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Abstract. Radiology report generation, one way of analyzing ra-
diology images, is to generate a textual report automatically for the
given image, and it is of great significance to assist diagnosis and al-
leviate the workload of radiologists. Some report generation methods
have been therefore proposed. However, these methods suffer from
the problem of low-quality generation, because of the visual and tex-
tual bias and training with text similarity oriented objective. To solve
this problem, we propose a novel radiology report generation model
with multi-modal fusion and semantic supervision, namely MS-Gen.
MS-Gen consists of two main components, i.e., the semantic-visual
fusion module and the semantic weighted contrastive loss. Specifi-
cally, the main idea of the semantic-visual fusion module is to make
use of the domain-specific prior knowledge contained in a large pre-
trained visual-language model and also the complementary nature
between the image and text modalities. Moreover, a novel optimiza-
tion term, i.e., the semantic weighted contrastive loss, is proposed
to guide the optimization process with semantic similarity objective,
and further enforce the generated reports with higher clinical accu-
racy. Extensive experiments conducted on two real datasets of IU
X-Ray and MIMIC-CXR demonstrate the effectiveness of MS-Gen.

1 Introduction

Analyzing radiology images, as the most common task of radiolo-
gists, plays an important role in various diagnoses in recent years.
Automatic radiology report generation, one research on radiology
images, is therefore in demand, since it can assist diagnosis and alle-
viate the workload of radiologists. It is to interpret a medical image
by generating a corresponding diagnostic report automatically, as the
case shown in Fig. 1.

With the release of image-report datasets and the advances in
deep learning, some studies toward automatic radiology report gen-
eration have been proposed. [6, 41, 36, 21, 40, 43, 22, 18, 20,
19, 10, 3, 17, 24, 15, 8, 38, 12, 45]. The mainstream of report
generation methods has been developed under the encoder-decoder
paradigm. Specifically, a radiology report generation method con-
sists of two components: (i) an image encoder that produces in-
formative representations of the given image, and (ii) a decoder
that produces the report based on the representations from the en-
coder. In general, the encoder is the convolutional neural networks
(CNNs), and the decoder can be the recurrent neural networks
∗ Corresponding Author. Email:yunx@fudan.edu.cn.

Figure 1: A case of chest X-ray image along with its report. A report
mainly consists of Impression part and Findings part. Findings part
describes the detailed information of normal and abnormal findings.
Impression part provides a summary statement.

(RNNs) [6, 36, 40, 43, 22, 10, 17, 38, 12, 45, 11, 36] or Transformers
[41, 21, 18, 19, 15, 24, 9]. In addition, a few methods, based on large
pre-trained language models, like GPT-3 [1] or ChatGPT [26], have
also been recently proposed, which generate reports in a multi-stage
way [33]. Although continuously improved performance has been
obtained, these models still suffer from the problem of low-quality
generation. Two main challenges are:

• Visual and textual bias. Existing benchmark datasets of the re-
port generation have the characteristic of visual and textual bias.
That is, normal images and their corresponding descriptions dom-
inate the dataset over the abnormal ones, which results in the prob-
lem that report generation methods tend to generate plausible gen-
eral reports with no prominent abnormal narratives. However, in
clinical practice, accurate detection and description of abnormali-
ties are more helpful to radiologists. With this in mind, some stud-
ies incorporated prior knowledge in an implicit way, e.g., con-
structing knowledge graph [45, 15, 10, 19, 8], or in an explicit
way, e.g., making use of the semantic labels obtained by multi-
label classification [12, 43], the clinical history document [25, 8],
or a template database [17]. However, these methods suffer from
problems, like limited scope of knowledge because of the limited
number of disease nodes in the graph, semantic noise because of
incorrect classification results, redundant information in the clin-
ical document, or insufficient coverage of potential diagnoses in
the template.

• Text similarity oriented optimization. Clinical accuracy in the
generated reports is of critical importance, i.e., the generated
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reports should be with correct semantic information, which is
the point that radiologists are more concerned about. However,
most report generation methods are trained with text similarity-
oriented objectives, i.e., training a report generation model in a
teacher-forcing way with cross-entropy taken as the loss function
[6, 41, 36, 21, 40, 43, 20, 19, 10, 3, 15, 8, 38, 12, 45], or via re-
inforcement learning guided by evaluation metrics-based rewards
[22, 18, 17, 24]. This results in the problem that these methods
tend to generate the tokens with the text similarity objective, rather
than the important semantic information for clinical accuracy.

