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Abstract. Federated learning breaks through the barrier of data
owners by allowing them to collaboratively train a federated machine
learning model without compromising the privacy of their own data.
However, Federation Learning also faces the threat of poisoning at-
tacks, especially from the client model updates, which may impair
the accuracy of the global model. To defend against the poisoning
attacks, previous work aims to identify the malicious updates in high
dimensional spaces. However, we find that the distances in high di-
mensional spaces cannot identify the changes in a small subset of
dimensions, and the small changes may affect the global models
severely. Based on this finding, we propose an untargeted poisoning
attack under the federated learning setting via the partial perturba-
tions on a small subset of the carefully selected model parameters,
and present two attack object selection strategies. We experimentally
demonstrate that the proposed attack scheme achieves high attack
success rate on five state-of-the-art defense schemes. Furthermore,
the proposed attack scheme remains effective at low malicious client
ratios and still circumvents three defense schemes with a malicious
client ratio as low as 2%.

1 Introduction

Federated learning(FL) [14, 25] is a distributed machine learning
paradigm that allows multiple participants to collaboratively train a
global machine learning model while maintaining data privacy. A
typical FL setup consists of a central server and several distributed
clients, each of which keeps its own training data locally and up-
loads only the intermediate results of training (usually local model
updates) to the central server. The central server updates the global
model based on the results uploaded by each client, and obtaining a
better global model than training on local data only. Federated learn-
ing protects the data privacy at the cost of losing control of the train-
ing data, exposing it to several security threats, one of which is the
poisoning attacks. A poisoning attack is the act of malicious par-
ticipants corrupting or manipulating the global model by submitting
tampered local model updates.

Early defense schemes mostly remove outliers from a statistical
perspective, such as selecting the median value of the updates or re-
move the extreme value in the updates [26], or identifying the cen-
troid of the distribution of the updates through the Euclidean Dis-
tance [3, 7]. However, as the adversary drives the parameter shifts
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of the global model and forms new centers of updates distribution by
conspiring to attack [5, 2, 18], the statistical-based defense schemes
are circumvented.

To distinguish such malicious model updates that are very close
to normal updates statistically, researchers have proposed defenses
such as the sign statistical value of the updates [24], singular value
decomposition [18], cosine similarity [16, 4] or direct prediction of
the next round of updates [27]. These elaborate descriptions provide
servers with more robust identification of malicious model updates,
and in the experimental results they provide, these defense schemes
can achieve more than 90% identification of malicious model up-
dates [24, 27] or almost eliminate the impact of poisoning attacks
[16]. These defense schemes all assume that the malicious update
needs to be sufficiently offset from the center of its high dimensional
space to affect the global model. After evaluating the updates from
their high dimensional space, most of them only constrain the ¢5-
norm of the overall update while ignoring constraints on the mag-
nitude of individual update values. For instance, Signguard [24]
chooses to directly reject those updates with too large or too small
fo-norm , FLTrust [4] and FLAME [16] chooses to clip those up-
dates with too large £2-norm, while DnC [18] and FLDetector [27]
do not limit the updates ¢2-norm.

In this paper, we design an untargeted poisoning attack scheme
called the FedPerturb.We perform a complicit scaling attack on only
a constrained small set of parameters from the model. We restrict the
rate of change of /2-norm of the malicious update before and after
the scaling of the parameters. Since most neural networks contain a
huge number of parameters, the scaling of a fraction of the param-
eters does not significantly change their scales and directions in the
high dimensional spaces. Meanwhile, most state-of-the-art defense
schemes detect the malicious updates depending on the distances
and the differences of the directions of the uploaded parameters as
a whole. Thus, our attack could circumvent that kind of defense
schemes by modifying the small subset of parameters while keeping
the malicious updates close to the benign updates. As to what kind of
parameters are more easily attacked than the others, we find that the
batch normalization layers are extremely sensitive to our attack. For
those models without the batch normalization layers, the bias from
either the convolutional layers or the fully connected layers are prone
to the proposed attack. Furthermore, our attack only requires a low
ratio of malicious clients. For example, on ResNet18, our attack is
still effective when only 2% malicious clients exist. In addition, we
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could perform an effective untargeted poisoning attack without the
knowledge of the aggregation algorithm or the training results of the
benign participants, i.e. our attack is non-omniscient.

We summarize our contributions below:

e We propose FedPerturb, a novel untargeted poisoning attack
scheme for federated learning, which scales a tiny fraction of up-
date parameters to create malicious updates that circumvent mul-
tiple state-of-the-art defense schemes.

e We analyze the sensitivity of different parts in the neural networks
to FedPerturb and propose two attack targets to enhance the ef-
fect of the attack.

o We extensively evaluate FedPerturb with multiple datasets and
models. We show that our attack scheme can circumvent multiple
state-of-the-art defense schemes. Meanwhile, our attack scheme
does not require careful selection of the attack parameters to per-
form an effective attack.

