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Abstract. The performance of Graph Neural Networks (GNNs) de-
teriorates as the depth of the network increases. That performance
drop is mainly attributed to oversmoothing, which leads to similar
node representations through repeated graph convolutions. We show
that in deep GNNs the activation function plays a crucial role in over-
smoothing. We explain theoretically why this is the case and propose
a simple modification to the slope of ReLU to reduce oversmooth-
ing. The proposed approach enables deep networks without the need
to change the network architecture or to add residual connections.
We verify the theoretical results experimentally and further show that
deep networks, which do not suffer from oversmoothing, are benefi-
cial in the presence of the “cold start" problem, i.e. when there is no
feature information about unlabeled nodes.

1 Introduction

Graph Neural Networks (GNNs) utilize message passing or neigh-
borhood aggregation schemes to extract representations for nodes
and their neighborhoods. GNNs have achieved good results on a va-
riety of graph analytics tasks, such as node classification [25, 7], link
prediction [15, 24] and graph classification [13]. As a result, they
play a key role in graph representation learning. One of the most
prominent GNN models is the Graph Convolutional Network (GCN)
[10], which creates node representations, by averaging the repre-
sentations (embeddings) of the node’s immediate neighbors. Sev-
eral studies have shown that, the performance of GCNs deteriorates,
when their architecture becomes deeper [14].
The success of deep CNNs on many tasks, like image classification,
naturally led to several attempts towards building deep GNNs for
node classification [10, 14, 23]. Increasing the model’s depth (and
the number of parameters it has), would allow more accurate repre-
sentational learning to occur. Most of the existing approaches have
failed to develop a sufficiently deep architecture that achieves good
performance. Therefore, there is a need to design new models which
can efficiently scale to a large number of layers. The aim of this paper
is to investigate the contributing factors, that compromise the perfor-
mance of deep GNNs and develop a method to address them.
The performance drop of deep GNNs, is associated with several fac-
tors, including vanishing gradients, overfitting, as well as the phe-
nomenon called oversmoothing [14, 23, 12, 22]. Oversmoothing has
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been shown to be associated with graph convolution, a type of Lapla-
cian operator. Li et al. [14] proved that applying that operator repeat-
edly, makes node representations converge to a stationary point. At
that point, all of the initial information (i.e. node features’ informa-
tion) is lost through the Laplacian smoothing. Consequently, over-
smoothing hurts the performance by making node features indistin-
guishable across different classes.
Several attempts have been made to reduce oversmoothing, utiliz-
ing a variety of techniques. Chen et al. [4] have introduced residual
connections in order to ‘short circuit’ initial node features to subse-
quent layers. Using residuals to enhance the influence of the close
neighborhood of a node, may partially address oversmoothing, but
can also hurt performance in large graphs, as shown in the results of
[5]. Rong et al. [20] and Huang et al. [8] attempted to reduce over-
smoothing by altering graph topology. The latter methods aimed to
reduce oversmoothing, while avoiding to inject initial node informa-
tion and without forcing the model to focus on the local neighbor-
hood of each node.
In this work, we address the oversmoothing problem in deep GNNs,
without using residual connections. We provide what is to the best
of our knowledge the first study regarding the role of the activa-
tion function and the learning rate per layer of the model to over-
smoothing and propose a new method to address the problem. We
confirm our hypotheses both experimentally and theoretically. The
new method is shown to prevent node embeddings from converging
to the same point, thus leading to better node representations. We
summarize our main contributions as follows.
•Role of Activation Function in Oversmoothing: We prove the-
oretically the connection between the activation function and over-
smoothing. In fact, we show the relation between the slope of ReLU
and the singular values of weight matrices, which are known to be
associated with oversmoothing [18, 3]. We have also verified our the-
oretical results experimentally.
•Role of Learning Rate in Oversmoothing: Our analysis on the ef-
fect of the slope of ReLU to oversmoothing has a direct extension
to the learning rates used per layer of the network. We conducted
further experiments to study the effect of tuning the learning rates,
showing that this approach could also reduce oversmoothing, but it
is less practical.
•The power of Deep GNNs: We have performed extensive experi-
ments using up to 64-layer networks, tackling oversmoothing with
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the proposed method. We further show the benefits that such deep
GNNs can provide in the presence of reduced information, such as
in a “cold start" situation, where node features are available only for
the labeled nodes in a node classification setting.

