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Abstract. Models that can actively seek out the best quality train-
ing data hold the promise of more accurate, adaptable, and efficient
machine learning. Active learning techniques often tend to prefer ex-
amples that are the most difficult to classify. While this works well
on homogeneous datasets, we find that it can lead to catastrophic fail-
ures when performed on multiple distributions with different degrees
of label noise or heteroskedasticity. These active learning algorithms
strongly prefer to draw from the distribution with more noise, even
if their examples have no informative structure (such as solid color
images with random labels). To this end, we demonstrate the catas-
trophic failure of these active learning algorithms on heteroskedastic
distributions and propose a fine-tuning-based approach to mitigate
these failures. Further, we propose a new algorithm that incorporates
a model difference scoring function for each data point to filter out
the noisy examples and sample clean examples that maximize ac-
curacy, outperforming the existing active learning techniques on the
heteroskedastic datasets. We hope these observations and techniques
are immediately helpful to practitioners and can help to challenge
common assumptions in the design of active learning algorithms. Our
code is available at this URL.

1 Introduction

In an active learning setup, a model has access to a pool of labeled
and unlabeled data. After training on the available labeled data, a se-
lection rule is applied to identify a batch of k unlabeled examples
to be labeled and integrated into the training set before repeating the
process. Under this paradigm, data is considered to be abundant, but
label acquisition is costly. An active learning algorithm aims to iden-
tify unlabeled examples that, once labeled and used to fit model pa-
rameters, will elicit the most performant hypothesis possible given
a fixed labeling budget. To fulfill this objective, a selection criteria
generally follows two heuristics: (1) select diverse examples and (2)
select examples where the model has a high degree of uncertainty.

The presence of noise is an unavoidable problem that corrupts real-
world datasets [41] and is detrimental to the performance of classi-
fiers directly trained on them. Active learning can seek to combat
this problem through a robust data-selection pipeline that effectively
filters out the noisy data and select the most informant examples for
machine learning, allowing us to efficiently leverage the abundance
of data we have at our disposal.

In our study, we explore the performance of the active learning
algorithms on heteroskedastic distributions, where the training data
consists of a mixture of distinct distributions with different degrees

of noise. One use case of active learning on heteroskedastic distri-
butions is in reinforcement learning, where the agent gathers its own
training data through its actions and obtains the feedback from the
environment. Often, the environment has heteroskedastic noise. For
example, certain actions like "opening a box with a question mark
symbol" have random outputs, whereas other actions like "moving
left/right" have deterministic outputs. Another possible use case of
our study could be for training LLMs using techniques like self-
instruct [42]. Recent works [42, 37, 45] have shown that curating
a dataset using large language models could help generate more di-
verse training examples. However, this method of curating data is in-
herently noisy, and therefore the data pipeline uses a critical filtering
step to remove redundant and non-informative examples. We believe
that the findings in this paper could also help reduce the dependency
on clean data allowing practitioners to train models on larger sets.

We find that preferring examples with high uncertainty often
works well on homogeneous datasets but can lead to catastrophic
failure when training on heteroskedastic distributions. Uncertainty-
based active learning algorithms typically rely on notions of model
improvement that are unable to disambiguate aleatoric uncertainty
from epistemic uncertainty, thereby over-selecting examples for
which the model is unconfident but which are unlikely to improve the
current hypothesis. We produce a generalization bound that explains
why this phenomenon occurs, which seems to superficially contra-
dict previous theory [22] that showed training only on examples with
high loss could generalize as well as training on randomly selected
examples.

Further, we show that this inefficiency in the data-selection process
can be mitigated in three ways.

1. Favoring diversity over uncertainty. As we demonstrate em-
pirically in this work, active learning algorithms that promote the
selection of a diverse set of examples can efficiently filter out the
data points with heteroskedastic noise since the noisy examples come
from the same distribution and therefore have similar feature repre-
sentations.