2 Background and Related Work

FL is an emerging learning paradigm that allows data owners to col-
laboratively train a common machine learning model without sharing
their private data. In this setup, the server (e.g. the service provider)
broadcasts the jointly trained model (the global model) to the data
owners (called clients), who receive the global model, train it using
their local private datasets according to the methods specified by the
server and upload updates to the server. The server aggregates the
collected updates into a new global model using aggregation rule
(AGR) and then broadcasts the global model to the clients for the
next round of training.

2.1 Poisoning Attacks on FL

Federated learning protects the privacy of participant data while also
making it vulnerable to various poisoning attacks [2, 20, 15, 8, 22,
5,1, 17, 18]. Malicious clients may exist during the training process,
which intentionally send false or malicious updates to other devices
or servers in an attempt to corrupt or control the global model. We
can classify these attacks according to the objectives of the adversary
and the attack method.

Depending on the adversary’s objectives, poisoning attacks can be
divided into two types: targeted and untargeted poisoning attacks. In
targeted poisoning attacks [2, 20, 22, 1, 15, 8], the adversary’s ob-
jective is to minimize the accuracy of the global model for a specific
class while maintaining accuracy for other classes. Backdoor attack
is a special kind of targeted attack, where the objectives is to implant
a specific trigger in the global model such that under specific in-
put conditions, the global model outputs an error or a predetermined
result. In the untargeted poisoning attack [2, 5, 18, 17, 23], the ad-
versary’s objectives is to minimize the accuracy of the global model
across all classes of inputs. In order to perform powerful untargeted
attacks and circumvent the AGR, adversaries [2, 5, 18, 23] develop
optimized target functions to create malicious updates by directly
modifying the training updates.

Depending on the adversary’s attack method or capability, poison-
ing attacks can be divided into data and model poisoning attack.In a
data poisoning attack [15, 8], the adversary manipulates the client-
generated update indirectly by poisoning the training datasets. While
in model poisoning attack [2, 20, 5, 1, 18, 17, 22, 23], the adversary
can directly manipulate the client and is able to directly modify the
client’s training updates to perform more powerful poisoning attacks.

Therefore, in order to explore the threat level of poisoning attacks on
FL, we focus on studying untargeted model poisoning attacks in FL.

2.2 Existing Defense Strategies

In non-adversarial FL settings, dimension-wise average [14] is an
effective AGR to aggregate clients’ updates. However it has been
proved that for the federated averaging algorithm, adversary can sim-
ply upload noise as training updates to reduce the accuracy of the
global model, or even perform a model replacement attack via up-
date scaling to implant a high-accuracy backdoor into the global
model while controlling only 1% of the clients [1]. To combat the
growing security threats, many different AGRs have been proposed
in the literature [18, 24, 16, 4, 27, 10, 26, 3, 7] to identify malicious
clients or improve the robustness of model training. Traditional de-
fense schemes use statistics-based AGR to obtain reliable gradient
estimates, such as Median [26], Trimmed-mean [26], multkrum [3]
and Bulyan [7].

Recently, researchers aim to evaluate the updates from high di-
mensional spaces and identify the correct update direction of the
global model. DnC [18] downsamples the updates and then calcu-
lates the outlier scores by the Singular Value Decomposition (SVD)
algorithm. SignGuard [24] believes that the sign of the update plays
a crucial role in the model update, and identifies the malicious
update through the sign statistics of the update; FLTrust [4] and
FLAME [16] both take the cosine similarity algorithm as the core,
FLTrust takes the credible training result of the server as the basis,
clipping or rejecting the update far from the credible update, FLAME
finds the direction of the majority of updates by HDBSCAN cluster-
ing algorithm; Centeredclipping(CC) [10] finds the direction of the
vast majority of updates by iterative clipping and manual momen-
tum constraint to update the update of the update changes dramat-
ically; Fldetector [27] based on historical information with LBFGS
approximation to calculate the Hessian matrix of model updates and
predict the next round of updates to the model, identify and rejects
the updated update that deviates from the predicted direction. More-
over, there are some recent works [9, 13, 6] dedicated to mitigate
the performance degradation caused by noisy labels. Their proposed
schemes improve the robustness of federated learning and are able to
mitigate the effects of poisoning attacks to some extent.

