataset
can be costly, even within a single domain [6, 7, 8]. This issue ex-
acerbated in MDL since constructing labeled multi-domain dataset
is even more challenging due to the difficulty in accessing data from
multiple domain experts [9, 10, 11]. For instance, in the case of multi-
domain medical image datasets [9], the high cost of manual annota-
tions from medical experts across various research fields is just one
of the challenges. The varying privacy and legal concerns, quality
assurance processes, and labeling tools across domains also entail
additional costs. The aforementioned MDL approaches face chal-
lenges in this high-cost scenario as they heavily rely on fully super-
vised training from a relatively sufficiently annotated multi-domain
dataset. Therefore, a natural question arises: can we perform cost-
efficient MDL with insufficient annotated data?

To the best of our knowledge, only a few works address the is-
sue of insufficient annotations from multiple domains. Some works
utilize contrastive [12, 13] and semi-supervised [14] learning to alle-
viate the impact of insufficient annotations across domains. The key
is to utilize unlabeled data to improve the performance. However,
these works focus on the domain adaptation problem, where only the
target domain performance is concerned and the domain-private in-
formation is usually neglected. Other works propose to utilize active
learning (AL) [15] in MDL, which is referred to as multi-domain ac-
tive learning (MDAL) [16]. Given a budget for annotation, MDAL
begins with a small set of labeled instances and iteratively selects the
new instances for model building. However, without a good initial
model trained on insufficient labeled instances, the selection process
is likely to be biased and unreliable in the subsequent MDAL iter-
ations. In summary, no method is readily applicable for MDL with
insufficient annotations so far.

In this paper, we propose a novel MDL approach, called multi-
domain contrastive learning (MDCL), to construct neural network
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models on a limited number of labeled instances from each domain.
Figure 1 presents an intuitive understanding of MDCL, where the
semantic and structural information are respectively captured from
labeled and unlabeled data. Specifically, MDCL comprises two com-
ponents: a supervised contrastive loss to align instances of the same
category from different domains within a shared hidden space and
an unsupervised contrastive loss that focuses on learning the clus-
ter structure of instances from the same domain in a private hidden
space. By integrating both components, MDCL can learn a well-
aligned representation from insufficient annotations. Importantly,
MDCL is readily compatible with various share-private (SP) models
for MDL [17, 2, 4], requiring no additional model parameters and al-
lowing for end-to-end training. Experimental results across five tex-
tual and image multi-domain datasets demonstrate that MDCL brings
noticeable improvement over various SP models.
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Figure 1: Intuitive understanding of MDCL. An illustrative exam-
ple in the hidden space. (1) Inter-domain alignment aims to align
items within the same category but from different domains closer to
each other. (2) Intra-domain contrast aims to maintain a cluster struc-
ture in each domain and make instances more separable.

The main contributions of this paper are summarized as follows:

e We introduce a novel approach called MDCL to build neural net-
work models on insufficient labels in MDL. MDCL is readily
compatible with many SP models, requiring no additional model
parameters and allowing for end-to-end training.

o Experimental results demonstrate that MDCL yields noticeable
improvement over many SP models across five textual and image
multi-domain datasets.

e Moreover, MDCL can be employed in MDAL to achieve a supe-
rior initialization and consequently result a better performance.

2 Related Work

This work is closely related to multi-domain learning (MDL) [3] and
contrastive learning [18], which will be briefly reviewed in the fol-
lowing sections. The representative works and solutions would be
included.

2.1 Multi-Domain Learning

MDL [3] differs from both multi-task learning (MTL) [19], domain
adaptation (DA) [5] and domain generalization [20, 21, 22] in that
MDL focuses on performing the same task across all domains simul-
taneously. By leveraging shared information from multiple related
domains, MDL enhances the model’s performance on each individ-
ual domain.

Domain-shared information learning The domain-shared infor-
mation learning is a crucial step in MDL, which aims to extract com-
mon features across different domains. This can be achieved by using
a shared feature extractor that aligns the marginal distributions of dif-
ferent domains. The alignment is typically performed by minimizing
the maximum mean discrepancy (MMD) between domains [23]. Ad-
versarial training can also be used to handle distribution alignment
for more than two domains. The extracted features are effective if a
discriminator cannot distinguish the domain of the instances. Several
models based on this intuition from domain adaptation (DA) can be
adapted for use in MDL. Examples include Domain-adversarial neu-
ral networks (DANN) [24] and Adversarial discriminative domain
adaptation (ADDA) [25]. Additionally, Feng et al. [26] proposed a
method that directly learns representations for MDL using this dis-
tribution alignment approach.