2. Leveraging high confidence examples in the unlabeled pool

of data. We show that the examples in the unlabeled pool for which
the model is highly confident can promote better feature learning,
thereby improving the performance of active learning algorithms
even in the presence of heteroskedastic noise in the dataset.

3. Encouraging the selection of examples for which model’s

representations change over training iteration. We show that the
model’s representation for examples with heteroskedastic noise con-
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(a) Least-Confidence Sampling: Test accuracy = 53.67% (b) LHD Sampling: Test accuracy = 84.68%

Figure 1: We construct Four-Moons Dataset, a toy dataset with heteroskedastic noise. In this dataset, we have four classes - blue, green, yellow,
and purple. The data points belonging to the purple class (top-left moon) are assigned uniformly random labels, while the points in other moons
has no noise. The least-confidence sampling (uncertainty-based algorithm) selects examples almost exclusively from the noisy class (top-left
moon), resulting in a poor decision boundary. The proposed LHD algorithm, on the other hand, promotes selection of clean data points and
almost perfectly solves the classification problem.

verges quickly to a suboptimal solution. This can be used as a helpful
signal to filter out these noisy examples.

The change in model’s representation is measured using the dif-
ference between a conventionally-trained model and an exponen-
tial moving average (EMA) of its iterates. For the noisy examples
in the dataset, both the conventionally-trained model and the EMA
model converges quickly to the suboptimal solution. Consequently,
the EMA difference is nearly zero for these examples, and thus, it can
be used as a helpful signal to filter out the noise from the dataset. Fur-
ther, as we show later in the paper, the EMA difference is maximum
for examples that are difficult to classify (but not noisy), thereby pro-
moting the selection of challenging yet clean data.

The toy example with heteroskedastic noise in Figure 1 shows how
the least-confidence sampling (uncertainty-based algorithm) selects
examples almost exclusively from the noisy class (top-left moon),
resulting in an extremely poor decision boundary. The Coreset algo-
rithm (diversity-based algorithm) and the proposed LHD algorithm
promotes selection of clean data points and almost perfectly solves
the classification problem.

The main contributions of this work are:

1. We study the performance of active learning algorithms on het-
eroskedastic distributions and show that algorithms that exclu-
sively prefer uncertainty can catastrophically fail in the presence
of heteroskedasticity.

2. We produce a generalization bound that explains why training
only on low confidence examples can lead to poor performance
in the presence of heteroskedastic noise.

3. We explore a fine-tuning-based approach that helps improve the
performance of all algorithms in the presence of heteroskedastic-
ity.

4. We propose an algorithm, hereafter referred to as LHD, that per-
forms comparably to the existing state-of-the-art algorithms in the
general setup and, when coupled with fine-tuning, outperforms all
algorithms by a significant margin.

2 Related Work

Neural active learning. Active learning is an extremely well-
researched area, with the richest theory developed for the convex
setting [12, 10, 9]. More recently, however, there have been several
attempts to tractably generalize active learning to the deep regime.
Such approaches can be thought of as identifying batches of samples
that cater more to either the model’s predictive uncertainty or to the
diversity of the selection.

In the former approach, a batch of points is selected in order of
the model’s uncertainty about their label. Many of these methods
query samples that are nearest the decision boundary, an approach
that’s theoretically well understood in the linear regime when the
batch size is 1 [38]. Some deep learning-specific approaches have
also been developed, including using the variance of dropout sam-
ples to quantify uncertainty [15], and adversarial examples have been
used to approximate the distance between an unlabeled sample and
the decision boundary. In the deep setting, however, where models
are typically retrained from scratch after every round of selection,
larger batch size is usually necessary for efficiency purposes.

For large acquisition batch sizes, algorithms that cater to diversity
are usually more effective. In deep learning, several methods take the
representation obtained at the penultimate layer of the network and
aim to identify a batch of samples that might summarize this space
well [32, 17, 18]. Other methods promote diversity by minimizing
an upper bound on some notion of the model’s loss on unseen data
[43, 11, 44, 23]. This approach has also been taken to a trade-off
between diversity and uncertainty in deep active learning [3, 4].