To handle the challenges, we propose a novel radiology report
generation model with multi-modal fusion and semantic supervision,
namely MS-Gen. MS-Gen consists of two main components:

• Semantic-visual fusion module. Recently we have witnessed the
superior effectiveness of large pre-trained visual-language models
on various downstream tasks, which inspires us to adopt a large
pre-trained visual-language to benefit the report generation. In this
paper, we propose the semantic-visual fusion module. The key
insight for designing this module is to make use of the domain-
specific prior knowledge contained in a large pre-trained visual-
language model and also the complementary nature between the
image and text modalities, so as to alleviate the challenge of visual
and textual bias and further benefit the report generation.

• Semantic weighted contrastive loss. Contrastive learning is to
learn robust representations by contrasting similar (positive) and
dis-similar (negative) samples, in which essential differences
among samples are learned. In view of this, we propose a novel
optimization term, i.e., the semantic weighted contrastive loss, and
combine it with cross-entropy loss during the training phase. The
main idea of this optimization term is to learn the essential se-
mantic differences of medical images, by contrasting the positive
sample with hard negative samples identified by the semantic sim-
ilarity evaluation. Thus, reports with higher clinical accuracy are
generated during the inference phase.

Overall, the main contributions of this paper are:

• A radiology report generation model, i.e., MS-Gen, is proposed.
It improves the quality of the generated reports, which may push
automatic radiology report generation closer to being applied to
the practice.

• A multi-modal fusion module, i.e., the semantic-visual fusion
module, is proposed, which inspires a more feasible line of al-
leviating the challenge of visual and textual bias of the benchmark
datasets.

• A optimization term, i.e., the semantic weighted contrastive loss,
is proposed. It inspires a way of integrating a semantic-oriented
objective into the optimization process, so as to enforce the gen-
erated reports with higher clinical accuracy.

• Extensive experiments are conducted on real medical datasets
with the evaluation metrics of both natural language generation
and clinical efficacy. The results show that MS-Gen outperforms
the state-of-the-art methods.

2 Related work

2.1 Image Caption and Paragraph Generation

Image caption is the task of generating a short textual descrip-
tion given an image and has attracted extensive interest in recent

years. The dominant architecture of the caption task is based on
the encoder-decoder framework provided by Show-Tell [30], which
feeds the image features extracted by CNN as the input of RNN
to produce image captions. On the basis of this framework, vari-
ous attention mechanisms inspired by the human brain’s attention
are integrated, allowing the model to fix attention on salient visual
or language signals [37, 44, 42]. Also, some studies explored the vi-
sual relationship among image regions by introducing scene graphs
or graphical convolutional networks (GCNs) [39]. Since RNNs are
with a low capability of long-range dependency modeling, Trans-
former [29] based image caption models have been recently intro-
duced [4, 16]. Considering the limited ability to describe an image
at a fine granularity of the image caption methods, paragraph gen-
eration task has been therefore introduced [14, 32]. Paragraph gen-
eration aims to generate a long and semantically coherent paragraph
given an input image, in which rich information about the image is
displayed in text form. To perform this task, the hierarchical RNN
structure is widely used. In detail, the hierarchical RNN employs a
two-level RNN to generate a paragraph based on the image represen-
tations extracted by CNN, where the topic-RNN is used to generate
topic vectors and sentence-RNN further takes each topic vector as
input to produce its corresponding description.

2.2 Radiology Report Generation

Compared with the image caption and paragraph generation tasks,
existing report generation methods also almost follow the encoder-
decoder paradigm [6, 41, 36, 21, 40, 43, 22, 18, 20, 19, 10, 3, 17,
24, 15, 8, 38, 12, 45], but the most urgent goal of the report genera-
tion task is clinical accuracy in the resulting generated reports. These
methods typically tackled some aspects of the differences between
the image caption and the radiology report generation tasks. For ex-
ample, Yin et al. [40] introduced a topic-matching mechanism to
solve the problem of semantic repetition among the sentences of a re-
port. That is, topic vectors generated by topic-RNN and correspond-
ing ground-truth reports are projected to the same embedding space,
so as to make generated reports more accurate and diverse. Xue et al.
[38] proposed a multimodal report generation model containing an
iterative decoder with visual and semantic attention to improve the
coherence between sentences in a recurrent way. Chen et al. [3] in-
tegrated a relational memory into the Transformer, in which writing
patterns shared by relevant medical images are captured. Li et al. [17]
proposed a hybrid model with template retrieval for the normal sen-
tence generation and a generation module for the abnormal sentence
generation respectively, so as to enhance the ability of the model in
describing abnormalities. Besides, some studies also explored inject-
ing prior knowledge into the generation model to improve the quality
of the report generation, e.g., KG [45], PPKED [19], KERP [15] and
RareGen [10]. However, most of these methods still suffer from the
problem of low-quality generation, due to the visual and textual bias
of the benchmark datasets and text similarity-oriented optimization.
A few works studied this problem by designing semantic-based re-
wards and then optimizing a model via reinforcement learning, e.g.,
[24, 22], while their performance is limited by the instability of rein-
forcement learning itself.