2 Notations and Preliminaries

2.1 Notations

In order to illustrate the problem of oversmoothing, we consider the
task of semi-supervised node classification on a graph. The graph
to be analysed is G(V,E,X), with |V | = N nodes ui ∈ V , edges
(ui, uj) ∈ E and X = [x1, ..., xN ]T ∈ RN×C denotes the ini-
tial node features (every node has a feature vector of dimensionality
C). The edges form an adjacency matrix A ∈ RN×N where edge
(ui, uj) is associated with element Ai,j . Ai,j can take arbitrary real
values indicating the weight (strength) of edge (ui, uj). Node de-
grees are represented through a diagonal matrix D ∈ RN×N , where
each element di represents the sum of edge weights connected to
node i. During training, only the labels of a subset Vl ∈ V are avail-
able. The task is to learn a node classifier, that predicts the label of
each node using the graph topology and the given feature vectors.
GCN, originally proposed by [10], utilizes a feed forward propaga-
tion as:

H(l+1) = σ(ÂH(l)W (l)) (1)

where H(l) = [h
(l)
1 , ..., h

(l)
N ] are node representations (or hidden vec-

tors or embeddings) at the l-th layer, with hl
i standing for the hidden

representation of node i; Â = D̂−1/2(A + I)D̂−1/2 denotes the
augmented adjacency matrix after self-loop addition, where D̂ cor-
responds to the degree matrix; σ(·) is a nonlinear element-wise func-
tion, i.e. the activation function, ReLU; and W (l) is the trainable
weight matrix of the l-th layer. A generic ReLU function with slope
α is defined as ReLU(x) = max(α · x, 0).

2.2 Understanding Oversmoothing

GNNs achieve state-of-the-art performance in a variety of graph-
based tasks. Despite their success, models like GCN [10] and GAT
[21] experience a performance drop, when stacking multiple layers.
To a large extent, this is attributed to oversmoothing due to repeated
graph convolutions. In their analysis, [14] showed that graph convo-
lution is a special form of Laplacian smoothing. In fact, they proved
that the new representation of each node is formed by a weighted av-
erage of its own representation and that of its neighbors. This mecha-
nism allows the node representations within each (graph) cluster, i.e.
highly connected group of nodes, to become more similar and im-
proves the performance on semi-supervised tasks on graphs. When
stacking multiple layers, the smoothing operation is repeated multi-
ple times leading to oversmoothing of node representations, i.e., the
hidden representations of all nodes become similar, resulting in in-
formation loss.

2.3 Deep GNN limitations

Therefore, oversmoothing leads node representations to converge to a
fixed point as the network’s depth increases [14]. At that point, node
representations contain information relevant to the graph topology
and disregard the input features. Oono & Suzuki [18] have general-
ized the idea in [14] by taking into consideration that the ReLU acti-
vation function maps to a positive cone. They explain oversmoothing
as the convergence to a subspace, instead of the convergence to a

fixed point. A similar approach is presented in [3], offering a differ-
ent perspective to the oversmoothing problem using Dirichlet energy.
We now look closer to the proposal of [18], which we will use as a
basis for our analysis. The main result in [18] is the definition of
the convergence speed towards a subspace M, where the distance be-
tween node representations tends to zero. We denote as dM (X) the
distance between the feature vector X and the subspace, where the
oversmoothing is prevalent. When that distance approaches to zero
it indicates that node representations have been over-smoothed. For
this distance, [18] prove an interesting property.

Theorem 1 (Oono & Suzuki [18]) Let the largest singular value of

the weight matrix Wlh be slh and sl =
Hl∏
h=1

slh, where Wlh is the

weight matrix of layer h and Hl is the network’s depth, following
the notation of the original paper. Then it holds that dM (fl(X)) ≤
slλdM (X) for any X ∈ RN×C , where f(·) is the forward pass of a
GNN layer (i.e. σ(AXWlh)).

Theorem 1 indicates, that the deeper the network the smaller the dis-
tance of node representations from the subspace M. If the maximum
singular values are small then node representations asymptotically
approach M, for any initial values of node features. Extending the
above theorem, the authors conclude to the following estimate about
the speed of convergence to the oversmoothing subspace.

