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Abstract. In hierarchical reinforcement learning (HRL), continu-
ous options provide a knowledge carrier that is more aligned with hu-
man behavior, but reliable scheduling methods are not yet available.
To design an available scheduling method for continuous options,
in this paper, the hierarchical reinforcement learning with adaptive
scheduling (HAS) algorithm is proposed. It focuses on achieving
an adaptive balance between exploration and exploitation during the
frequent scheduling of continuous options. It builds on multi-step
static scheduling and makes switching decisions according to the
relative advantages of the previous and the estimated options, en-
abling the agent to focus on different behaviors at different phases.
The expected t-step distance is applied to demonstrate the superior-
ity of adaptive scheduling in terms of exploration. Furthermore, an
interruption incentive based on annealing is proposed to alleviate ex-
cessive exploration, accelerating the convergence rate. We develop
a comprehensive experimental analysis scheme. The experimental
results demonstrate the high performance and robustness of HAS.
Moreover, it provides evidence that adaptive scheduling has a posi-
tive effect both on the representation and option policies.

1 Introduction

Hierarchical reinforcement learning (HRL) [14] represents vari-
ous levels of knowledge with options and combines them through
scheduling to acquire temporal abstract solutions. In terms of rep-
resentation, an option can be either a trajectory that is potentially
useful [15], or a high-level landmark from the symbolic model [10].
In terms of scheduling, an option can be either a sequence of prim-
itive actions [4], or a long-term event that traverses the entire envi-
ronment [6]. From a more fundamental perspective on distributions,
we categorize HRL algorithms into discrete options and continuous

options. They are the knowledge carriers of HRL and have different
characteristics. Through them, we will identify the limitations and
room for improvement of conventional HRL.

Consider the scenario where a robotic arm pushes a box into a
target area. An infinite number of action combinations can be taken
to achieve this goal. Any restrictions on its behavior could hinder its
success. If rewards can only be earned by completing tasks [32], poli-
cies should be more exploratory. By representing sequence actions
as options, it is possible to achieve the goal of compressing the state
space and simplifying the solution process. However, conventional
HRL algorithms [5] rely heavily on discrete options. The limited
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number requires them to be empirically explainable [28] and non-
redundant [30]. Even as the number of discrete options increases, it
is still unrealistic for the option policy to traverse each option value.
As a result, they are unable to guide diverse trajectories to cover fine-
grained state spaces and to acquire rich scheduling combinations.
This leads to a robotic arm performing tasks only by explicitly exe-
cuting meaningful but limited knowledge, resulting in severe perfor-
mance bottlenecks.

For sparse reward problems with high exploration requirements,
such as robot control, it is more realistic and natural to choose contin-
uous options [24] to represent richer knowledge. Their intra-option
policy is a continuous function, so option-related value updates can
be generalized to adjacent spaces. The agent executes similar actions
in the same state by taking similar continuous options. They provide
the agent with more possible scheduling combinations and more op-
portunities to learn near-optimal policies. However, they need to be
scheduled frequently to discover the best combination solution for
tasks. Conventional scheduling methods are not suitable for contin-
uous options. Either they are sensitive to the scheduling parameters
[16], or the switching frequency cannot be reasonably controlled [2].
Therefore, our objective is to develop an innovative and practical
scheduling method that maximizes the superiority of continuous op-
tions, without prior experience, using a framework that is as simple
and stable as possible. This method will be of great benefit to HRL
applications.

Based on this principle, we propose the hierarchical reinforcement
learning with adaptive scheduling (HAS) algorithm. Its core idea is
to balance exploration and exploitation through adaptive scheduling.
Its switching condition is determined by the relative advantages of
the previous and estimated continuous options, and each switch is
based on a multi-step static scheduling process. Specifically, the main
contributions of this paper are as follows:

• We propose an innovative scheduling method to implement adap-
tive scheduling of continuous options.

• We design an interruption incentive to alleviate excessive explo-
ration, accelerating the convergence rate.

• We validate the action capability of adaptive scheduling using ex-
pected t-step distance.