2.3 Threat Model

Here, we explore the objective and the capabilities possessed by the
adversary in this paper

Adversary’s objective. The adversary aims to create malicious
updates and upload it to the central server during the training pro-
cess, thereby compromising the accuracy of the aggregated global
model for all types of test inputs. This type of attack is also known
as untargeted poisoning attack.

Adversary’s capabilities. We assume that the adversary controls
up to m out of n total clients, and these clients are referred to as
malicious or corrupted clients. We also assume that the number of
malicious clients m is less than the number of benign clients n — m,
i.e., the ratio of malicious clients to total clients (m/n) is less than
0.5. Following the previous works [2, 1, 18], We also assume that
the adversary has access to the global model parameters broadcast
in each epoch and can manipulate updates on the malicious clients.
In addition, we assume that the adversary is non-omniscient, i.e., the
adversary does not know the aggregation rules and does not know
the training results of benign clients. Therefore, the adversary can
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Figure 1: Schematics of our attack scheme: We change only a small portion of the updates(red area), the rest of the updates are the result of
benign training while the ALIE[2]/Min-Max[18] attack drives global parameter shifts.

only use the training results of malicious clients to create malicious
updates.

3  Our FedPerturb Framwork

The state-of-the-art FL defense schemes [18, 24, 16, 27, 4] have cho-
sen to find a higher dimensional space to evaluate the updates, e.g.
to find the benign updates that occupy the absolute majority. How-
ever, we find that these schemes neglect to detect the local anomalies
of updates. Observing this, we propose a new untargeted poisoning
attack called FedPerturb.

Intuitively, in order to escape detection by state-of-the-art robust
AGRs, we scale only a very small fraction (i.e., P;,q) of the update
(see Figure 1), rather than changing every value in the update. In the
case of the ResNet18, we change less than 0.5% of the parameters.
By continuously scaling the parameters of the target range P;nq sig-
nificantly, the values of the P;,q regions parameters in the global
model grow abnormally large, eventually leading to global model di-
vergence.

3.1 Exploited Assumption

We find that all three current state-of-the-art attack schemes [2, 18, 5]
have a similar approach, that is, in order to minimize the affection
of the training accuracy, these schemes choose to widen the gap
between the overall parameters of the model before and after poi-
soning when crafting the malicious updates. These malicious up-
dates deviate as much as possible from the aggregation center under
well-designed constraints, posing a significant challenge to statistics-
based defense schemes [26, 3].

To counter these state-of-the-art attack methods that focus on
achieving global parameter shifting, researchers have shifted the per-
spective of the defense schemes from local to global, and evaluated
the updates from higher dimensional spaces. However, these defense
schemes only consider the update as a whole and thus impose con-
straints, neglecting to detect and constrain the magnitude of the con-
crete values in the update. As the number of model parameters grows,

changes to a very small range of parameters locally do not signifi-
cantly change their appearance in the high dimensional spaces.
Compared to the change in update sign of the ALIE attack (>20%),
we only change the update sign by less than 0.5%, and we experi-
mentally demonstrate that Signgurad is unable to detect such a small
difference. For both FLAME and FLTrusth, two cosine similarity-
based defense schemes, the malicious updates generated by our
scheme does not significantly change their vector direction (i.e., the
cosine similarity between the malicious updates and the benign up-
dates does not change significantly). The DnC only samples 1000
pieces of data and was not able to effectively detect a small range
of parameter anomalies. Leveraging this vulnerability, we could cir-
cumvent these state-of-the-art defense schemes and cause global
model divergence by scaling a very small range of parameters.

3.2 Our Propose Attack

Based on the above observations, we choose to scale only a small
fraction of the updates, rather than trying to create malicious updates
that would cause parameter shifts in the global model. In this case,
the main question that needs to be answered is which parameters are
more effective for us to attack. During training, the network updates
parameters layer by layer from the output layer to the input layer
according to the backpropagation algorithm. This allows parameters
close to the output to influence a wider range of model parameters
during training. Therefore, we choose to scale the parameters close to
the output. Specifically, we have two strategies for selecting the target
parameters of attack depending on whether the model contains batch
normalization(BN) layers or not. For models containing BN layers,
we select the weights of the convolutional layers close to the output
as the target parameters of attack, while for models not containing
BN layers, we select the bias of the operator close to the output or
the bias of the last fully connected layer. We will discuss these two
strategies in section 3.3 and 3.4.