Domain-private information imparted In MDL, the domain-
invariant representations may not fully capture the unique informa-
tion of each domain. To address this issue, several methods have
been proposed to capture both domain-shared and domain-private in-
formation. One approach is concatenating the domain-private infor-
mation with the domain-shared information for making predictions.
For example, Domain separation networks (DSN) [17] use separate
feature extractors for domain-private and domain-shared information
in a DA setting. Adversarial shared-private model (ASP-MTL) [2]
and Multinomial adversarial networks [4] apply this idea to MDL.
This architecture that concatenates representations through domain-
shared and domain-private feature extractors is commonly known as
the share-private framework (SP models). Empirical study [16] has
shown the superiority of the share-private framework.

Multi-domain active learning To address the labeling cost in
MDL, MDAL [27] iteratively selects informative instances to re-
duce the labeling burden. A comprehensive comparative study [16]
has shown that AL can improve performance compared to passive
models. The MAN model under the share-private framework out-
performs other methods in both passive and active scenarios. More-
over, taking into account the evaluation of multi-domain informa-
tiveness, perturbation-based two-stage multi-domain active learning
(P2S-MDAL) [28] serves as the first ad hoc active learning strategy
for MDAL. Some works have also applied AL to multiple domains
but without considering information-sharing schemes. They either
build classifiers on each domain [29] or use a single model for all
domains [30].
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Figure 2: Overview of MDCL method. (a) As a representative model for MDL under the share-private framework, MAN is taken as an
illustration. (b) MDCL comprises two components: an inter-domain semantic alignment and an intra-domain representation learning.

2.2 Contrastive Learning

Contrastive learning on single domain Contrastive learning
(CL) is one of the most prevalent paradigms of self-supervised
learning. The general learning paradigm of CL always performs
a contrasting among different views augmented from the original
data [18, 31, 32]. Due to the capability of extracting supervision sig-
nals from unlabeled data, CL is explored in a wide range of fields
and achieves promising performance [18, 31, 33], including multi-
domain learning.

Contrastive learning across domains Contrastive learning has
been applied in DA, where the learning process is guided by a fully
labeled source domain to improve performance on the unlabeled or
sparsely labeled target domain. Self-supervised tasks can be directly
used to jointly learn a shared feature extractor [34]. Besides, class
prototypes [12, 13, 14] can be generated to align the categorical dis-
tributions between the source and target domains. Meanwhile, in-
stance contrastive alignment [13, 35] can also be used to build a fea-
ture extractor without using labels on the target domain to learn the
target domain representation.

These studies are most close to our work technically. However,
they only focus on domain adaptation (DA) setting and only employ
a single feature extractor for both domains. They do not consider the
MDL problem, where both shared and private information should be
taken into account and further been handled by certain model compo-
nents. Besides, there is no fully labeled source domain in our setting
to extract reliable class prototypes as in [12, 13, 14].

3 Problem Formulation

Following the definition given in [16], we re-formulate the problem
of multi-domain learning, which further considers the insufficient an-
notations and utilizes both labeled and unlabeled instances. The for-
mulation is written as follows:

In multi-domain learning, there are K different data sources
(domains) D = {Di, Da,...,Dk}. A set of data pools P =

{P1,Pa, ..., Pk} containing both labeled and unlabeled data is col-
lected from D in advance. The labeled data from each pool constitute
a labeled data set £ = {L1, Lo, ..., Lk }. Considering the scenario
with limited labeled instances, the number of the labeled instances is
much smaller than the collected data pool, i.e. |£| < |P|. In this sce-
nario, MDL is to find a set of models M = {M1, Ma,... , Mg}
for K domains by capturing common knowledge on the unlabeled
data pools P and limited labeled instances £ of different domains,
which can be expressed as follows:

%nLosssup(M;E) + Q(M;P, L) (1)

Losssup(M; L) denotes the supervised loss on the labeled set L.
Q(M; P, L) denotes a designed loss on the set of data pools P and
limited labeled instances £ for capturing the common knowledge
through model M.