2.3 Contrastive Learning

Contrastive learning, designed as a self-supervised technique, is to
learn general-purpose representations by contrasting similar (posi-
tive) and dis-similar (negative) samples. That is, similar samples are
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mapped closely together while dis-similar samples are mapped far
apart, in which feature representations can be reused to benefit down-
stream tasks. Currently, contrastive learning has been widely applied
to medical domains, e.g., electronic health records [35] and medical
image analysis [31, 2], etc. On the report generation task, Liu et al.
[20] leveraged the contrastive information between the input image
and the normal images, so as to benefit the model to capture and fur-
ther describe the abnormalities in medical images. In this paper, we
apply contrastive learning in a supervised way. That is, we define the
positive and negative samples by semantic labels, in which semantic
information is integrated into the training process.

3 Method

3.1 Problem formulation

Prior to introducing the proposed MS-Gen, we provide
the problem formulation first. We use the dataset D
={(I1, S1, T1), (I2, S2, T2), ..., (IM , SM , TM )}, where M is
the number of samples. I , S and T are the medical images, their
corresponding semantic tags, and reports, respectively. Our goal is
to train a report generation model f : (Ii, Si) �→ Ti to project Ii
and its corresponding Si to Ti.

In a nutshell, the main idea of MS-Gen is to solve the problem of
low-quality generation by alleviating the visual and textual bias and
enforcing the generated reports with higher clinical accuracy. Specif-
ically, we propose the semantic-visual fusion module. It makes use of
the domain-specific prior knowledge contained in a large pre-trained
visual-language model and also the complementary nature between
the image and text modalities. Moreover, we propose the semantic
weighted contrastive loss, and combine it with cross-entropy loss
during the training phase. Fig. 2 shows the diagram of MS-Gen. In
the following sections, we generalize how a vanilla Transformer is
used for report generation in the first subsection, since MS-Gen is a
Transformer-based report generation model. Then, we elaborate on
the semantic-visual fusion module in subsection 3.3. The semantic
weighted contrastive loss is further introduced in subsection 3.4.

3.2 Basic architecture

Given an image Ii, a visual extractor is firstly used to extract its vi-
sual feature maps Vi ∈ Rc×h×w. Vi is then reshaped into the visual
matrix Vi ∈ Rc×(h·w). c, h, and w are the number of channels,
height, and width, respectively. This process is formulated as:

Vi = fcnn(Ii), (1)

where fcnn represents the visual extractor, i.e., DenseNet121 [7]
with fully connected layers removed in this paper.

Then, Vi is fed into the Transformer based encoder-decoder to
generate a report R̂. In particular, the encoder of Transformer maps
Vi into the hidden matrix Hv

i ∈ Rc×(h·w). The decoder of Trans-
former further takes Hv

i and {ŷi}i<t as source inputs, to predict the
token to be generated at the current time step t in an auto-regressive
manner. This process is formulated as:

Hv
i = fe(Vi), (2)

ŷt = fd(H
v
i , {ŷi}i<t), (3)

where fe and fd are the encoder and decoder of the Transformer, re-
spectively. {ŷi}i<t = {ŷ1, ŷ2, ..., ŷt−1} is the word-token sequence

generated before time step t. The generated report is represented as
R̂ = {ŷ1, ŷ2, ..., ŷ|R̂|}.