Basic attack process.In the training process of each epoch of FL,
we will first control our own malicious clients to perform the benign
training tasks and obtain the base data for creating malicious updates,
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Algorithm 1 FedPerturb Attack
Require: {g; : i € m}, Pina, S
L pp;,q < % 2111 gi [Pmd}

20 Nz || pipyg ||
3: for j € mdo
4 N« pl
5. N« N?_— N2

. 2_n2
6: den — wl\ziliz%

T

7 gi[Pind] < —Sayn - Py,
8: end for

since we do not have the training results of the benign clients. Before
uploading the updates, we collect the benign training update g of all
malicious clients, calculates the mean pp,, , of the poisoning range
P;nq in the updates and its £2-norm Nr. To ensure that the £2-norm
of the update after scaling is not excessive, we control the magnitude
of the change in update ¢2-norm after scaling by a hyperparameter S
and calculate the target scaling factor Say, by lines 4 to 6 in Algo-
rithm 1. The corresponding values in the updates of that malicious
client are replaced with the back-scaled average (i.e., —Sayn - 1p;,,4)
and then the generated malicious update is finally uploaded. In this
process, we only modify the updates in the P;;,4 region, and the rest
of the updates are the result obtained from benign training.

After we determine the target parameters to be poisoned, we also
need to determine how many parameters in that layer to poison (i.e.,
the poisoning ratio Pr) and the S. These parameters serve to con-
strain the variation of the malicious updates in the high dimensional
spaces. Since we focuses on non-omniscient untargeted poisoning at-
tacks, we experimentally demonstrate the effectiveness of our attack
scheme, i.e., the ability to implement powerful untargeted poisoning
attacks without careful selection of these two parameters. The exper-
imental results of which are detailed in 5.5.

3.3 Attacks on Biases

The mathematical expressions of a convolutional layer can be ex-
pressed in the following form:

y=f(Wz +b) (1

where y is the output of the layer, « is the input, W is the weight
matrix, b is the bias vector and f is the activation function. While
a neural network typically has many fewer biases than weights, for
those networks without the batch normalization layers, we can use
the biases as the attack targets to perturb the model output directly.

In order to directly affect the output of the model while leveraging
the backpropagation algorithm to amplify the impact of poisoning at-
tack, we choose the bias vectors near the output layer as the target of
our attack, thus affecting the model output more directly. In the case
of convolutional neural networks for classification tasks, we choose
to target the bias of the last fully connected layer, which is usually
the same number as the number of classification categories. In other
words, we attack the global model with very few parameters.

3.4 Attack on Weights that Before the BN Layers

The target scaling factor Sqy, in our attack scheme depends on the
£2-norm of updates before and after scaling. With the scaling ratio S
constant, the smaller the ratio of Nz to N, the larger Sqyn will be.
We find that when a model contains BN layers, it is easier to achieve

large scaling factor Sg,. by attacking the weights of the convolu-
tional layers that before the BN layers.

Since the parameters running mean(y) and running variance(62)
in the BN layers do not have gradients, the client needs to change the
training update from parameter gradients to parameter difference(i.e.,
g{ — pam{ - pam{ ~1: j € GlobalRound), in order to aggregate
these two parameters. This change does not significantly change the
amount of data, but drastically increases the ¢2-norm of the update.
Taking the ResNet18 as an example, the £2-norm of the first training
round update containing these two types of unlearnable parameters
is around 400, while that does not contain them is only around 20.
In this case, setting the scaling ratio S to 1.5 means that scaling the
target range parameters would increase the training update ¢2-norm
from about 400 to 600, which also means that the target scaling fac-
tor Sqyn becomes very large. In our experiments we find that this
variation of the magnitude ¢2-norm does not deviate from the range
of variation of the normal update ¢>-norm. While there is a proba-
bility that it is clipped by the defense scheme, this clipping ratio is
between 0.25 to 1, and the Sqy, after clipping remains huge.

The Catastrophe of Variance. According to the formulae of
porp o 23T ziand 6% 0 6%« LY (zi — p)?, when
we enlarge a small part of z by a factor of Say., 62 is approximately
scaled by a factor of Sﬁyn, and thus the next round of training will
produce a greater 62 update, which further increases the scaling fac-
tor Sayn, forming a positive feedback. Finally the model training
diverges as the absolute value of the scaling attack target parameters
in the global model are abnormally huge.

4 Evaluation Setup
4.1 Datasets and Models

Fashion-MNIST. Fashion-MNIST [21] is a 10-class clothing im-
age classification dataset, which consists of 60,000 training samples
and 10,000 test samples. Each sample is a 28 x 28 greyscale image,
and each class of Fashion-MNIST has 7,000 images. To compare the
impact of BN layers, we use two convolutional neural network mod-
els as global model architectures: CNN consists of two convolutional
layers and two fully connected layers, and CNN-BN consists of three
convolutional layers, three BN layers and one fully connected layer.