4 Methodology

This section introduces our novel multi-domain contrastive learning
(MDCL) method for MDL with limited annotations. The key is to
maximally utilize the unlabeled data pools and limited labeled in-
stances to learn a set of models for K domains. The labeled data can
be used to capture the semantic information and align the distribu-
tions across domains. The unlabeled data can further be used to learn
the structural information of the data distribution and preserve the lo-
cal information. MDCL introduces an inter-domain semantic align-
ment loss and an intra-domain representation learning loss to utilize
the unlabeled and limited labeled data maximally. As we introduced
in Section 2.1, the share-private framework is the commonly used ar-
chitecture for MDL. MDCL takes the share-private framework as the
backbone, where our designed loss can be easily integrated into the
existing MDL methods as a plug-and-play component and trained in
an end-to-end manner without introducing additional model parame-
ters. The inter-domain semantic alignment and the intra-domain rep-
resentation learning loss are based on the contrastive learning to guild
the feature extraction. The overview of MDCL is depicted in Fig. 2.
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The remainder of this section will first provide an overview of the
share-private framework, which serves as the backbone of MDCL,
and then describe our method and its components in detail.

4.1 Share-Private Framework

The popular solution for MDL is the share-private framework (SP
structure), which uses two types of feature extractors to handle both
domain-shared and domain-private information. It effectively com-
bines shared and private feature extractors to capture domain-shared
and domain-specific information in MDL. The shared-information
across domains could improve overall performance by training a
shared extractor, while domain-specific information may be lost dur-
ing the joint training. Whereas, the private extractor can efficiently
preserve domain-specific information. The representations from both
extractors are then concatenated for inference. Consequently, the SP
model outperforms both the single shared feature extractor model
(e.g., DANN [24]) commonly used in DA, as well as private mod-
els. Some models have unique classifiers on each domain (e.g., ASP-
MTL [2]), while others share a single classifier for all domains (e.g.,
MAN [4] and CAN [36]). As a representative and efficient SP model,
the structure of MAN is illustrated in Fig. 2(a).

4.2 Inter-Domain Semantic Alignment

The conventional idea of MDL is to utilize a shared feature extrac-
tor [24] to align the marginal distributions of domains. However,
this approach may map instances within the same category far apart.
Therefore, it is crucial to consider the conditional distribution as well
[37, 36], meaning that items with identical labels should be mapped
closely in the latent space, which is referred to as inter-domain se-
mantic alignment.

Different from the previous methods for DA [12, 13, 14], in the
scenario with limited labeled instances in MDL, obtaining reliable
class prototypes is not feasible. In this situation, we could employ a
NT-Xent contrastive loss [18] in a supervised manner [32] directly
on the limited labels to proceed semantic alignment and bypass the
construction of prototypes. Pairs of items should be mapped together
as long as they belong to the same category, regardless of the domain
they originate from. As illustrated in Fig. 2(b), we introduce an inter-
domain semantic alignment loss on the domain-shared representation
space, which can be expressed as:

Z log exp (zi « 2p/T)

ZaeA(i) exp (2i - Za/T)
(2)
where ¢ is the index of a sample in the augmented batch I =
{1...2N}, and N is the batch size. A(i) = I\ {i}. P(7) is the
index set of positives {p € A(¢) : §p = ¥;}, and | P(7)| is the cardi-
nality. 2; is the representation of the [-th item of the augmented batch
extracted from the domain-shared feature extractor. T is a scaler tem-
perature factor. The original batch is chosen from a mixed labeled
dataset that encompasses all domains, and then augmented to obtain
I. This means that instances with the same label but from differ-
ent domains can be included in the same batch. Using the semantic
alignment loss, the shared feature extractor can align hidden repre-

sentations of items within the same class to be close to each other.
However, solely using the proposed inter-domain semantic align-
ment loss may not preserve the local manifold structure and only af-
fect on the few labeled instances. As illustrated in Fig. 1, solely using

mter—zﬁ Z |

el i€l

inter-domain alignment might result in the unlabeled representations
being mixed and losing the cluster structures.

4.3 Intra-Domain Representative Learning

Within each domain, unlabeled data can be utilized for intra-domain
contrastive alignment. Unlike the previous inter-domain instance
alignment, we use the classifier outputs instead of intermediate repre-
sentations to align items within each domain. This approach goes be-
yond the intermediate representation space and ensures that the same
item with different augmentations has a similar class assignment. The
contrastive alignment ensures a low density (uniformity) and form
robust clusters (alignment) in the representation space [38]. As a re-
sult, the domain representations are more robust to noise and aug-
mentations. To achieve this unsupervised alignment, we also lever-
age the NT-Xent contrastive loss [18]. As illustrated in Fig. 2(b), we
introduce an intra-domain contrastive loss on the domain-private out-
put space, which can be expressed as:

exp ol S05(:) /T)

2 acag) €Xp (0i - 0a/T)

3

L]mm = Z £ = Z lO

i€l i€l

where o; is the output of the classifier of the corresponding domain.