The core of the Transformer is the Multi-Head Attention (MHA),
formulated as:

Attm(Q,K,V) = softmax(
QWQ

m(KWK
m)�√

p/q
)VWV

m, (4)

MHA(S,V) = [Att1(S,V,V) � ... �Attq(S,V,V)]WO,
(5)

where Q, K, V refer to the query, key, and value, respectively.
WQ

m,WK
m, WV

m and WO are the parameter matrices of the mth
head to be learned. p is the dimension of the input feature of each
head, and q is the head number of MHA. � represents the concate-
nation operation. The subsequent layer of MHA is the feed-forward
network, and also the residual connection and layer normalization are
used after the aforementioned sub-layers. Note that, the last MHA in
the decoder is also followed by softmax. Different from the MHA in
other modules where the query, key, and value are the same, e.g, the
visual matrix in the encoder or the masked word-token sequence in
the first attention layer of the decoder, the second attention layer in
MHA of the decoder takes the visual matrix as key and value, with
the masked word-token sequence as query.

3.3 Semantic-visual fusion module

The key insight for proposing the semantic-visual fusion module is
to make use of the domain-specific prior knowledge contained in a
large pre-trained visual-language model and also the complementary
nature between the image and text modalities, in which the challenge
of visual and textual bias is alleviated. Specifically, this module con-
sists of semantic-tag extraction and multi-modal fusion.

3.3.1 Semantic-tag extraction

For the semantic-tag extraction, we first provide an overview of Med-
CLIP [34], a large pre-trained vision-language model in the medical
domain. MedCLIP is a CLIP-like [28] model and is contrastively
trained on unpaired medical images and text. Specifically, MedCLIP
covers massive unpaired image and text datasets and scales usable
training data in a random combinatorial manner. Also, MedCLIP re-
places the InfoNCE loss of CLIP with the semantic matching loss, in
which medical semantic similarity between each image and report is
used as the supervision signal. In this way, MedCLIP owns the ability
to capture the semantic information that describes a given image.

Specifically, we customize a set of semantic tags {tn}Nn=1 based
on the datasets, and the tags with top-K similarities between an image
are taken as the semantic tags of the image. This process is formu-
lated as:

Si = {tn}Kn=1 = topK
0≤n≤N

< fc
v (Ii), f

c
t (t

p
n) >, (6)

where fc
v (·) and fc

t (·) represent the image encoder and text en-
coder of MedCLIP, and their parameters are frozen. tpn represents the
prompt of the semantic tag tn. More in detail, for the extraction of
customized semantic tags {tn}Nn=1, we employ the natural language
process spaCy library [23] to extract an adjective and noun modifiers
of a given disease, e.g., mild pneumonia, focal airspace. We obtained
320 tags in total, and each tag occurs at least 100 times in the dataset.
Then, we design prompt templates to process each semantic tag into
a textual description. For example, "focal airspace" is processed into
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Figure 2: The diagram of MS-Gen. MS-Gen consists of two main components, i.e., the semantic-visual fusion module and the semantic
weighted contrastive loss. Dotted red arrows denote the path of the gradients via back-propagation.

"there is evidence of focal airspace". Specifically, we extract descrip-
tions for each semantic tag using regular expressions. Subsequently,
the most commonly used expressions for each semantic tag were se-
lected as prompts. Meanwhile, each image is centra-cropped to 224
× 224, to match the input of MedCLIP.

3.3.2 Multi-modal fusion

The motivation for performing multi-modal fusion is to take the com-
plementary nature between the image and text modalities, which can
benefit the representation learning and further the report generation.

Specifically, following the way of basic architecture dealing with
an image, its visual feature maps Vi ∈ Rc×h×w extracted by a CNN
is reshaped to its corresponding visual matrix Vi ∈ Rc×(h·w). For
the semantic tag matrix, we first tokenize Si and then embed it into
the semantic matrix Si ∈ RK×d by multiplying a look-up table,
where K and d are the number of semantic tags and the dimension
of each semantic representation. Then, Si is further transformed to
the hidden semantic matrix Hs

i by using the encoder of Transformer.
This process is formulated as:

Vi = fcnn(Ii), (7)

Hv
i = f I

e (Vi), (8)

Hs
i = fS

e (Si), (9)

where fI
e (·) and fS

e (·) are the visual and semantic encoders, respec-
tively. Vi and Si are the visual and semantic matrices, respectively.
Each column in Vi and Si, i.e., a 1-D vector, represents the feature
of a region and a semantic representation of Ii and Si. Note that both
Vi and Si are further passed through a layer normalization for stable
training.