CIFARI10. CIFARI10 [11] is a 10-class color image classification
task with 60,000 32 x 32 RGB images, including 50,000 training
samples and 10,000 test samples, each class of CIFAR10 has 6,000
images. We use four models as the global model architecture: the
two models containing the BN layer are ResNetl8 and VGG11-
BN [19], and the two models without the BN layer are AlexNet [12]
and VGG11 [19].

4.2 Baseline Model Poisoning Attacks

We consider various popular model poisoning attack schemes and we
only discuss non-omniscient attack settings, where the model attack
schemes are:

Label-Flip(LF). In order to generate malicious gradients, the ma-
licious clients flip the local sample labels from [ to C' — 1 — [, where
C'is the total label categories and [ € {0,1,...,C — 1}.

Inner Product Manipulation(IPM). Following the approach in
[10], in each round the adversary first estimate coordinate-wise mean
(144), and calculate malicious gradient by (pmai); < —€- p;. We set
the e = 0.5.

A Little is Enough(ALIE). Following the algorithm 3 in [2], we
calculate the 2™ ax by line 1 and line 2 in the algorithm, that is s <
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Table 1: Comparing our attack on weights and state-of-the-art model poisoning attacks reports test accuracy, where D indicates that the test
loss of the global model is greater than 1000 or becomes NaN, making the global model diverge before the end of training.

Dataset AGR No Attack LF IPM ALIE Min-Max Min-Sum Ours
(Model)
Mean 87.86 86.42 86.23 85.69 83.01 83.98 16.41(D)
Median 87.41 82.66 76.59 83.76 72.49 71.88 87.67
Multikrum 87.33 87.27 80.58 86.11 79.98 81.37 32.00(D)
CIFAR10 Signguard 86.83 86.51 86.14 87.56 84.25 83.35 10.00(D)
(ResNet18) DnC 88.03 86.13 85.37 86.92 81.38 82.32 10.14(D)
CC 88.06 84.62 85.75 86.95 82.81 83.67 10.00(D)
FLAME 86.60 86.43 84.24 86.13 86.50 84.44 34.39(D)
FLTrust 87.43 86.11 86.92 84.89 86.40 85.99 10.00(D)
Mean 85.21 81.45 82.26 83.10 75.91 78.50 10.34(D)
Median 84.47 83.65 63.31 58.18 62.87 63.32 84.70
Multikrum 84.87 83.18 77.23 79.14 69.54 70.98 84.43
CIFAR10 Signguard 84.47 83.97 8134 84.63 74.98 77.99 16.33(D)
(VGG11-BN) DnC 85.02 83.52 81.04 83.13 74.33 76.87 19.86(D)
CC 85.22 82.23 81.62 83.19 76.07 78.40 10.00(D)
FLAME 83.36 82.60 83.82 81.66 84.54 83.71 28.27(D)
FLTrust(Ir=0.1) 84.16 10.00(D) 83.95(D) 10.54(D) 83.82 84.44 10.00(D)
FLTrust(Ir=0.01) 83.21 82.6 82.73 80.77 82.65 82.67 10.29(D)
Mean 0.8 8823 30.04 30.20 975 89.72 61.85(D)
Median 9027 89.06 8824 89.05 88.20 88,38 90.17
. Multikrum 89.56 89.30 89.45 90.15 88.89(D) 89.19 90.26
Fashion Signguard 90.23 90.37 89.92 90.59 89.30 89.94 51.62(D)
MNIST DnC 90.35 87.59 90.08 90.15 89.48 89.77 62.07(D)
(CNN-BN) CC 90.34 84.85 89.95 90.31 89.47 89.74 56.54(D)
FLAME 90.17 89.93 90.38 90.25 90.27 90.07 90.08
FLTrust(Ir=0.01) 89.90(D) 86.89(D) 90.10(D) 86.26(D) 90.44 87.92(D) 85.43(D)
FLTrust(Ir=0.001) 91.07 90.32 90.47 91.07 90.63 90.73 90.97

5 + 1] —mand 2™ < maz.(#(z) < ©==2), in each round
the adversary first estimate coordinate-wise mean (y+;) and standard
deviation (d;), and calculate malicious gradient by (pmai); < pj —

Min-Max and Min-Sum. We use the source code provided in
[18] to achieve the Min-Max and Min-Sum attack, whose version
of the attacks is AGR agnostic and gradients of benign clients are
unknown.

4.3 Training and Attack Settings

Unless specified otherwise, we consider a FL setup with a total
of 50 participants, 20% of which are malicious participants (i.e.
n = 50, m = 10). In both CIFAR10 and Fashion-MNIST datasets,
the training data are independently and identically distributed (IID)
among clients, because poisoning FL with IID data is the hardest [5].
To verify the effectiveness of our attack, we also evaluate the im-
pact of different fractions of malicious clients on our attack scheme
against different defense schemes. For reproducibility, our code is
available at https://github.com/running-sheep/FedPerturb.