Corollary 2 (Oono & Suzuki [18]) Let s = sup
l∈N+

sl· then

dM (X(l)) = O((sλ)l), where l is the layer number and if sλ < 1
the distance from oversmoothing subspace exponentially approaches
zero. Where λ is the smallest non-zero eigenvalue of I - Â.

According to the authors, sufficiently deep GCN will certainly suffer
from oversmoothing under some conditions (details can be found in
[18]). We build upon this result, aiming to develop a consistent ap-
proach that reduces oversmoothing and enables deep architectures.

2.4 Normalization in deep neural networks

Of relevance to oversmoothing are also methods that perform nor-
malization for deep neural networks [9, 1]. In such methods, the out-
put of each neuron is normalized, in order to keep a portion of the
initial feature variance. Related work proposed Self Normalized Net-
works (SNN), that use a different activation function (SeLU) [11].
These models perform self normalization inside each neuron, in or-
der to keep the variance between consecutive layers stable. They have
managed to enable deep Fully Connected models and achieve good
performance.
A recent work regarding normalization in GNNs is the Pairnorm
method [26], which aims to keep constant the total pairwise dis-
tance between node representations. Compared to SNNs, Pairnorm
performs normalization needing a constant value as hyper-parameter
determined per dataset, while SNNs normalize the output utilizing
their activation function, which can be used in a family of neural
networks. The SeLU activation function has a saturating region to
reduce data variance and a slope slightly greater than 1 in order to
increase data variance, when needed.

3 Understanding and dealing with oversmoothing

Based on the mathematical definition of oversmoothing by [18], in
this section we establish a connection with the training process of
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GNNs. In particular, we analyse the role of the activation function
and the learning rate and we propose modified versions of GNNs to
address the issue.

3.1 Theoretical Analysis

We start by establishing the connection between oversmoothing and
variance reduction of node representations. Consider oversmoothing
as the convergence to a subspace of the feature space, where node
representations are almost the same. In that particular subspace, the
initial variance of feature vectors has been massively reduced. Us-
ing ReLU, this unwanted oversmoothing effect is ‘harsh’, due to the
mapping of negative input to zero. We use the term ‘harsh’ to in-
dicate the smoothing case, where representations are mapped to a
single point (i.e. zero), instead of converging to a subspace.
We will now show how the slope of the ReLU activation function
affects oversmoothing, starting with two important assumptions: (a)
the non-exploding gradients, and (b) independence of ReLU’s proba-
bility not to output zero. We use these assumptions to extract bounds
on the weights of the network and then use these bounds to determine
the relationship between the largest singular value and the elements
of each weight matrix. Given that relationship, we connect our anal-
ysis with existing literature regarding oversmoothing through Theo-
rem 1.

Assumption 3 For each layer l there exists a number Gl which is
the upper bound to the gradients of the output of the subsequent layer
(l+1) with respect to the weight elements of W (l), i.e.

dO(l+1)

dw
(l)
oldi,j

≤ Gl, ∀w(l)
oldi,j

(2)

where O(l+1) is the output of (l+1)-th layer.

This assumption needs to hold in all cases, in order to avoid the ex-
ploding gradient case, that would not allow the learning process to
converge.

Assumption 4 The probability, that the output of the ReLU function
does not equal zero at layer l is independent of the outputs of the
previous layers, in a feed-forward ReLU neural network, i.e.

P (ReLU(h(l)) �= �0|∀h(j), j < l) ≤ p, p ∈ [0, 1) (3)

where h(l) is the node representation at layer l, ReLU is applied
piece-wise on that representation and �0 is the all zero vector.

Following the results of [16] we get that P (ReLU(h(l)) �=
�0|∀h(j), j < l) = 1/2 for feed-forward networks (FFs), on the con-
dition that the output of the previous layers is positive. That condition
does not necessary hold in GNNs, due to the role of the adjacency
matrix in the aggregation scheme. In FFs, when the output of a layer
is zero, so are the outputs of all subsequent layers. In GNNs there
might be cases, where the output of layer l (a node representation) is
zero but the aggregation using the adjacency matrix produces a non-
zero representation in layer (l+1). Apart from this difference, GNNs
can be considered a special case of FFs, with the proper wiring due to
the adjacency matrix aggregation. Therefore, the above assumption
holds also for GNNs.