Data poisoning, distributional robustness, and label noise. A
related body of work seeks to obtain models and training procedures
that are robust against worst-case perturbations to the data distribu-
tion. For recent treatments of this topic and further references, see
[36, 31]. A few recent works have considered data poisoning in the
active learning setting [26, 39], with defenses focusing on modifying
the setting rather than the algorithm. Further, some existing works
in active learning regime [24, 14] consider the presence of label
noise, out-of-distribution examples, and redundancy in the dataset.
Our work, however, considers the setting wherein the system suffers
from low-quality labels (e.g., in medical diagnosis, where the label-
ers are not always adept at assigning the correct label to the example
queried by the algorithm and might end up incorrectly assigning out-
of-distribution examples to one of the classes in the label space).

Heteroskedasticity in machine learning. The issues of class im-
balance and heteroskedasticity are of interest in the supervised learn-
ing setting [33, 8], in which various methods have been proposed to
make training more robust to these distributions. Our work seeks to
initiate the study of the orthogonal (but analogous) issue in the sam-
ple selection regime. Similar to our work, [1] considers a theoretical
regression problem that explores active learning in heteroskedastic
noise. However, contrary to our setup, it leverages heteroskedastic-
ity in the pool of labeled data to sample more observations from the
parts of the input space with large variance.

Semi-supervised active learning. Recent advances in semi-
supervised learning (SSL) have demonstrated the potential of using
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unlabeled data for active learning. For instance, [46] combines SSL
and AL using a Gaussian random field model. [16] proposes to hu-
man label the unlabelled example for which the different augmented
views result in inconsistent SSL model’s predictions because such
behavior indicates that the model cannot successfully distill helpful
information from that unlabelled example. Similarly, [7] proposes
to use a model trained using SSL to select a batch of unlabeled ex-
amples that best summarizes a pool of data pseudo-labeled by the
model itself. [13, 29] leverage active learning and semi-supervised
learning in succession to show incremental improvements in speech
recognition and object detection, respectively. [34] learns the sam-
pling criteria by setting up a mini-max game between a variational
auto-encoder that generates latent representations for labeled and un-
labeled data and an adversarial network that tries to discriminate
between these representations. In this work, we experiment with a
very simple SSL setup to see its effectiveness when performing ac-
tive learning in the presence of heteroskedastic noise.

3 Heteroskedastic Benchmarks for Neural Active
Learning

We introduce three benchmarks for active learning on heteroskedas-
tic distributions. In all cases, we introduce an additional set of N
examples with purely random labels to the original clean data. K is
the number of unique noisy examples, since some of the examples
are repeated.

The model is not given information on which samples are
noisy/clean, but it is reasonably predictable from the example’s fea-
tures since the noisy datapoints are from the same distribution. This
distinguishes our benchmarks from IID label noise, which is not pre-
dictable based on the example’s features. These constructions are de-
scribed below and summarized in Figure 2.

Noisy-Blank: We introduce N examples that are all solid black
(K = 1) and have a random label y ∼ U(1, ny), where ny refers to
the number of classes.

Noisy-Diverse: We increase the difficulty by introducing K =
100 different types of examples, where each type is a random solid
color and has a label randomly drawn from three label choices that
are unique to that color. N such noisy examples are introduced to
the dataset. This benchmark is designed to make the heteroskedas-
tic distribution more diverse while still keeping the noisy examples
simple.

Noisy-Class: In our most challenging setting, we take K exam-
ples from a particular class (say, y = 1) and assign these examples
uniformly random labels y ∼ U(1, ny). We then randomly repeat
these examples to give N noisy examples. In this case, the randomly
labeled examples are challenging but still possible to identify.

We designed these benchmarks to easily evaluate the performance
of existing algorithms. Despite being highly simplistic, these bench-
marks do delineate a shortcoming of the existing active learning al-
gorithms, and we believe that practitioners should make their active
learning pipelines robust to such noisy adversaries. In this regard, we
can draw an analogy with the domain of adversarial learning – while
the adversary will not have access to the model weights and gradients
in most realistic setups, practitioners want their pipelines to be robust
to white-box adversarial attacks like Projected Gradient Descent.