In the four test models in CIFAR10, we use the same training
setup, we set the batch size to 64 and use the SGD optimizer with
learning rate of 0.1 for a total of 100 training rounds.The number of
local rounds is set to 2 and the weight decay is set to 0.0005, while
momentum is employed with the parameter of 0.9. In the two test
models in Fashion-MNIST, we set the batch size to 64 and use the
Adam optimizer with learning rate of 0.01 for a total of 60 training
rounds.The number of local rounds is set to 2 and the weight decay
is set to 0.0005.

In the setting of attack FedPerturb Attack, for the three models
without BN layers, Alexnet, VGG11 and CNN, we take the 10 biases
of the last fully connected layer (i.e. the poisoning ratio Pr = 1) as
the poisoning object P, 4, and the S is set to 1.5. For the three mod-
els with BN layers, ResNet18, VGG11-BN and CNN-BN, the S is set
to 1.5, and set the weights of the convolutional layers as the poison-
ing object ¢, and in each round, we randomly selects a convolutional
layer in ¢, calculates the ¢2-norm of each convolutional kernel, and

selects the largest 2% kernel (i.e., the poisoning ratio Pr = 0.02) as
the poisoning object P;,q. Specifically, we use the last four convolu-
tional layers as the poisoning object of ResNet18, and set the the last
two convolutional layers as the poisoning object of VGG11-BN and
CNN-BN.

5 Evaluation Results

In this section, we conduct extensive experiments with various
attack-defense pairs on IID data setting. We compare our methods
with the following defense methods, including Median [26], Multi-
Krum [3], Signguard [24], DnC [18], Centeredclipping(CC) [10],
FLAME [16] and FLTrust [4]. For the experiments in the non-IID
data setting, the results of the experiments can be found in our source
code.

5.1 Results of Attacks on Weights that Before the BN
Layers

For the model containing the BN layer, the results of our attack with
the state-of-the-art poisoning attack under different datasets and dif-
ferent defense schemes are shown in the Table 1, the values in the
table represent the global model test accuracy rates.

For the CIFAR10 dataset with ResNetl8 and VGGI11-BN, our
attack circumvents all the five state-of-the-art defense schemes
and achieves the best attack effect. These state-of-the-art defensive
schemes basically provide better defense than the two traditional de-
fensive schemes except for our attack. Since we do not create global
offset malicious updates like the previous attacks, our attack has lit-
tle effect on the median. For Multkrum, however, it is unable to re-
move all of the malicious gradients, so we still successfully attacked
Multkrum in ResNet18. We find that FLTrust does not perform con-
sistently in VGG11-BN, and in many cases its training even diverged.
Considering that there are constraints on the learning rate of training
in FLTrust, we retest the FLTrust scheme at a learning rate of 0.01
and show that FLTrust is better able to defend against other attacks at
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Table 2: Comparing our attack on biases and state-of-the-art model poisoning attacks reports test accuracy, where D indicates that the test loss
of the global model is greater than 1000 or becomes NaN, making the global model diverge before the end of training.

Dataset AGR No Attack LF IPM ALIE Min-Max Min-Sum Ours
(Model)
Mean 69.39 6720 6546 67.80 5911 60.94 3726(D)
Median 68.31 66.46 50.74 62.12 51.42 50.79 68.12
Multikrum 68.01 67.93 60.84 66.1 48.72 53.24 67.98
CIFARI0 | Signguard 68.92 68.83 67.39 68.51 65.44 67.61 47.25
(AlexNet) DnC 69.01 67.53 63.98 67.38 56.41 57.67 34.16(D)
cC 69.59 67.15 65.55 67.77 59.00 61.57 1135
FLAME 68.98 60.18 68.27 66.17 68.46 67.88 66.67
FLTrust 69.09 67.04 68.98 64.08 69.21 68.20 67.69
Mean 80.44 76.50 7532 77.80 63.84 63.10 37.45(D)
Median 78.50 73.77 44.39 65.78 49.05 47.64 78.79
Multikrum 78.72 78.51 67.24 74.44 4311 4822 79.60
CIFARIO | Signguard 80.47 80.24 76.80 79.42 73.37 70.93 70.44
(VGG11) DnC 7773 65.53 7427 76.41 58.40 64.26 9.33
cC 79.96 75.81 75.60 78.74 63.14 68.34 14.02
FLAME 74.81 68.18 78.26 73.44 78.47 78.19 78.03
FLTrust 80.11 72.82 79.84 76.44 80.48 79.35 79.89
Mean §4.79 82.30 82.00 84.04 8401 84.29 81.04
Median 85.10 84.48 82.51 82.56 83.46 83.72 85.27
Fashion | Multikrum 84.34 84.35 82.35 82.12 80.19 81.60 84.51
MNIST Signguard 84.51 82.66 84.62 84.68 84.43 84.49 81.94
DnC 84.28 83.40 84.66 84.88 83.84 83.81 80.85
(CNN) cC 85.07 82.53 84.82 84.08 84.42 84.34 79.87
FLAME 84.36 84.32 84.91 82.84 84.91 84.91 84.37
FLTrust 84.45 82.72 84.70 82.98 84.70 84.70 82.84