• Our algorithm can effectively solve sparse reward problems in
continuous spaces.

• We construct a comprehensive experimental analysis scheme to
demonstrate the positive effects of adaptive scheduling.
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Figure 1. The HRL learning structures. The option policy πO generates options under the control of scheduling. The intra-option policy πo represents
options and establishes the guiding relationship between trajectories and options.

2 Background

HRL [6] employs temporal abstraction techniques to represent multi-
level knowledge, achieving cross-temporal behavior. A Markov de-
cision process (MDP) [31] and a semi-Markov decision process
(SMDP) [1] are its foundations. In this section, we describe the op-
tions’ characteristics, representation, and scheduling. Our method is
inspired by them. We construct a generic HRL structure, as depicted
in Figure 1, to reflect their relationship.

2.1 Option

Discrete options [29] are generally obtained by sampling from a dis-
crete distribution. As shown in Figure 1 (a), the high-level controller
selects an option o in the state s from the option set {O}N with the
number n. Continuous options are generally obtained by sampling
from a continuous distribution. As shown in Figure 1 (b), the high-
level controller samples an option o in the state s from the distribu-
tion {O}n with the dimension n.

In the majority of algorithms, the number of discrete options is
limited to a single digit [19]. The reason is that massively increas-
ing the number of discrete options is prohibitively expensive and
intractable. It becomes impractical for the option policy to traverse
each option value, and it tends to generate meaningless options due to
the lack of correlation between adjacent discrete options. In contrast,
the intra-option policy of continuous options allows value updates
to be generalized to neighboring areas. Their trajectories can cover
a wide range of fine-grained spaces and assist the agent in learning
near-optimal policies. However, the infinite number also makes them
less stable. Taking full advantage of the representation superiority
of continuous options while avoiding scheduling imbalances is chal-
lenging for conventional HRL algorithms.

2.2 Representation

Representation refers to the process by which options are endowed
with varying degrees of knowledge [21]. Currently, the dominant rep-
resentation method applies mutual information [25] to establish the
guiding relationship between options (including discrete options and
continuous options) and trajectories (including various combinations

of states and actions). VIC [9] first introduced mutual information
[18] to generate the inferred relationship between options and states.
DIAYN [7] created the inferred relationship between options, states,
and actions. IST [30] encourages the agent to discover states that are
challenging to the policy so that more complex actions can be ob-
tained through options. HIDIO [33] employed continuous options for
the first time and compared the effects of different mutual informa-
tion forms. A typical form of mutual information consists of options
and states. It can be written as:

I(O;S) = −H(O|S) +H(O) (1)

= Eo,s′∼p(o,s′)[log p(o|s′)]− Eo∼p(o)[log p(o)]

2.3 Scheduling

As shown in Figure 1, scheduling is a control mechanism acting
on the option policy. The most representative control mechanisms
are dynamic scheduling [13] and static scheduling [20]. Dynamic
scheduling is based on the option policy gradient theorem about the
termination function proposed by OC [2]. The termination function
β ∈ [0, 1] is trained using a neural network. The termination proba-
bility and the random events determine whether the current option is
switched, emphasizing the flexibility of scheduling. A2OC [12] in-
troduced a correction cost to reduce the frequency of option switch-
ing.

Static scheduling is based on the MSA concept [26], which
switches options at each intra-option step k (k ≥ 1). It emphasizes
the stability of scheduling. SNN4HRL [8] switches the option at each
time step, DADS [27] selects different values of k for different tasks,
while HAAR [20] uses a gradually decreasing intra-option step k.

3 Adaptive scheduling algorithm

Frequent switching is essential to take full advantage of the represen-
tation superiority of continuous options. It can also reduce the detri-
mental effects of redundant continuous options on policy learning.
However, too frequent switching is not conducive to stable perfor-
mance and may even result in a hierarchical degradation dilemma.
Thus, we propose the hierarchical reinforcement learning with adap-
tive scheduling (HAS) algorithm to address these issues. In this sec-
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Figure 2. The Framework of HAS. At time t, πO selects o+t in st. Next, β and η jointly determine ot according to o+t and o−t . Then, πo selects at in
(st, ot). An agent interacts with the environment and reaches st+1. Afterward, πo selects actions in new extended states with fixed ot until πO is executed
again at time t+ k. Repeat the process until the task has been completed or the maximum time step has been reached. Note that ot and o−t+1 are equivalent.

tion, the framework of HAS, an adaptive scheduling method, and an
interruption incentive are discussed in detail. Meanwhile, the explo-
ration capability of different scheduling methods is measured using
the expected t-step distance.