Future work can be done to generate more realistic datasets with
heteroskedastic noise.

4 Method

In this section, we describe (1) the baseline active learning algorithms
with which we experiment, (2) LHD, an active learning algorithm
that leverages EMA difference to sample examples for which the
model’s representation changes over training iterations, (3) the fine-
tuning technique used to improve the performance of the baseline
algorithms. and (4) the combination of LHD with fine-tuning.

4.1 Baselines

We review some prominent neural active learning algorithms, which
act as baselines in our study.

Random sampling (RAND). Unconditional random sampling
from the unlabeled pool of data.

Least confidence sampling (CONF). Confidence sampling se-
lects the k unlabeled points for which the most likely label has the
smallest probability mass [40]:

x∗
CONF = argminx Pθ(ŷ|x)

Here, Pθ(ŷ|x) is the probability of the predicted (most likely) class ŷ
given the input x and model parameters θ, and x∗

CONF is the selected
batch of data points.

Margin sampling (MARG). Margin sampling selects the k points
for which the difference in probability mass in the two most likely
labels is smallest [30]:

x∗
MARG = argminx Pθ(ŷ1|x)− Pθ(ŷ2|x)

where ŷ1 and ŷ2 are the first and second most probable classes, re-
spectively.

Bayesian Active Learning by Disagreements (BALD). Here, the
objective is to select k points that maximize the decrease in expected
posterior entropy [20]:

x∗
BALD = argmaxx H[θ|D]− Ey∼p(y|x,D)[H[θ|y, x,D]]

where H[·] represents entropy, θ represents model parameters, and
D represents the datatset.

Coreset sampling (CORESET). The Coreset algorithm is a
diversity-based approach that aims to select a batch of representative
points, as measured in penultimate layer space of the current state of
the model [32]. We refer to the function for computing this penul-
timate layer as h(x). It proceeds in these steps on each acquisition
round:

(1) Given a set of existing selected unlabeled examples and labeled
examples x∗

CORESET and a set of indices of these selected examples s.
(2) Select an example with the greatest distance to its nearest

neighbor in the hidden space

u = argmaxi∈[n]\s minj∈s Δ(h(xi), h(xj))

(3) Set s = s ∪ {u} and x∗
CORESET = x∗

CORESET ∪ {Xu}.
(4) Repeat this in an active learning round until we reach the ac-

quisition batch size.
Batch Active learning by Diverse Gradient Embeddings

(BADGE). BADGE is a hybridized approach, meant to strike a bal-
ance between uncertainty and diversity. The algorithm represents
data in a hallucinated gradient space before performing diverse se-
lection using the k-means++ seeding algorithm [4]. It proceeds with
these steps on each acquisition round:

(1) Compute hypothetical labels ŷ(x) = hθt(x) for all unlabeled
examples.

(2) Compute gradient embedding for each unlabeled example
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Figure 2: The heteroskedastic distributions proposed in this paper. The SVHN dataset is corrupted with randomly labeled examples, with (1)
black images, (2) diverse coloured images, and (3) images from one class.

gx = ∂
∂θout

�(f(x; θ), ŷ(x))|θ=θt

where θout refers to the parameters of the output layer.
(3) Use k-means++ over the gradient embedding vectors gx over

all unlabeled examples to select a batch of examples x∗
BADGE.

4.2 LHD: Increasing Sampling Where
Representations Change Across Training
Iterations

For noisy examples, conflicting gradients result in the model con-
verging quickly to a suboptimal solution and undergoing little change
throughout the training. For the clean examples, the model converges
slowly to an optimal solution, undergoing changes throughout the
training (Figures 5 and 6 in the Appendix at this link substantiate
this claim). Therefore, by encouraging the selection process in ac-
tive learning to select the examples for which the model converges
slowly, we can maximize the sampling of clean examples, improving
the performance in the heteroskedastic setting.