that learning rate, yet our attack still circumvents FLTrust and causes
the global model to diverge.

For the Fashion-MNIST dataset with CNN-BN, our attack circum-
vents the three state-of-the-art defense schemes and causes the global
model to diverge. In the attack on FLAME and FLTrust, our attack
has a large impact on the cosine similarity due to the small number of
parameters of the CNN-BN, which is only 37K (compared to 2.7M
for the ResNet18), leading to our attack being defended. We carry
out further comparative experiments on learning rate in Section 5.5.

5.2 Results of Attacks on Biases

For the model without the BN layer, the results of our attack with the
state-of-the-art poisoning attack under different datasets and different
defense schemes are shown in the Table 2, the values in the table
represent the global model test accuracy rates.

For the CIFAR10 dataset, in the experiments with AlexNet as the
global model, our attack achieves the best attack results in three state-
of-the-art defense schemes. For the two cosine similarity-based de-
fense schemes, FLAME and FLTrust, our attack has a high impact on
the cosine similarity between malicious and normal updates, and the
attack is ineffective. In the experiments with VGG11 as the global
model, our attack scheme also achieves the best results in the ex-
periments with the three defense schemes state-of-the-art Signguard,
DnC and CC.

For the Fashion-MNIST dataset, in the experiments with CNN as
the global model, our attack could not cause global model divergence
because there is no batch normalisation layer in the model, and the
number of model parameters is also smaller than in the first two mod-
els, so our attack could not be scaled to a larger ratio (scaling mul-
tiplier within 10), but compared to other attack schemes, our attack
still achieves the most effective attack in four state-of-the-art defense
schemes.

5.3  How Our Attack Works

To illustrate how our attack causes the global model to diverge, we
tracked the changes in the /2-norm of each layer’s parameters in the

model during the training process. Figure 2 shows the results when
we attack ResNet18 and AlexNet on the CIFAR10 dataset.

During the training of non-malicious clients, some parameters in
the ResNet18 have significantly higher #2-norms than other param-
eters (shown as spikes in Figure 2), which are mainly the running
variance parameters of the BN layer. After a few rounds of train-
ing, the running variance ¢2-norms of the last four BN layers are still
higher than other parameters. When we attack ResNet18, the run-
ning variance ¢2-norm in the attacked area increases sharply, and the
model update ¢2-norm also increases accordingly, which enables our
attack to scale at a larger proportion in the next round of attack. The
f2-norm of the attacked parameters (the convolutional layer weights
for ResNet18) increases by nearly 20 times (from 8.43 to 160.06) af-
ter the attack, and the maximum change ratio of the running variance
£2-norm of the corresponding BN layer approaches 100 (from 33.91
to 3389.15), which causes the model to diverge due to the abnormal
increase of the model parameters.

Moreover, our attack process for ResNetl8 is very fast, and the
global models under the other four defense schemes diverge within
3 epochs, while the CC defense scheme diverges at the 10th epoch
due to the limitation on the size of each round of model update. For
AlexNet, the bias of the fully connected layer that is attacked also in-
creases continuously under continuous attack, resulting in the global
model diverging or becoming unusable, but because each layer’s pa-
rameters have smaller £2-norms, and their updates also have smaller
£2-norms, our attack requires more rounds of training to take effect.

5.4 Effect of the Percentage of Malicious Client

Table 3 shows the effectiveness of our attack on the three global mod-
els with five state-of-the-art defense schemes at different malicious
client ratios. ResNet18 has more BN layers than the VGG11-BN and
CNN-BN models, which makes the ¢2-norm change of the model up-
date more drastic after the attack and thus more likely to cause the
global model to diverge.

For ResNetl18, our attack causes the global model to diverge un-
der the three state-of-the-art defense schemes of Signguard, DnC and
CC at only 2% of malicious clients (when there is only one mali-
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Figure 2: The />-norm variation of the model parameters per layer with training progress for ResNet18 versus AlexNet under our attack(red

line) and without attack(blue line).