3.1 Framework of HAS

Figure 2 illustrates the framework of HAS. The option policy πO
generates an estimated option o+ ← πO(·|s) in a state s. The intra-
option policy πo generates an action a ← πo(·|s, o) in an extended
state (s, o). The agent performs interrupt determination every intra-

option step k time steps. β denotes a termination function. It de-
termines an activated option o ← β(·|s, o+, o−) in a state s ac-
cording to a previous option o− and the estimated option o+. When
the termination function returns True, the switch takes place, and the
estimated option o+ will be regarded as an activated option o, oth-
erwise, the previous option o− will continue to be used. η denotes
the interruption incentive term acting on the termination function β.
In this framework, intra-option step k, termination function β, and
interruption incentive η together play the role of scheduling.

The high-level objective function JπO of HAS can be written:

JπO = EπO

[
T∑

t=0

γt/k̃Rt + αHO,β

]
, where Rt =

t+k̃∑
l=t

renv
l

(2)
where Rt denotes the cumulative environmental rewards from time
t to t + k̃. k̃ is a multiple of k, denoting the time step during which
the continuous option is executed uninterrupted. t takes values in the
set of intra-option steps t ∼ {0, k̃1, k̃2, · · ·}, and T is the maximum
episode step. The discount of renv is disregarded in consideration of
sparse rewards. HO,β denotes the combined entropy of πO and β. α
is the temperature coefficient.

HAS acquires intrinsic rewards rin using mutual information. Its
low-level objective function Jπo can be written:

Jπo = Eπo

[
rint + αHo

]
, (3)

where rint = log qψ(ot|st+1)− log p(ot)

where Ho denotes the entropy of the intra-option policy. qψ(ot|st+1)
denotes the variational inference of p(ot|st+1) in Equation (1). It is
the negative value of the discriminator loss.

3.2 Learning adaptive scheduling

The main function of adaptive scheduling is to balance exploration
and exploitation during the frequent scheduling of continuous op-
tions. The number of continuous options is infinite, and there is a
small difference between trajectories guided by similar continuous
options. Moreover, the option policy is unlikely to generate the same
continuous option twice. Thus, frequent scheduling can provide an
agent with more opportunities to eliminate redundant behaviors and
acquire near-optimal policies.

Specifically, the adaptive scheduling method builds on a multi-
step static scheduling process and develops a new switching judg-
ment mechanism for dynamic scheduling. First, the multi-step static
scheduling of k > 1 provides a fundamental exploration capability,
enabling the agent to leave its local area. Second, the continuous op-
tion policy involves a certain degree of randomness. It is impossible
to guarantee that the estimated option o+ will be superior to the pre-
vious option o−. If the switching judgment mechanism is based on
the advantage function A(s, o′) as conventional dynamic scheduling
methods[12], it is easy to generate a suboptimal continuous option.
To guarantee that a superior option is always generated, our interrup-
tion probability is calculated from the relative advantage between the
previous option o− and the estimated option o+:

β(o+|s, o+, o−) = expQ
πO

(s, o+)

expQπO (s, o−) + expQπO (s, o+)
(4)

where β(o+|s, o+, o−) denotes the probability of the estimated op-
tion o+ being selected, which is abbreviated as β(o+). QπO (s, o+)
and QπO (s, o−) denote the estimated option value and the previ-
ous option value. The softmax form provides randomness. Here, the
extended-state transition function of HAS is:

P (·|s, o−) =(1− β(o+))P (o−|s, o−)+
β(o+)P (o+|s, o−) (5)
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Correspondingly, the iterative process of the state value function
V πO (st) will be influenced by the termination function β(o+):