Lemma 5 For a network of depth dep the total gradient reaching the

l-th layer

(
i.e., dJ

dw
(l)

oldi,j

)
in order to update W (l) is bounded by:

dJ

dw
(l)
oldi,j

≤ α(dep−l) ·Gl (4)

Where J is the model’s loss function (i.e. Cross Entropy), α stands for
the ReLU slope and Gl is the upper bound of gradients of the output
of the subsequent layer (l+1) with respect to the weight elements of
W (l).

The proof of Lemma 5 is shown in Appendix A and is based on the
chain rule for backpropagation. Given the derivative of the ReLU
function and the upper bound Gl of Assumption 3, we can derive
the bound of Equation 4. To compute the gradient with respect to
weight element w(l)

i,j of layer l , we repeatedly differentiate nested
ReLU functions, leading to a product of their slopes (or zero). In the
final differentiation step, we get the gradient of the output of (l+1)-th
layer with respect to w

(l)
i,j , which is bounded by Gl.

Lemma 6 While model’s loss, through gradients, flows backwards,
some weight elements do not receive updates, because we have dying
ReLUs (i.e. ReLUs that output zero) [16]. The total number of weight
elements getting updated at layer l is bounded by:

#{w(l)
i,j} ≤ p(dep−l) · d2 (5)

where d is the largest of the two dimensions of W (l), i.e. there are at
most d2 elements in W (l), if it is a square matrix.

The proof of Lemma 6 appears in Appendix B. Given Lemma 5,
the gradient flowing backwards, with respect to a weight element
w

(l)
i,j , contains a product of ReLU derivatives. In order for w(l)

i,j to get
an update, all ReLU derivatives need to be non-zero, otherwise the
gradient will be zeroed and w

(l)
i,j will not be updated. Additionally,

due to Assumption 4, weight elements located at the lower weight
matrices tend to receive fewer updates. This is due to the fact, that
the further the gradient flows backwards the more ReLU derivative
factors appear in it. Based on Assumption 4, the probability of all of
them to be non-zero decreases.
Regarding the singular values (denoted by sl(·)) of a weight
matrix W (l) at the l-th layer, the largest of them is given by:

max(sl(W
(l))) = ||W (l)||2 ≤ ||W (l)||F =

√∑ |w(l)
i,j |2,

where || · ||F is the Frobenius norm and || · ||2 is the
spectral norm. Using the general weight updating rule(
i.e.,w

(l)
newi,j = w

(l)
oldi,j

+ η · dJ

dw
(l)

oldi,j

)
, where J is the model’s

loss and η is the learning rate, we arrive at the main theorem of this
work.

Theorem 7 The upper bound of the largest singular value of the
weight matrix W (l) at layer l for a GNN model, utilizing a ReLU ac-
tivation function, depends on the slope of the function. That bound is
given per layer and shows the effect of each iteration of updates on
the weight matrix. We denote with Wold and Wnew the weight ma-
trices before and after the update during an iteration of the training
process respectively.

max(sl(W
(l)
new)) ≤ ||W (l)

old||F +
√
3·p

(
dep−l

2

)
·d·α(dep−l) ·Bl (6)

where Bl = η · Gl, dep is the network’s depth, d is the largest di-
mension of the W (l) matrix, p is the upper bound of the probability
of ReLU not to output zero and α is ReLU’s slope.

The proof of Theorem 7 appears in Appendix C and uses the upper
bound of the largest singular value by the Frobenius norm, expanded
according to the weight update rule. Separating weight elements into
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two sets (updated and not updated) we identify the gradient values re-
sponsible for the weight updates. These values are bounded (Lemma
5), as is the number of updated elements (Lemma 6), leading to Equa-
tion 6. The resulting upper bound shows the connection of the slope
of ReLU and the upper bound of the probability of ReLU not to out-
put zero with the largest singular value of the weight matrix. That
largest singular value is connected with the oversmoothing problem
and as we mentioned above could act as a resource to reduce it.