To measure the convergence rate, in addition to the main model
Fθ , we introduce an exponential moving average (EMA) of the
model Fβ in the training pipeline. The EMA model has the same
architecture as the main model but uses a different set of parameters
β, which are exponentially moving averages of θ. That is, at epoch t,
βt+1 ← α ·βt +(1−α) · θt, for some choice of decay parameter α.

The convergence rate for a training example is captured as the state
difference between the main and the EMA model, which is measured
in two ways:

(1) Loss Difference Δl: The absolute difference between the loss
values of an example from the EMA model and the main model:

Δl =| lema − lmain |
For the unlabeled examples, we assume the prediction of the EMA

model as the ground truth for loss computation.
(2). Hidden State Difference Δh: The difference between the

hidden feature representation from the penultimate layer of the EMA
model and the main model:

Δh = hema − hmain.

Δl will be low for noisy examples because both lmain and lema are
high throughout the training. Similarly, Δl will be low for simple-
clean examples because both lmain and lema are low for most part of
the training. For difficult-clean examples, however, the main model
converges slowly, which leads to an even slower convergence of the
EMA model. As a result, at some point in the training, we get a low
lmain but a high lema for difficult-clean examples, resulting in a high
Δl. Using a similar line of reasoning, we can infer that Δh will have

a smaller magnitude for the noisy examples and simple-clean exam-
ples, and a larger magnitude for difficult-clean examples. Further,
examples that are similar to one another will have similar Δh, and
a diversity-based sampling technique that operates on Δh will pro-
mote sampling of a diverse batch of examples.

We use Δl and Δh to obtain the final State Difference lh as:

lh = Δl ·Δh.

A training example with a small ||lh||2 has a small state difference
between the main and EMA model, meaning the example had con-
verged very fast early on in the training, indicating that it is probably
a noisy example. (This can be seen from Figure 7a in the Appendix).

Algorithm 1 describes LHD in detail. The state difference, lh, is
computed for all unlabeled examples. Then, we use the k-means++
seeding algorithm [2] over all the lh embeddings, which selects a
batch of diverse examples that have a high magnitude of lh.

Algorithm 1 LHD: Loss and Hidden state Difference sampling

Require: Main model Fθ , EMA model Fβ , unlabeled pool of exam-
ples U , initial number of examples M , number of active learn-
ing iterations T , decay parameter α, cross-entropy loss function
CE(·), one-hot function OH(·).

1: Labeled dataset S ← M examples drawn uniformly at random
from U together with their labels y.

2: Train an initial main model Fθ1 on S while updating the initial
EMA model Fβ1 using β1 ← α·β1+(1−α)·θ1 in each training
iteration

3: for t = 1, 2, ..., T do

4: Optionally fine-tune Fθt and Fβt using Algorithm 2
5: for all examples x ∈ U \ S do

6: ypseudox = OH(Fβt(x))
7: lemax = CE(Fβt(x), ypseudox) and hemax = Fˆ

βt
(x), where

Fˆ
βt
(·) represents a function to extract penultimate layer

8: lmainx = CE(Fθt(x), ypseudox) and hmainx = Fˆ
θt(x), where

Fˆ
θ(·) represents a function to extract penultimate layer

9: Δlx =| lemax − lmainx | and Δhx = hemax − hmainx

10: lhx = Δlx ·Δhx

11: end for

12: St ← a subset of U\S using the k-means++ seeding algorithm
on {lhx : x ∈ U \ S} and query their labels

13: S ← S ∪ St

14: Train Fθt+1 on S by minimizing ES [CE(Fθt(x), y)] and in
each training iteration, update Fβt+1 using βt+1 ← α · βt +
(1− α) · θt

15: end for
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Algorithm 2 Fine-tuning algorithm for improved example selection

Require: Main model Fθ , EMA model Fβ , unlabeled pool of ex-
amples U , labeled pool of examples S, number of fine-tuning
iterations T , decay parameter α, confidence threshold γ, data
augmentation function A(·), cross-entropy loss function CE(·),
one-hot function OH(·).