However, solely using the proposed intra-domain contrastive loss
only affects the alignment in each domain. As illustrated in Fig. 1,
the items from different domains would still be far from each other
in the representation space after solely using intra-domain alignment.

4.4 Overall framework and Pseudocode

Our method serves as a plug-and-play solution for MDL and can be
applied to different SP models. We provide the pseudocode for our
MDAL in Algorithm 1. In the pseudocode, we also take MAN [4] as
the backbone example for a better explanation.

S Experiments
5.1 Research Questions

We evaluate our method on the following research questions:

1. As a plug-and-play method, can MDCL enhance the performance
of various models under the SP structure with the limited number
of labeled instances (around 5%-20%) or extremely few labeled
instances (around 1%)? (Section 5.3)

2. How does each component of MDCL affect the performance?

(Section 5.4)

3. Given a further labeling budget, MDAL could be utilized. Can

MDCL improve the entire MDAL process with a relatively large
number of unlabeled instances (5%-50%)? (Section 5.5)

5.2 Experimental Setup
5.2.1 Dataset

We evaluate our proposed MDCL method on several popular multi-
domain textual and image datasets, namely Amazon [39], MNIST-
USPS [25], Office-Home [40], FDUMTL [2], and PACS [1]. The
Amazon dataset consists of four textual domains, each containing
two categories, with instances encoded to a vector representation of
length 5000. MNIST-USPS comprises two image domains with ten
categories each, and instances are encoded to a vector representation
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Table 1: The hyperparameters used for MDCL.

Datasets Optimizer Learning Learning Batch  Weight Early Inter-Domain  Intra-Domain
Rate Rate Decay Size Decay  Stopping A&T A&T
Amazon Adam 3e-4 False 8 0.05 20 1/0.1 1/0.01
MNIST-USPS Adam 3e-3 0.33 8 0.001 30 0.1/0.1 1/0.1
Office-Home Adam le-2 0.33 8 0.001 15 1/0.01 1/0.01
FDUMTL Adam 3e-4 0.1 8 0.001 30 0.1/0.01 1/0.01
PACS SGD le-3 0.1 8 0.001 15 0.1/1 1/0.1

Algorithm 1 Multi-Domain Contrastive Learning.

Require: labeled dataset X; unlabeled dataset U; hyperparameter Ay > 0,
)\inter > 0, )\intra > O, kinter S N’ kadv eN

1: repeat
2 > Inter-domain alignment
3 for iter = 1to kijnter do
4: linter =0
5: Sample a mini-batch (z,y) ~ X > From mixed labeled dataset
6: !, y! = Aug(x, y) > Augmented batch
7 zs = Fs(x); 2zl = Fs(x)) > Shared feature vector
8: linter = Ninter * Linter(2s, 253 Y, Y/) > Inter-domain loss
(Equ. 2)
9: Update F parameters using Vi;pter
10: > Discriminator training
11:  foriter = 1to ko4, do
12: Ip=0
13: foralld € A do > For all N domains
14: Sample a mini-batch & ~ Uy
15: zs = Fs(x)
16: Ip += Lp(D(zs);d) > Accumulate D loss
17: Update D parameters using Vip
18: > Main iteration
19: loss =0
20: foralld € Ay, do > For all labeled domains
21: Sample a mini-batch (z, y) ~ X4
22: zs = Fs(x)
23: zq = Fq(x) > Domain feature vector
24: loss += L¢(C(zs, 24);Y) > Compute C loss
25: foralld € A do > For all N domains
26: Sample a mini-batch  ~ Uy
27: > Discriminate
28: zs = Fs(x)
29: loss += Agq - LJP_-S (D(2s);d) > Domain loss of Fs
30: > Intra-domain alignment
31: x/ = Aug(x) > Augmented batch
32: o =C(Fs(z, Fa(x)); or = C(Fs(at, Fa(xr)); > Output of the
classifier
33: 10ss += Aintra * Lintra(0,0/) > Intra-domain loss (Equ. 3)
34:  Update Fs, Fq, C parameters using VIoss

35: until convergence

of length 256. The Office-Home dataset contains four image domains
with 65 categories each, with instances encoded to a vector repre-
sentation of length 2048. The FDUMTL dataset comprises sixteen
textual domains, and we use the first four of them in our experiment,
each containing two categories, with raw texts utilizing word2vec
embedding. Finally, the PACS dataset consists of four image domains
with seven categories each, and raw images are preprocessed to ten-
sor with shape (224,224,3).