Table 3: Accuracy of the global model under our attack with different malicious client percentages, where D indicates that the test loss of the
global model is greater than 1000 or becomes NaN, making the global model diverge before the end of training.

Dataset Ratio Mean Signguard DnC CcC FLAME FLTrust
(Model)
2% | 1296(D) | 19.98(D) | 6046(D) | 38.30(D) 8708 86.46
CIFARI0 4% | 10.00D) | 10.00(D) | 10.60(D) | 10.50(D) 87.16 11.44(D)
(ResNet18) 10% | 10.00D) | 10.00(D) | 11.15(D) | 10.00(D) 86.89 10.00(D)
20% | 16.41(D) | 10.00(D) | 10.14(D) | 10.00(D) | 34.39(D) | 10.00(D)
2% 85.04 84.49 3511 85.08 83.55 84.00
CIFAR10 4% | 31.84(D) 83.78 31.32(D) 84.49 84.01 84.38
(VGG11-BN) | 10% | 10.70(D) | 10.00(D) | 10.00(D) | 10.00(D) 83.50 20.69(D)
20% | 10.34(D) | 16.33(D) | 19.86(D) | 10.00(D) | 28.27(D) | 10.00(D)
Fashion 2% 90.27 90.50 90.54 9041 89.09 90.28
MNIST 4% 90.39 89.92 90.26 90.15 90.10 90.25(D)
10% | 87.47(D) 90.03 86.80(D) 90.10 90.21 90.09
(CNN-BN) 20% | 61.85(D) | 51.62(D) | 62.07(D) | 56.54(D) 90.08 85.43(D)

cious client). The minimum percentage of malicious clients causing
the global model to diverge is 4% for the VGG11-BN model and
further increases to 10% for the CNN-BN model. The experimental
results show that the impact of our attack on the model is not lin-
ear with the proportion of malicious parties, but segmented. That is,
there is a critical value at which our attack causes the global model
to diverge when the malicious client fraction is larger than this value,
while the impact on the global model is weaker (less than 5%) when
that is smaller than this value. Since we focus on non-omniscient
untargeted poisoning attacks, we do not calculate the corresponding
attack critical value for each defense scheme.

5.5 Impact of Attack Parameters and Learning Rate

Our attack scheme is a heuristic scheme and requires three hyperpa-
rameters to be set manually when performing the attack, i.e. which
kinds (weights, biases or other parameters) of parameters to be at-
tacked, the poisoning ratio Pr, and the scaling factor S. To better
show the severity of the deficiencies we find in state-of-the-art de-
fense schemes, we compare the attack effectiveness of our attack
scheme under different attack hyperparameters and different learn-
ing rates, with ResNet18 as the global model.

Attack parameters. We experiment with five state-of-the-art de-
fense schemes for FedPerturb with different attack parameters, where
the poisoning ratio Pr is chosen from 0.001, 0.005, 0.01, 0.02, 0.05,
0.1, 0.2 and 0.5, and the choices of the scaling factor S were 1.1,
1.3, 1.7, 1.9, 2.5, 3 and 5. The other parameters remained the same
as those set in section 4.3. Experimental results show that our at-
tack is defended by FLAME when the scaling multiplier S > 2.5
and by Signguard when Pr = 0.5 and S = 5. In all other cases
our attack circumvents the defense schemes and causes global model
divergence within 20 epochs.

Learning rate. We conduct attack experiments on five state-of-
the-art defense schemes at different learning rates, where the learn-
ing rates were chosen to be 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005,
while the other parameters remained the same as those set in sec-
tion 4.3. The experimental results show that all four defense schemes
are unable to defend against our attack at all learning rates, i.e.
they are unable to prevent global model divergence, except for the
FLAME scheme, which is able to prevent model divergence at a
learning rate of 0.01 or smaller.

With these two experiments, we demonstrate that our attack
scheme does not require careful selection of attack parameters to
circumvent the defense schemes and cause global model divergence
when attacking ResNet18.

6 Conclusion

We find a weakness that is prevalent in current state-of-the-art de-
fense schemes and propose a new attack scheme based on this vulner-
ability that scales only a small fraction of the parameters, rather than
aiming to drive global parameter shifts like previous works. In the
attack on ResNet18, our attack scheme circumvents five state-of-the-
art defense schemes and causes global model divergence, whereas
our attack scheme still circumvents three state-of-the-art defense
schemes and causes global model divergence when controlling only
2% of the clients. We give specific reasons why the attack is effec-
tive, and future Byzantine robust FL algorithms should address these
issues.
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