V πO (st) = Eot∼πO(·|st) [Q
πO (st, ot)]

= E
o+t ∼πO(·|st)

[
(1− β(o+t ))Q

πO (st, o
−
t )+

β(o+t )Q
πO (st, o

+
t )

]
(6)

As a result of the interruption judgment mechanism in Equation
(6), the agent’s behavior exhibits different emphases during training.
During the early training phase (or random walk phase), the option
value network is initialized at random. It causes continuous options
to switch with equal probability. When the agent is consistently re-
warded, the option values are revised and the interruption probability
gradually decreases. It prioritizes exploitation and obtains a superior
estimated option with a high probability.

3.3 Exploration capability

With adaptive scheduling, an agent can explore a larger degree of
space while maintaining fine-grained behavioral control. To demon-
strate that adaptive scheduling possesses superior exploration poten-
tial, we first make the following definition. Our objective is to solve
sparse reward problems, such as robot control, with optimal intra-
option policies and no environmental rewards obtained. At this mo-
ment, the actions guided by the set of continuous options uniformly
partition the state spaces surrounding the agent [7]. We further as-
sume that the agent moves a unit distance d independently and iden-
tically in any direction.

We apply the expected t-step distance δSc(k)→t(s) [26] to measure
how far an agent moves on average. It is defined as the expected
distance that the agent will move after t time steps from the state s
using the scheduling method Sc(k):

δSc(k)→t(s) =
∑
s̄∈S

PSc(k)→t(s, s̄)D(s, s̄) (7)

where D(s, s̄) is the arrival distance, which denotes the minimal
number of options that are necessary to reach s̄ from s. Distances
less than one unit are calculated as one unit. They are weighted by
the arrival probability PSc(k)→t(s, s̄), which denotes the probability
that the agent reaches s̄ from s in t time steps using Sc(k).

Figure 3 illustrates the arrival states of adaptive scheduling AS(2)
and static scheduling SS(2) in time steps t = 4 and t = 6 under the
random walk. Their expected t-step distances are listed in Table 1.
The arrival results at time step t = 1 are not recorded because they
are identical across all methods.

Table 1. The expected t-step distance. It represents the exploration
capabilities of different scheduling methods.

t = 4 t = 6
Adaptive scheduling AS(2) 2.77 3.45
Static scheduling SS(2) 2.52 2.88

As can be seen in Figure 3, the arrival states of static scheduling
method are mainly distributed within circles, while those of the adap-
tive scheduling method are mainly distributed on circles. When the
time step is increased to 6, the arrival states of the static schedul-
ing method remain concentrated in areas D ≤ 4d, while those of
the adaptive scheduling method can be widely distributed in areas
D > 4d. These properties are also reflected in Table 1. The adaptive
scheduling method has the greatest expected t-step distance under

Figure 3. The arrival states of different scheduling methods in time steps
t = 4 (a-b) and t = 6 (c-d). The data distributions are applied to analyze the
exploration capabilities of different scheduling methods. Black dots indicate
the states for random walks, blue dots indicate the states for static walks, and

red dots indicate the states for non-interruption scheduling. Each task runs
10, 000 episodes.

the same intra-option step k. Dynamic scheduling DS(1) can be seen
as a weakened adaptive scheduling, so its expected t-step distance is
lower as well.

It can be seen that the adaptive scheduling method enables the
agent to break through its local area, resulting in a high degree of
exploration. The property can be applied to three-dimensional spaces
as well.