Once we obtain the visual hidden matrix Hv
i and the semantic

hidden matrix Hs
i , we get the aligned representations V

′
by fusing

image and semantic matrices. Then, the decoder of Transformer takes
V

′
and {ŷi}i<t as source inputs, to predict the token to be generated

at the current time step t. This process is formulated as:

V
′
i = MHA(Hs

i ,H
v
i ), (10)

ŷt = fd(V
′
i, {ŷi}i<t), (11)

where (10) can be interpreted in the following way that the most rel-

evant region features can be found given the hidden semantic matrix
Hs

i , and report generation is therefore benefited following (11).

3.4 Semantic weighted contrastive loss

The main idea for designing the semantic weighted contrastive loss is
to enforce MS-Gen to pay more attention to the semantic differences
of medical images, so as to make the generated reports with higher
quality on clinical accuracy.

We achieve this goal by contrasting the positive sample with hard
negative samples identified by the semantic label. Specifically, given
a batch, the image-report pair (Ii, Ri) is taken as the positive sample.
Ii combined with the ground-truth reports {Rj} in the batch whose
semantic labels are not equal to the semantic label of Ii are taken as
the negative samples, and they are represented as {(Ii, Rj)|li �= lj},
where li and lj are the semantic labels of Ri and Rj . The hard level
of a negative sample is evaluated by the semantic similarity between
li and lj . The more similar the semantics are, the harder the sample
(Ii, Rj) is. The process is formulated as:

LSSC =
∑

log
exp(si,i)

α
∑

li �=lj
exp(si,j)

, (12)

s(i,j) = sim(hv
i ,h

R
j )/τ, (13)

hv
i = ψv(H

v
i ), (14)

hR
j = ψs(H

R
j ), (15)

where ψv(·) and ψs(·) are operation sets consisting of average pool-
ing and non-linear mapping, and they do not share parameters. sim
represents the cosine similarity function. τ is the temperature pa-
rameter. Hv

i is the visual hidden matrix of the image Ii. HR
j is the

semantic hidden matrix of Rj . α is the semantic weight factor, and
negative samples in the different hard levels will be set to different
α. The harder a negative sample is, the larger the value of α is. That
is, more weights will be assigned to these harder negative samples.

Overall, our report generation model is optimized by the semantic
weighted contrastive loss combined with the cross-entropy loss.

L = λ · LSWC + LCE , (16)

where λ is a hyperparameter that weights the two losses. LSWC and
LCE represent the semantic weighted contrastive loss and the cross-
entropy loss, respectively.
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4 Experiments and Results

4.1 Datasets

Table 1: The statistics of IU X-Ray and MIMIC-CXR. # Image, #
Report, # Patient and # Avg. Len. represent the number of images,
reports and patients, and the average length of reports.

Dateset
IU X-Ray MIMIC-CXR

Training Validation Testing Training Validation Testing

# Image 5,978 745 745 368,960 2,991 5,159

# Report 3,163 396 396 222,758 1,808 3,269

# Patient 3,163 396 396 64,586 500 293

# Avg. Len. 38.42 36.56 35.87 53.00 53.05 66.40

The experiments are conducted on IU X-Ray [5] and MIMIC-CXR
[13], two benchmark datasets of the report generation task. Specifi-
cally, IU X-Ray is a public dataset, and it contains 7,470 chest im-
ages and 3,955 corresponding reports. MIMIC-CXR is a large-scale
public dataset, and it contains 377,110 images and 227,835 corre-
sponding reports. We preprocess the reports in both IU X-Ray and
MIMIC-CXR by tokenizing, converting the tokens into lower cases,
and removing the tokens with less than 3 occurrences. Four spe-
cial tokens are added to a report, i.e., <start>, <end>, <ukn>, and
<pad>. <start> and <end> are used to indicate the start and end of a
report. <pad> token is used to fill the report whose length is less than
the pre-defined maximum length of a report. <ukn> is to represent
the excluded tokens. For the data-splitting, we apply the same way
as current studies, which randomly divide the entire data into train-
ing, validation, and testing with a ratio of 8:1:1. For MIMIC-CXR,
its official splitting is adopted, i.e., 368,960 in the training set, 2,991
in the validation set and 5,159 in the testing set. Table 1 shows the
statistics of IU X-Ray and MIMIC-CXR.