Theorem 8 The lower bound of the largest singular value of the
weight matrix W (l) at layer l for a GNN model, utilizing the ReLU
activation function, depends on the slope of the function. That bound
is defined per layer and shows the effect of each iteration of updates
on the weight matrix. We denote with Wold and Wnew the weight ma-
trices before and after the update that happens during an iteration of
the training process respectively.

max(sl(W
(l)
new)) ≥

√
2
√
3 ·max(w

(l)
oldi,j

) ·B′
l · α

dep−l
2 (7)

where B′
l = η ·Ll, Ll is the lower bound to the gradient with respect

to the output of the subsequent layer

(
dO(l+1)

w
(l)

oldi,j

≥ Ll

)
, dep is the

network’s depth and α is ReLU’s slope.

The proof of Theorem 8 appears in Appendix C and is analogous to
the one used in Theorem 7. Theorem 8 indicates the effect of ReLU’s
slope to the lower bound of the largest singular value of the weight
matrix. From Equation 7 we observe that, increasing the slope of
ReLU results in an increment of the lower bound of the maximum
singular value of the weight matrix. Therefore, a larger ReLU slope
yields greater largest singular value, which in turn reduces the over-
smoothing effect.

3.2 Alleviating Oversmoothing

We transfer the idea of SeLU to GNNs, focusing on the part that in-
creases the variance, because the repetition of the Laplacian operator
acts as a variance reducer. In order to avoid oversmoothing in deep
GNNs using this approach, we need to identify a ‘sweet’ spot, where
variance reduction from graph convolution is counteracted as needed
by the slope of the activation function. Typically in GNNs, ReLU is
used with a slope value α = 1. As a result, the second exponential
factor in Equation 6 can be ignored (it is always equal to 1). This
pushes the bound for the largest singular value of weight matrices
towards a fixed low value, when the architecture of the network gets
deeper (dep increases), and especially at the lower layers (small l)
of the network. This is due to the first exponential factor of Equation
(6) converging to zero for large values of dep.
The restriction of the largest singular values to low values, increases
the speed of convergence to the oversmoothng subspace, as stated in
Corollary 2 from [18]. According to the corollary, the speed depends
on λ and s. The former parameter (λ) is a property of the data (largest
eigenvalue of the adjacency matrix), while the latter (s) is the product
of the largest singular values of the weight matrices.
Realizing the importance of the slope of ReLU in the training pro-
cess, we move on to propose a simple modification of the activation
function that reduces oversmoothing. Following [16], we proceed our
analysis with p = 1/2 (see Assumption 4), which simplifies calcu-
lations. In particular, we observe that a slope of 2 makes the second
exponential factor prevail over the first one, leading to a new com-

bined factor of 2
(

dep−l
2

)
. This in turn increases the upper bound for

the largest singular value, restricting the influence of the layer in-
dex (l) and depth (dep) in Equation (6). It is worth noting, that the
upper bound should not be constant across all layers (which could
be achieved by setting a corresponding value for the slope), because
different layers of the network have different roles and the goal of
a GNN is to bring intra-class representations close, while keeping
inter-class representations apart. Moreover, an increased value of the
slope pushes the lower bound of the largest singular value, as shown
in Equation 7.
Using the results of [18] we can further connect the choice of slope
for the activation function to the speed of convergence to the over-
smoothing subspace. The proposed method increases the bound for
each largest singular value, which in turn decreases the speed of con-
vergence to the oversmoothing subspace, according to Corollary 2.

3.3 Modifying the slope of ReLU: Limitations

Oono & Suzuki [18] have proved that any deep enough GCN-like
GNN will eventually reach the oversmoothing subspace. In theory,
this also holds for our method, when the GNN gets very deep. Could
this be avoided by increasing the slope of ReLU further? Unfortu-
nately not, as we cannot make the slope too large. It is known, that by
increasing the slope of ReLU too much, one may face the problem
of exploding gradients [2], that impedes the learning procedure. In
fact, if we increase the slope of ReLU too much, the lower bound in
Equation 7 over increases, the upper bound in Equation 6 becomes
too loose and the performance degrades. Our proof suggests, that
a slope equal to 2 avoids oversmoothing and our experiments have
shown that it also avoids the exploding gradients problem. In fact, the
choice of 2 is not exact, but that particular value seems to work well
as depth increases. Our experiments have shown, that the proposed
method is not sensitive on the exact slope and that values around 2
also manage to reduce oversmoothing.