3.4 Interruption incentive

As discussed above, adaptive scheduling emphasizes exploration
during the early training phase. It should be noted, however, that
when certain options are rewarded in advance, their value rises first.
They may have a greater chance of being selected and maintained
than others. It is possible for the agent to become trapped in an exces-
sive exploration dilemma, resulting in a slower convergence rate. To
alleviate this problem, we propose an interruption incentive η based
on the annealing mechanism. The purpose of annealing is to pre-
vent the destruction of the adaptive balance. The revised interruption
probability should not affect the choice of the optimal option during
the mid-late training phase. Thus, we design the termination function
βη(o

+) with the interruption incentive as follows:

βη(o
+) = min

(
β(o+)− It<T∗�

[
(1− t

T ∗ � )η
]
, 0

)
(8)

where η is a smaller interruption incentive value. t denotes the cur-
rent time step. T ∗� denotes the duration of the interruption incentive.
In a heuristic way, � is set to 2/5. Under the indicator function I, the
interruption incentive is restricted to the early training phase. Grid
search with � on different tasks may produce superior results. How-
ever, our experiments indicate that 2/5 is sufficient. Unlike HAAR
[20], the interruption incentive does not explicitly change the option
length. Scheduling still depends mainly on the option value.
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Figure 4. Comparison of the average success rates of HAS against baselines. The shaded areas indicate standard deviations.

4 Experimental results

We develop an exhaustive experimental analysis scheme. First, it
demonstrates the superiority of HAS for solving robot control prob-
lems with sparse rewards in continuous spaces. Second, it verifies the
effectiveness of our proposed techniques through ablation studies.
Third, it identifies the operation mechanism of the adaptive schedul-
ing method and analyzes the root of HAS advantages from multiple
perspectives.

4.1 Environments

Our experiment applies Robotics environment [3]. It is a sparse re-
ward environment in a continuous three-dimensional state space. The
agent is penalized −0.1 for each step, except when it touches the tar-
get or pushes/grabs/hits the object. The task is deemed successful if it
is not punished at the end of the maximum episode step. Otherwise,
it is deemed unsuccessful.

4.2 Experimental Setup

We select a total of five representative HRL baselines that are highly
correlated with HAS, including HIDIO [33], MOC [17], AdInfo

[23], HRAC [34], and HIRO [22]. Among them, HIDIO is the first
HRL algorithm to employ continuous options. MOC and AdInfo are
typical HRL algorithms based on discrete options. HRAC and HIRO
are up-to-date HRL algorithms based on subgoals. Besides, two pre-
dominant underlying algorithms are also applied as baselines, includ-
ing SAC [11] and SACR. SACR is a multi-step extension of SAC.
Similar to static scheduling, each action is executed several times. We
utilize this method to demonstrate the superiority of the hierarchical
framework over the flat RL method. They meet the requirements of
up-to-date technology, high quality, and identical fields, ensuring the
credibility of comparisons. Additionally, FetchPush, FetchPickAnd-
Place, and FetchSlide have sequential decision processes, in which
the agent must learn how to the control arm to interact with a target,
making learning more challenging for HAS and baselines.

When comparing performance, each task provides 10 random
seeds for all algorithms, and each seed evaluates every 50 training
iterations. Each evaluation consists of 20 test episodes, whose results
are recorded as the criteria standard. All algorithms use consistent pa-
rameters as soon as possible, and they are trained from scratch. We
use both success rate and terminal success rate metrics to describe
algorithm performance. The success rate is calculated by averaging
the success rates at different evaluations from all seeds. The terminal

success rate refers to the average success rate of the last 10% time
steps in the evaluation condition.

4.3 Comparison

Figure 4 illustrates the average success rates of HAS against base-
lines. It can be seen that the majority of algorithms can complete
FetchReach, but only HAS, HIDIO, and HRAC can complete Fetch-
Push and FetchPickAndPlace with a success rate close to 100%.
Among them, HAS converges the fastest. HAS has a very small
shadow area, which reflects its high stability. HAS is also capable
of solving FetchSlide with a success rate of more than 60%, while
other algorithms are incapable of doing so. The success rates of MOC
and AdInfo are almost always below 5% except for FetchReach. The
poor performance is due to the limitations of discrete options, which
cannot provide a variety of representation and scheduling possibili-
ties. We consider this to be the performance bottleneck. While HRAC
and HIRO outperform the HRL algorithms based on discrete options,
they clearly lag behind HAS.

In summary, continuous options unlock the potential of temporal
abstraction with rich representation. It is the foundation upon which
HAS and HIDIO successfully solve complex problems. While adap-
tive scheduling takes full advantage of the diversity of continuous
options resulting in more efficient and stable performance.