4.2 Metrics

To evaluate the performance of report generation, we follow the most
studies [6, 41, 36, 21, 40, 43, 22, 18, 20, 19, 10, 3, 17, 24, 15, 8, 38,
12, 45] and adopt the natural language generation (NLG) metrics,
including BLEU-{1, 2, 3, 4} and ROUGE-L. These metrics are to
compare the word-level overlap between the generated reports and
the ground-truth reports, which are dubious for examining the se-
mantic meanings of the generated reports. Therefore, we further train
a report classification BERT-like [29] model to evaluate the clini-
cal efficacy of the generated reports with the metrics of Accuracy,
F-1, Precision, Recall, and Area Under the ROC Curve (AUC). The
macro-average metrics can be quite noisy, as the per-class metric may
depend on just a few samples. Therefore, the micro-average of AUC,
Precision, Recall, and F-1 is adopted.

4.3 Model setting

For image pre-processing, resize and center-crop data augmentation
techniques are employed during the training phase. An input image
is center-cropped to 224 × 224, and no other data augmentation tech-
niques are used during the inference phase. The visual extractor we

Table 2: PERFORMANCE COMPARISON OF REPORT GENER-
ATION ON IU X-RAY AND MIMIC-CXR.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

IU X-Ray

Soft-Att [30] 0.363 0.257 0.183 0.135 0.342

Att-RK [37] 0.344 0.251 0.168 0.116 0.358

Co-Att [12] 0.450 0.278 0.189 0.136 0.355

KG [45] 0.446 0.300 0.211 0.152 0.359

RareGen [10] 0.448 0.3430.3430.343 0.255 0.178 0.371

R2Gen [3] 0.474 0.312 0.221 0.168 0.375

CMM+RL [27] 0.492 0.323 0.231 0.177 0.371

MS-Gen 0.4960.4960.496 0.330 0.2370.2370.237 0.1830.1830.183 0.3820.3820.382

MIMIC-CXR

Soft-Att [30] 0.311 0.193 0.1660.1660.166 0.112 0.287

Att-RK [37] 0.325 0.219 0.159 0.120 0.3140.3140.314

Co-Att [12] 0.331 0.220 0.147 0.117 0.276

KG [45] 0.341 0.221 0.136 0.119 0.272

RareGen [10] 0.356 0.220 0.147 0.122 0.281

R2Gen [3] 0.356 0.223 0.151 0.110 0.283

CMM+RL [27] 0.3700.3700.370 0.228 0.157 0.107 0.285

MS-Gen 0.369 0.2310.2310.231 0.157 0.1240.1240.124 0.295

Table 3: PERFORMANCE COMPARISON OF CLASSIFICATION
ON IU X-RAY AND MIMIC-CXR.

Dataset Methods Accuracy F-1 Precision Recall AUC

IU X-Ray

Soft-Att [30] 0.3115 0.3526 0.4002 0.3107 0.7115

Att-RK [37] 0.3008 0.3461 0.3972 0.3008 0.7083

Co-Att [12] 0.3651 0.3868 0.4511 0.3519 0.7484

KG [45] 0.3507 0.3707 0.4227 0.3301 0.7423

RareGen [10] 0.3646 0.3973 0.4562 0.3512 0.7522

R2Gen [3] 0.3568 0.3773 0.4262 0.3328 0.7451

CMM+RL [27] 0.3638 0.4088 0.4652 0.3510 0.7387

MS-Gen 0.37620.37620.3762 0.41830.41830.4183 0.47820.47820.4782 0.35930.35930.3593 0.75920.75920.7592