3.4 Modifying the learning rate, instead of the slope
of ReLU

Instead of changing the slope of ReLU, we could opt to modify the
Learning Rate (LR) per layer in order to increase the lower bound in
Equation 7 and the upper bound in Equation 6. In particular, a differ-
ent learning rate (η) per layer leads to a different Bl (= η · Gl) per
layer, counteracting the problematic first exponential factor of Equa-
tion 6.
However, determining the right LR per layer is a non-trivial task. In-
tuitively, LR should be larger in the lower layers and smaller in the
upper ones. Keeping the slope equal to 1, the first problematic expo-
nential term is smaller (note that p < 1) in the lower layers, reducing
the value of the upper bound. To avoid this, one needs to tune LR
carefully. Additionally, LR affects heavily the learning process and
large LR values might lead to oscillations and poor learning perfor-
mance. Modifying the slope and the learning rate combined led to
negligible improvements. Preliminary results with modified LR val-
ues are shown in Appendix D.

3.5 Why do we need deep GNNs?

Oversmoothing is only a problem for deep GNNs, leading to the
question of whether and when deep GNNs are really needed. Most
of the existing benchmark datasets for various graph analytics tasks
do not seem to justify the need for deep networks. Due to their ho-
mophilic nature, useful information for each node resides in its close
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neighbors (usually 2 or 3 hops away). A task where deeper architec-
tures could be needed is the “cold start" problem; namely the situa-
tion where many node features are missing. The problem of missing
features is called “cold start", because it resembles the situation of a
new product/user arriving at a recommender system. The system has
no prior knowledge about the new arrival, yet has to make some rec-
ommendations. In this scenario, the hope is that deeper GNNs could
recover features from more distant nodes, in order to create informa-
tive representations.

4 Experiments

4.1 Experimental Setup

Datasets: Aligned to most of the literature, we use four well-known
benchmark datasets: Cora, CiteSeer, Pubmed and the less homophilic
dataset Texas. The statistics of the datasets are reported in the Ap-
pendix. For Cora, CiteSeer and Pubmed we use the same data splits
as in [10], where all nodes except the ones used for training and val-
idation are used for testing. For Texas we use the same splits as in
[19].
Models: We utilize two different GNNs as our base models for the
proposed methodology; namely GCN [10] and GAT [21]. We com-
pare the results of these models with and without the modification
of the slope of ReLU for varying number of layers. We do not com-
pare against methods utilizing residual connections, because the aim
of this work is to show that oversmoothing could be avoided without
“short-circuiting" initial information to latter layers. We use residual
GNNs as a baseline in the Extended Experiments section, Appendix
E.
Hyperparameters: We set the number of hidden units (of each
layer) of GCN and GAT to 128 for both models across all datasets.
The L2 regularization is set with penalty 5 · 10−4 for both models
and learning rate of 10−3. We vary the depth between 2 and 64 lay-
ers. The number of attention heads for GAT is set to 1.
Configuration: Each experiment is run 10 times and we report the
average performance over these runs. We train all models for 200
epochs using Cross Entropy as a loss function. For our experiments
we used an RTX 3080ti GPU.

4.2 Experimental Results

Reducing oversmoothing:

Table 1 presents the classification performance of the two base mod-
els (GCN and GAT) on all four datasets, with and without the modi-
fied slope of ReLU (called Slope2GNN) for varying number of lay-
ers. Additionally, it presents results using SeLU, instead of ReLU,
since it also modifies the slope of the function, while additionally
normalizing node representations, as explained in section 2.4. To the
best of our knowledge, this is the first time SeLU is used with GNNs.
Table 1 shows that methods with a modified activation function re-
duce oversmoothing significantly. As expected, baselines maintain
a high performance for shallow architectures in homophilic datasets,
where oversmoothing is not a problem. The modified activation func-
tions (Slope2GNN and SeLU) consistently improve the test accuracy
as the number of layers (#L) increases. Note that even the proposed
method suffers performance degradation for very deep GNNs, due to
the unavoidable nature of oversmoothing [18]. GCN and GAT aver-
age over information in the close neighborhood of the node, assum-
ing homophily, which is not the case in the Texas dataset. Interest-
ingly, low homophily in this dataset makes oversmoothing appear at
a larger depth, compared to other datasets. This is because connected

nodes do not have similar representations and the model needs more
Laplacian operations to oversmooth them.
The effect of deeper networks on different activation functions:

Focusing on the use of SeLU, although it seems to make the models
resistant to oversmoothing, the effect seems to be lost for GCNs with
64 layers. This may be due to the sensitivity of the function on the
choice of slope value, which is lower than 2. Moreover, the saturating
region of SeLU, used to reduce data variance, might act in favor of
oversmoothing. Finally, SNNs aim to keep the variance of the model
stable, ignoring the effect of the Laplacian smoothing in GNNs.
To further examine the behavior of each method, as the number of
layers increases, in Figure 1, we present a more detailed progression
of the accuracy of GCNs, as the networks get deeper on the Cora
dataset. The effect of oversmoothing and its reduction by the two
methods that modify ReLU is very apparent here. Furthermore, the
simpler Slope2GNN approach seems to be more resistant to the in-
crease in the depth of the network.
The need for deep networks:

Having shown the benefit of using the modified activation functions
in deep GNNs, we move to a set of experiments that aims to high-
light also the value of using such deep architectures. In particular,
we report our experimental results in the “cold start" scenario, as de-
scribed in section 3.5. The cold-start datasets that we use in these
experiments are generated by removing feature vectors from unla-
beled nodes and replacing them with all-zero vectors. For each com-
bination of GNN and activation function, we present in Table 2 the
best performance achieved and the depth at which the model attains
that performance. The main observation in these results is the im-
provement in terms of accuracy with the use of deeper GNNs. This
improvement is only attainable with the modified activation func-
tions that reduce the effect of oversmoothing. The vanilla versions
of GCN and GAT cannot go further than the performance of their
shallow versions. Worth-mentioning is also the fact that the simple
Slope2GNN approach manages to benefit from the deeper architec-
tures even in the hard Texas dataset. This is not the case for SeLU,
which achieves its best scores with very shallow networks. This may
indicate the need to tune the slope of the activation function, as dis-
cussed above.
Slope sensitivity:

Finally, we performed an experiment to understand the effect of
different ReLU slope values on oversmoothing. Figure 2 presents
results with GCN on the Cora dataset, showing that the proposed
method is not sensitive to the exact slope value. Slope values around
2 seem also capable of reducing oversmoothing. Experiments on
other datasets are included in Appendix E.

5 Related Work

Li et al. [14] were the first to introduce the problem of oversmooth-
ing in GNNs. An initial approach of activation function alternatives
to avoid reduction of the rank of the feature space is the one pro-
vided by [17], where tanh is used instead of ReLU. Subsequent work,
[18, 3] further analyzed and theoretically proved the existence of the
problem and showed that it is unavoidable as the depth increases. Xu
et al. [23] proposed Jumping Knowledge Networks (JK-Networks) as
an attempt to address the problem, by injecting skip connections to
the GNNs. The model kept information from lower layers and com-
bined them directly with the final layer, before labeling the node.
Following a similar approach, [4] proposed the use of residual con-
nections between layers to enable deep architectures and alleviate the
problem. Both of these approaches explicitly inject part of the initial
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Table 1. Performance comparison of vanilla GCN and GAT, against SeLU and Slope2GNN enhanced versions of the same models, in Cora, CiteSeer,
Pubmed, Texas. Average test node classification accuracy (%) for networks of different depth. With bold is the best performing model for each depth and each

dataset.

Accuracy (%)

# Layers Method
Cora CiteSeer Pubmed Texas

GCN GAT GCN GAT GCN GAT GCN GAT

2
Original 81.38 77.79 70.52 69.04 77.65 77.33 59.01 59.54

Slope2GNN 81.84 77.81 70.55 68.24 78.34 77.02 57.93 56.67
SeLU 81.74 76.59 69.91 66.81 77.80 76.83 59.01 57.21

4
Original 78.09 78.06 65.21 63.98 76.75 76.34 59.55 58.28

Slope2GNN 80.39 79.54 67.57 67.27 76.46 75.59 57.66 57.39
SeLU 79.85 79.33 67.53 67.24 74.09 72.62 58.02 58.65