4.4 Ablation study

We construct modular and parametric ablation experiments. They are
used to determine whether the components of HAS play a positive
role and to study the sensitivity of HAS to fundamental parameters.

Modular ablation. The continuous option method, the dynamic
scheduling method, the static scheduling method, and the interrup-
tion incentive are removed from HAS, respectively. Their experi-
mental results are illustrated in Figure 5. When the continuous op-
tion method is removed, the switching judgment mechanism reverts
to the loss update method based on the advantage function [12].

It can be seen that the performance of the four ablation algorithms
decreases on most tasks. Among them, HAS-CO suffers the greatest
performance loss. Even though we make sure that its structure, pro-
cessing techniques, and parameters are as similar as possible to HAS,
it is almost incapable of accomplishing most tasks. It is demonstrated
that discrete options suffer from a severe performance bottleneck and
cannot benefit from our methods. Performance and stability of both
HAS-dynamic and HAS-static are impaired. It is shown that dynamic
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Figure 5. Modular ablation for HAS. The method following "-" indicates the component to be removed.

scheduling and static scheduling are both important and compatible.
In addition, the convergence rate of HAS-incentive becomes slower.
On FetchPickAndPlace and FetchSlide, its performance drops by al-
most half. It demonstrates that the interruption incentive helps the
agent to escape the dilemma of excessive exploration.

Parametric ablation. Option dimension n and intra-option step
k are the fundamental parameters of adaptive scheduling. We ablate
each parameter separately. Their terminal average success rates under
different option dimensions and intra-option steps are listed in Table
2.

Table 2. Comparison of the terminal success rate (%) of HAS under
different option dimensions and intra-option steps. " + dim=n" denotes the

algorithm using n-dimensional option, and " + step=k" denotes the
algorithm using intra-option step k. The best one is highlighted in bold.

Algorithm Fetch- Fetch- Fetch- Fetch- AverageReach Push PickAndPlace Slide
HAS+dim=2 0.95 0.95 0.96 0.12 0.75
HAS+dim=4 1.00 0.99 1.00 0.18 0.79
HAS+dim=6 1.00 0.98 0.98 0.64 0.90
HAS+step=2 1.00 0.98 0.78 0.42 0.79
HAS+step=3 1.00 0.99 1.00 0.64 0.90
HAS+step=5 1.00 0.97 0.71 0.21 0.72

As shown in Table 2, HAS+dim=6 and HAS+step=3, the HAS
algorithm with standard parameters, have the highest terminal suc-
cess rate with 90%. HAS+dim=2 and HAS+dim=4 also have rea-
sonable success rates. The results reflect that the option is the car-
rier of knowledge representation. An appropriate option dimension
n is conducive to representing rich knowledge. In addition, as the
step increases, the performance first increases and then decreases.
HAS+step=5 is less than HAS+step=2 with 7%. It reminds us that
it is important to avoid taking too many intra-option steps. If the ac-
tion sequences are too long, the agent may miss target areas or push
objects out of these areas.

In summary, the HAS is sufficiently robust to changes in funda-
mental parameters within a certain range. It is well suited to higher
option dimension n and less sensitive to intra-option step k. This
study demonstrates that HAS benefits from adaptive scheduling.

4.5 Effects of adaptive scheduling

Three functional experiments were developed to further investigate
the source of adaptive scheduling advantages, including the adap-
tive mechanism, the effect on representation, and the effect on option
policies.

4.5.1 Adaptive mechanism

Figure 6 illustrates the option length of HAS and HAS-incentive with
standard parameters. This is calculated by averaging the time steps in
which each option is continuously executed at different evaluations
from all seeds.

Figure 6. Variation in the option length of HAS and HAS-incentive.