MIMIC-CXR

Soft-Att [30] 0.3623 0.3664 0.4302 0.3026 0.7328

Att-RK [37] 0.3428 0.3503 0.4216 0.2792 0.6971

Co-Att [12] 0.3712 0.4037 0.4563 0.3512 0.7501

KG [45] 0.3853 0.4136 0.4581 0.3691 0.7562

RareGen [10] 0.3877 0.4212 0.4611 0.3812 0.7683

R2Gen [3] 0.3734 0.4168 0.4549 0.3788 0.7573

CMM+RL [27] 0.3712 0.4191 0.4534 0.3822 0.7623

MS-Gen 0.41210.41210.4121 0.43530.43530.4353 0.47020.47020.4702 0.40050.40050.4005 0.77920.77920.7792
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used in this paper is DenseNet-121 with fully connected layers re-
moved. Each token in reports is embedded as a vector with a dimen-
sion of 256. We set the number of MHAs of both visual and semantic
encoders to be 3. The dimensions of both the input layer and hidden
layers of the visual and semantic encoder are 256. We conduct a grid-
based search to choose the weight factor λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
by evaluating the model’s performance on the validation sets of the
two benchmark datasets. The λ we set in this paper is 0.3. The de-
coder of MS-Gen is the standard decoder of the Transformer, and the
number of MHAs of the decoder is 3. The dimensions of the hidden
layer of the decoder are 256. For the setting of the hard levels of neg-
ative samples, we set 4 levels. That is, for the semantic similarity in
[-1, -0.5), [-0.5, 0), [0, 0.5), or [0.5, 1), the weight factor α is set to 1,
1.5, 2, or 2.5, respectively. We set the number of semantic tags K to
be 7, considering the sentences’ number in a report. Considering the
average length of IU X-Ray and MIMIC-CXR, we set the maximum
length of a generated report of IU X-Ray and MIMIC-CXR to be 40
and 70, respectively. Experiments are conducted on 2 Nvidia Tesla
V100 GPUs, and each GPU is with 32GB VRAM.

Table 4: ABLATION STUDY OF CLASSIFICATION ON IU X-
RAY AND MIMIC-CXR.

Dataset Methods Accuracy F-1 Precision Recall AUC

IU X-Ray

MS-Gen 0.37620.37620.3762 0.41830.41830.4183 0.47820.47820.4782 0.35930.35930.3593 0.75920.75920.7592

w/o SVF 0.3251 0.3570 0.4106 0.3105 0.7201

w/o SWC 0.3431 0.3823 0.4438 0.3211 0.7427

VC 0.3562 0.4021 0.4611 0.3437 0.7410

MIMIC-CXR

MS-Gen 0.41210.41210.4121 0.43530.43530.4353 0.47020.47020.4702 0.40050.40050.4005 0.77920.77920.7792

w/o SVF 0.3629 0.3942 0.4318 0.3566 0.7461

w/o SWC 0.3891 0.4256 0.4635 0.3877 0.7681

VC 0.3851 0.4103 0.4502 0.3679 0.7510

(w/o SVF) and (w/o SWC) represent MS-Gen without the semantic-visual
fusion module and the semantic weighted contrastive loss. VC represents
MS-Gen equipped with vanilla contrastive loss, instead of SA.

4.4 Baselines

We consider the following representative models as baselines: Soft-
Att [30], Att-RK [37], Co-Att [12], KG [45], RareGen [10], and
R2Gen [3]. Among these baselines, Soft-Att and Att-RK are clas-
sic CNN-RNN based models without prior knowledge incorporated.
Co-Att, KG, and RareGen are hierarchical report generation models,
where the report generation process is divided into two steps in the
decoding stage, including topic vector generation by topic decoder
and sentence generation by sentence decoder. Co-Att assists the re-
port generation by making use of the semantic information, i.e., the
semantic labels obtained from the multi-label classification. KG and
RareGen incorporate prior knowledge by introducing a knowledge
graph. Also, we compare MS-Gen with R2Gen, a recently published
state-of-the-art method. It proposes to use an extra component, i.e.,
relational memory, to enhance Transformer to learn from the pat-
terns, which can also be considered as a way of knowledge incorpo-

ration. Meanwhile, we compare MS-Gen with [27]. It uses reinforce-
ment learning over a cross-modal memory to align visual and textual
features without relying on annotation.

4.5 Experimental Results and Analysis

Table 5: ABLATION STUDY OF REPORT GENERATION ON IU
X-RAY AND MIMIC-CXR.

Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L

IU X-Ray

MS-Gen 0.4960.4960.496 0.3300.3300.330 0.2370.2370.237 0.1830.1830.183 0.3820.3820.382

w/o SVF 0.453 0.298 0.211 0.146 0.325

w/o SWC 0.469 0.313 0.220 0.165 0.344

VC 0.478 0.316 0.220 0.171 0.367

MIMIC-CXR

MS-Gen 0.3690.3690.369 0.2310.2310.231 0.1570.1570.157 0.1240.1240.124 0.2950.2950.295

w/o SVF 0.310 0.165 0.126 0.091 0.222

w/o SWC 0.335 0.194 0.140 0.109 0.268

VC 0.351 0.222 0.143 0.117 0.282

(w/o SVF) and (w/o SWC) represent MS-Gen without the semantic-visual
fusion module and the semantic weighted contrastive loss. VC represents
MS-Gen equipped with vanilla contrastive loss, instead of SA.