8
Original 23.56 33.11 32.54 31.33 49.08 55.86 57.48 57.65

Slope2GNN 76.54 78.33 65.80 65.55 75.00 74.20 57.18 56.85
SeLU 79.41 78.19 67.27 67.58 73.43 71.93 56.85 57.47

16
Original 14.92 15.53 17.73 17.80 28.95 29.88 39.91 41.71

Slope2GNN 76.81 75.00 57.10 56.13 76.35 73.81 57.21 57.53

SeLU 76.38 74.92 61.99 62.23 76.11 74.27 52.88 57.44

32
Original 14.02 14.67 16.69 18.67 38.49 29.34 25.50 18.64

Slope2GNN 73.21 69.62 47.20 49.16 75.78 74.63 55.79 54.14
SeLU 68.77 69.36 47.90 52.97 71.80 73.60 55.77 57.75

64
Original 12.48 15.18 17.65 13.35 31.73 28.62 27.39 06.76

Slope2GNN 61.59 24.17 46.46 26.24 71.68 38.01 46.31 41.44
SeLU 26.85 30.55 27.10 20.42 40.90 41.00 58.38 56.30

Table 2. Comparison of different models and activation functions on the “cold start" problem. We show accuracy (%) on the test set, using GCN and GAT as
backbone GNN models. Only the features of the nodes in the training set are available to the model. We also show at what depth (i.e. # Layers) each model

achieves its best accuracy.

Model GCN GAT
Dataset Method Accuracy (%) #L Accuracy (%) #L

Cora
Original 64.85 4 59.74 3

Slope2GNN 73.47 19 72.78 20
SeLU 73.00 22 72.65 23

CiteSeer
Original 41.94 4 38.50 4

Slope2GNN 49.88 21 49.63 26
SeLU 49.30 19 49.38 20

Pubmed
Original 60.16 4 50.45 4

Slope2GNN 72.61 32 71.14 32
SeLU 72.50 23 71.41 26

Texas
Original 32.40 4 30.10 2

Slope2GNN 33.33 6 31.00 4
SeLU 31.62 3 30.81 2
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Figure 1. Comparison between three different activation functions for a GCN on Cora dataset. Y-axis shows model accuracy on test nodes, while varying the
model’s depth (shown on the x-axis).

Figure 2. Varying ReLU slope results on Cora dataset.

information into higher layers of the network, implicitly downgrad-
ing the importance of intermediate layers. On the other hand, our
method enables deep architectures, without the need to inject initial
information, and allows the model to learn how to compress the ini-
tial information and what amount of it to maintain. We do not com-
pare against these methods, because the aim of this work is to show
that oversmoothing could be avoided without “short-circuiting” ini-
tial information to latter layers.
DropEdge [20] and DropNode [6] are two alternative methods that
address oversmoothing by altering the graph topology. In particu-
lar, they remove either edges or nodes at random, in order to slow
down message passing. In contrast to such approaches, our method
does not change the graph topology, which may have unpredictable
effects, but rather relies on a small adjustment of the slope of the ac-
tivation function. An additional advantage of the approach proposed
in this paper is that it does not have any hyper-parameters to be tuned,
in contrast to all of the alternatives mentioned above. Hyperparame-
ter tuning is also required by the Pairnorm method, which was men-
tioned in section 2.4.

6 Conclusion

In this paper we have shown the important role that the slope of
the ReLU activation function plays in the oversmoothing problem

in GNNs. We have further proposed a simple modification that re-
duces drastically the problem. We have illustrated the benefits of the
approach in a set of experiments with different datasets and GNNs
of different depth. Additionally, we showed the improvement in ac-
curacy one can achieve through deep architectures that do not suffer
from oversmoothing. This was evident in a set of experiments that
simulated the “cold start" problem of missing node features in GNNs.
The simple link between the activation function and oversmoothing
unveiled in this paper, opens up a range of interesting hypotheses to
be investigated in the future. In particular, we would like to study
the effect of changing the activation function in various GNN archi-
tectures and learning methods. Additionally, we would like to study
alternative activation functions that could provide further benefits.
Finally, we aim to study in more detail the approach of varying the
learning rate per layer.
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