5.2.2 Models

Our primary focus is evaluating the performance of MDCL on a sin-
gle model. Therefore, we selected the most renowned and widely
recognized models in MDL as baselines. In the majority of the ex-

periments, MAN [4] is utilized as the backbone of MDCL due to
its simple structure and wide acceptance in the literature. ASP-MTL
[2], as the most classic MDL model, is also used to verify the gener-
ation ability of MDCL. Compared to MAN, ASP-MTL has specific
classifiers for each domain, while MAN has a shared classifier for all
domains. While there are newer models available, such as CAN [36],
the existing literature [16] suggests that these models do not outper-
form MAN. Some other recently proposed models in the MDL are
designed for particular tasks [11, 9], which are beyond the scope of
our paper.

The balancing parameter A4 for [p is set to 0.05 for all the datasets.
For Amazon, MNIST-USPS and Office-Home datasets, we use one
fully connected layer with a sigmoid activation function as the F;
and Fg feature extractor, both with the same output size of 64. For
the FDUMTL dataset, we use a CNN as the feature extractor that
takes 100d word embeddings as input from the sequence, and the
output representation length is 128. A single convolution layer with
200 kernels of sizes 3, 4, and 5 is used. For the PACS dataset, we use
a pre-trained Resnet-18 [41] as the feature extractor with an output
size of 64. For all the datasets, the classifier and domain discrimi-
nator consist of a single fully connected layer. Table 1 provides all
the hyper-parameters for optimizations in training details for each
dataset.

5.2.3 MDCL Implementation Details

For MDCL, the inter-domain and intra-domain contrastive learn-
ing requires a balancing () and a temperature (7) hyperparameter,
which are listed in Table 1. For the FDUMTL dataset, multiple out-
puts from dropout layers are utilized to obtain batch augmentation.
For the rest datasets, we apply batch augmentation by using Gaussian
noise with a standard deviation of 0.01. All the experiments were
conducted five times, and the average performance and standard de-
viation were calculated to ensure the reliability of the results.

5.3  RQI: Performance with insufficient labels

We assess the efficacy of our MDCL method with a limited number
of labeled instances. First, two scenarios are included: 1) when the
number of labeled instances is moderately limited (around 5%-20%),
and 2) when the number of labeled instances is extremely low (1%).
Both scenarios are evaluated on the MAN model. Then, ASPMTL is
used to verify the generation ability of MDCL over SP models in the
limited labeled case (around 5%).

Moderately insufficient labels We evaluate our method on
datasets Amazon, MNIST-USPS, and Office-Home with 5% to 20%
labeled instances, and on datasets FDUMTL and PACS with 5% to
15% labeled instances. The performance results are illustrated as
learning curves in Figure 3. On all the datasets, MDCL brings obvi-
ous improvement on solely using MAN. The improvement is usually
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Figure 3: The results of MDCL with different number of labeled instances on different datasets.

more significant when the number of labeled instances is low and
decreases with more labeled instances.

Table 2: MDCL on only 1% labeled instances. Average performance
in 5 runs with the standard deviation in parentheses.

Method | Amazon | MNIST-USPS | Office-Home | FDUMTL | PACS
MAN 0.6374 0.3886 0.347 0.5204 0.6723

(0.0180) (0.0831) (0.0248) (0.0163) | (0.0418)
MDCL | 0.6631 0.4750 0.421 0.5592 0.6911
(+MAN) | (0.0292) (0.1205) (0.0315) (0.0559) | (0.0290)

Extremely insufficient labels We evaluated the performance of
MDCL with an extremely small number of labeled instances on
Amazon, FDUMTL, and PACS datasets. Only used 1% labeled in-
stances are used to train the model. The results are presented in Ta-
ble 2. The improvement is also obvious on all the datasets. The im-
provement is more significant on the Office-Home dataset, which has
more categories than the other two datasets.

Table 3: MDCL with ASPMTL on 1% & 5% labeled instances. Aver-
age performance in 5 runs with the standard deviation in parentheses.