(1) Quantitative Results Table 2 shows the quantitative experimental
results of MS-Gen and its baselines on NLG metrics. We can find that
our proposed method MS-Gen outperforms baselines on almost met-
rics, e.g., MS-Gen achieves markedly better results on both IU X-Ray
and MIMIC-CXR compared with the state-of-the-art method R2Gen,
which demonstrates the effectiveness of our proposed method MS-
Gen for the radiology report generation, in terms of word overlap.
Meanwhile, although MS-Gen achieves slightly lower NLG scores
than some baselines, e.g., slightly lower BLEU-3 and ROUGE-L
scores on MIMIC-CXR and BLEU-2 score on IU X-Ray, this does
not indicate MS-Gen is with worse performance. As we have men-
tioned before, NLG metrics are to measure the word overlap between
the generated reports and the ground-truth reports, but cannot eval-
uate whether the generated reports own the correct semantic infor-
mation or not compared with the ground-truth reports. And due to
data bias, a model can achieve considerable BLEU and ROUGE-L
scores even when it just repeats the most frequent sentences. For this
reason, we further show the report classification results of MS-Gen
and baselines in Table 3. We can observe that MS-Gen achieves the
highest scores on all classification metrics of both IU X-Ray and
MIMIC-CXR compared with the baselines, which demonstrates its
great ability to generate reports with more clinical accuracy. The po-
tential reason may come from two aspects. On the one hand, seman-
tic tags introduced by applying MedCLIP and multi-modal fusion
alleviate the visual and textual bias to a large extent, which guides
MS-Gen to correctly generate reports with prominent abnormal de-
scriptions. On the other hand, training MS-Gen with the semantic
weighted contrastive loss enforces the generated reports with correct
semantic information. In addition, we can also find that all the meth-
ods are with low accuracy scores, and the reason can be inferred that
an instance is correctly predicted only if all the semantic labels are

X. Jia et al. / Multi-Modal Fusion with Semantic Supervision for Radiology Report Generation 1145



Figure 3: 3 cases of ground-truth reports and reports generated by our method MS-Gen and the state-of-the-art baselines. The tokens marked
in blue represent the abnormalities or diseases of the ground-truth reports. The tokens marked in red represent the abnormalities or diseases
correctly detected in the generated reports.

correctly classified. The importance of reporting the accuracy metric
is that it could evaluate the completeness and correctness of a gener-
ated report to a large extent.
(2) Ablation study

Moreover, we also conduct an ablation study to confirm the con-
tributions of each component in our proposed method MS-Gen, i.e.,
the semantic-visual fusion module and the semantic weighted con-
trastive loss. We compare our full model MS-Gen with (w/o SVF)
and (w/o SWC). (w/o SVF) represents the MS-Gen without the
semantic-visual fusion module, i.e., taking the image as input only.
(w/o SWC) represents the MS-Gen without the semantic weighted
contrastive loss, i.e., taking the cross-entropy loss only. Also, we also
compare our full model with VC which represents MS-Gen equipped
with vanilla contrastive loss. As the report generation and report clas-
sification results shown in Table 6 and Table 5, the benefit of using
these two components can be well reflected by the improvement by
comparing MS-Gen with (w/o SVF) and (w/o SWC). For example,
on IU X-Ray, removing the semantic-visual fusion module leads to a
performance reduction by over 5% on Accuracy and 4% on Recall.
This demonstrates that the semantic-visual fusion module is an ef-
fective means to solve the problem of visual and textual bias. Mean-
while, by comparing (w/o SWC) with MS-Gen, we find that remov-
ing the semantic weighted contrastive loss results in the performance
reduction on both IU X-Ray and MIMIC-CXR, which verifies that
the semantic weighted contrastive loss term plays an essential role
in generating reports with clinical accuracy. To further investigate
the effectiveness of MS-Gen, we show the qualitative analysis of 3
cases by comparing the ground-truth reports with the generated re-
ports from the state-of-the-art methods, as the results shown in Fig.
3. We can find that MS-Gen can correctly generate the descriptions

of abnormalities or diseases in all the 3 cases. Note that, in the sec-
ond column, other methods cannot detect both the enlarged heart and
opacity, while MS-Gen can identify both of them, which confirms its
superior performance of generating reports with higher quality.

5 Conclusion

In this paper, we propose a novel radiology report generation model,
namely MS-Gen. It boosts the quality of the generated reports by
alleviating the visual and textual bias and improving clinical accu-
racy, which may push automatic radiology report generation closer
to being applied to the practice.
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