It can be seen that the option length of HAS is larger than the
intra-option step (k = 3) in all tasks, indicating that non-interruption
cases are actively used. Due to the random initialization of the value
network, the option length is longer during the early training phase.
At this moment, the adaptive scheduling method focuses primarily
on exploration. Moreover, the decrease rate of the option length of
HAS is apparently larger than HAS-incentive. This indicates that the
interruption incentive can alleviate the dilemma of excessive explo-
ration. During the mid-late phase of training, as the agent is exposed
to rewards in a broader range of areas, the option value is widely up-
dated. The agent can select more superior options to reach any target
area, and the option length continuously decreases. At this moment,
adaptive scheduling focuses primarily on exploitation.
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4.5.2 Effect on representation

In HAS, the high-level controller provides rollout and training in-
formation to the low-level controller. Therefore, the scheduling pro-
cess influences the diversity degree of continuous options to some
extent. We select several HAS and HIDIO models with superior per-
formance on FetchPickAndPlace and FetchSlide, and then compare
their representation capabilities by drawing the trajectories of a set
of options, as depicted in Figure 7. It can be seen that HIDIO loses
the ability to act in certain directions, which may prevent it from
reaching some tricky angles. We believe this is due to the limited
exploration capabilities of HIDIO. The high-level controller cannot
provide enough rich information to the low-level controller through
extensive exploration.

Figure 7. Trajectories of {O}3 HAS (a-b) and {O}3 HIDIO (c-d). For
each task, 10, 000 continuous options are randomly sampled, with an

intra-option step k = 6. Line colors correspond to the sampling distribution
as the scatter plot on the top.

4.5.3 Effect on option policy

The most significant effect of adaptive scheduling on HAS lies in
the process of optimizing the option policy. Besides the performance
improvement shown in Figure 4, this effect can also be observed in
the timing of the option switching, as well as the relationship be-
tween the gradually decaying option length and the performance im-
provement process. Here, we select several HAS and HIDIO models
with superior performance on FetchPickAndPlace and FetchSlide,
and then illustrate their paths in Figure 8. We manually position the
target away from the robotic arm’s initial position to intuitively illus-
trate their disparity.

As shown in Figure 8, the agent prefers to maintain options in ar-
eas where the movement direction should be maintained, such as ap-
proaching and leaving the target area. When it is necessary to adjust

Figure 8. Task path of HAS (a-b) and HIDIO (c-d). Dots indicate the
states visited by the agent, whose colors correspond to those shown in Figure
7. The light blue line indicates the route of the movement, and line segments

indicate paths that are guided by the same option. The blue pentagram
indicates the initial state, the red indicates the target state, and the black

indicates the box that can be moved.

the movement direction, such as adjusting the direction of pushing
and hitting the box, the agent prefers to switch options. These char-
acteristics suggest that adaptive scheduling places a different empha-
sis on exploration and exploitation in different areas. Compared with
HIDIO, the path of HAS is more directional. HAS can learn better
policies over time.

In summary, the results of the three functional experiments demon-
strate that adaptive scheduling plays an important role in the learning
process of HAS. The attribute of adaptability is manifested in a vari-
ety of learning phases and areas in all tasks. It is possible to achieve
rich representation and stable scheduling by the adaptive capacity.
Consequently, HAS is more efficient and easier to learn near-optimal
policies.

5 Conclusion

We propose the hierarchical reinforcement learning algorithm with
adaptive scheduling (HAS) algorithm. This algorithm exploits the
representation and scheduling potential of continuous options to
solve sparse reward problems in continuous spaces. It emphasizes
the balance between exploration and exploitation during frequent
scheduling. Through multi-step static scheduling and a value judg-
ment switching mechanism, the agent’s behavior can be adaptively
adjusted. As a general principle, finding an appropriate option policy
and switching frequency provides the agent with more opportunities
to learn a near-optimal policy, i.e., obtain more rewards with fewer
steps. It is also the fundamental goal of RL.

In comparison experiments, we select recent baselines that are
highly relevant to HAS. The results demonstrate that HAS has a sig-
nificant advantage in terms of performance and convergence rate. All
components contribute positively, and HAS is less sensitive to fun-
damental parameters. Moreover, we record the option length of HAS
at different phases of tasks, which intuitively reflects the operating
mechanism of adaptive scheduling. This mechanism provides HAS
with a more stable representation result and a superior option policy.
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