Amazon Office-Home
Method 1% 5% 1% 5%
05969  0.6874  0.1665 05816
ASPMTL  )0147)  (0.0128) (0.0127)  (0.016)
MDCL 0617 07224 02348  0.6141
(+ASPMTL)  (0.0164)  (0.0221)  (0.0242)  (0.0125)

Compatibility for share-private framework As a plug-and-play
method, MDCL should be compatible with other SP models. We
compare the performance of our MDCL method with another pop-
ular model, ASPMTL [2], on the Amazon and Office-Home datasets
with 5% labeled instances to evaluate its ability to be combined with
other models. The results are shown in Table 3. MDCL outperforms
ASPMTL on both datasets, which validates the generalization ability
of MDCL on different SP models.

5.4 RQ2: Effectiveness of components

We explore the effectiveness of the two components of MDCL, i.e.,
the inter-domain and the intra-domain contrastive loss, by conduct-
ing ablation studies on the PACS and MNIST-USPS datasets with
5% labeled instances. The results are shown in Table 4. The inter-
domain contrastive proves more effective than the intra-domain con-
trast on PACS, but the opposite is observed for MNIST-USPS. This
discrepancy may be attributed to the fact that, on PACS, the pre-
trained feature extractor already provides a reliable domain-invariant
feature representation, making semantic information more critical. In
contrast, on MNIST-USPS, the intra-domain contrastive loss is more
effective, as it assists the feature extractor in learning features in each
domain.

Table 4: Ablation study on PACS and MNIST-USPS datasets.

Method | MNIST-USPS | PACS
MAN 0.7007 0.8478
MDCL (Inter) 0.7024 0.8717
MDCL (Intra) 0.7505 0.852
MDCL 0.7575 0.8748
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Figure 4: The results of MDCL combined with the Uncertainty strategy in a MDAL setting.

5.5 RQ3: Ability to integrate with MDAL

In section 5.3, the improvement decreases with more labeled in-
stances. In real applications, a method that only performs well with
fewer labeled instances but poorly with more labeled instances is not
desirable. Thus, the proposed method should be evaluated with more
labeled instances. We consider a setting where there is a larger bud-
get for collecting labeled instances, which allows for more labeled
instances to be included in the learning process. Specifically, we can
use the MDAL method to iteratively collect informative labeled in-
stances, with MDCL being used in each iteration.

We conduct experiments with 5% to 50% labeled instances on
the Amazon, MNIST-USPS, and Office-Home datasets using the
simplest but effective active learning (AL) query strategy, Best-vs-
Second-Best [42] (BvSB). The learning curves on all the datasets
are shown in Figure 4. Moreover, the area-under-learning-curves
(AULC) results of all three datasets are presented in Table 5.

Table 5: AULC of MDCL. Average performance in 5 runs with the
standard deviation in parentheses.

MNIST Office
Method Amazon -USPS “Home
MAN 82.09 84.29 83.28
+Random (0.46) (1.00) (0.23)
MDCL 82.67 85.46 83.96
+Random (0.37) (0.68) (0.15)
MAN 82.63 86.74 85.25
+BvSB (0.31) (0.50) (0.09)
MDCL 83.46 87.43 85.81
+BvSB (0.18) (0.37) (0.11)

From the results, we can see that the proposed MDCL method per-
forms well on fewer labeled instances and performs competitively to
MAN with more labeled instances. Integrated with MDAL, MDCL
further improves performance. With BvSB, MDCL starts from a bet-
ter initialization and could provide more reliable selections for active
learning. In Figure 4, MDCL dominates MAN in the whole MDAL
learning process. In Table 5, MDCL obtains higher AULC scores on
all the datasets in both passive and active learning settings.

6 Conclusion

In conclusion, we introduce a novel multi-domain contrastive learn-
ing (MDCL) approach for multi-domain learning. The primary ob-
jective of MDCL is to build neural network models on insufficient

labeled instances from multiple domains. MDCL comprises two
components: a supervised contrastive loss for inter-domain seman-
tic alignment and an unsupervised contrastive loss for intra-domain
representation learning. MDCL is readily compatible with many SP
models, requiring no additional model parameters and allowing for
end-to-end training. Experimental results across five textual and im-
age multi-domain datasets demonstrate that MDCL brings noticeable
improvement over various SP models. Additionally, given a label-
ing budget, MDCL can be further employed in multi-domain active
learning to enhance the performance of the entire learning process.
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