1: Initialize V ← {} a set of example selected for fine-tuning
2: Initialize y ← {} pseudo-labels for the fine-tuning examples
3: for all examples x ∈ U \ S do

4: Compute confidence cx = max(Fθt(x))
5: if cx > γ then

6: y ← y ∪ {OH(Fβt(x))}
7: V ← V ∪ {A(x)}
8: end if

9: end for

10: for t = 1, 2, ..., T do

11: Train model Fθt+1 on V by minimizing EV [CE(Fθt(x), y)]
and in each training iteration, update Fβt+1 using βt+1 ←
α · βt + (1− α) · θt

12: end for

4.3 Fine-tuning: Using Unlabeled Data for Tackling
Heteroskedasticity

Traditionally, active learning algorithms train models on a small set
of labeled data and use a large pool of unlabeled data only for sam-
pling informative examples. However, we conjecture that the unla-
beled pool can be efficiently leveraged to improve the performance
of active learning algorithms even in the presence of heteroskedas-
ticity. To this end, we experiment with an extremely simple semi-
supervised learning technique (similar to [35]) to aid active learning.

After training the model on the labeled data points, we sample a
batch of examples from the unlabeled pool for which the model is
highly confident. Using the predicted labels for these examples as
the ground truth, we fine-tune the model on strongly augmented ver-
sions of these confident examples. Since the model is inherently less
confident in the noisy examples, most of the examples used for fine-
tuning are clean. This way, we leverage the information in already
well-classified clean examples, and the model learns more discrim-
inative feature representations. Algorithm 2 outlines the fine-tuning
procedure.

Since the fine-tuning technique allows us to exploit the informa-
tion in the unlabeled data pool, all active learning methods benefits
from the use of fine-tuning. Additionally, since the fine-tuning tech-
nique improves the quality of the representations, active learning al-
gorithms that rely on these representations for the data selection ob-
tains a more substantial benefit, especially in the earlier rounds where
labeled data is scarce.

4.4 LHD with Fine-tuning

Even though the LHD method is able to filter out the noisy examples,
it can still struggle to differentiate between the simple-clean exam-
ples - examples from the original/clean data that are very easy to
classify, and the difficult-clean examples - examples from the origi-
nal/clean data that are challenging for the model to classify.

When we add the fine-tuning method on top of LHD, the average
||lh||2 for the difficult-clean examples becomes much higher than the
||lh||2 for simple-clean examples. This can be seen from Figure 7b
in the Appendix.

Essentially, the fine-tuning method trains on the examples that the
model is confident in, which are mostly the simple-clean examples.
Therefore, the model will converge quickly to an optimal solution for
the simple-clean examples, undergoing little change later in training.
On the other hand, since the model is not fine-tuned on the difficult-
clean examples, it takes a longer time to learn the correct solution,
converging slowly to an optimal solution and undergoing changes
throughout the training.

So, by encouraging the selection of examples for which the model
converges slowly (the idea behind LHD) and fine-tuning the model
on confident examples (the idea behind fine-tuning), we can max-
imize the sampling of difficult-clean examples, thereby improving
the performance of our active learning algorithm in heteroskedastic
settings.

Empirically analyzing Δl in this setting further substantiates the
abovementioned claim. For noisy examples, both lmain and lema are
high throughout the training, resulting in a small Δl. For simple-
clean examples, both lmain and lema are low throughout the training,
resulting in a small Δl. For difficult-clean examples, since the loss
decreases slowly, lmain will be low while lema is high, resulting in a
large Δl. On similar lines, ||Δh||2 has a larger value for difficult-
clean examples and a smaller value for simple-clean and noisy ex-
amples.

Table 1: Classification accuracy on CIFAR-10 with a Resnet model
after 10 rounds of active learning. (+FT represents Fine-tuning)

Method Clean Noisy-Blank Noisy-Diverse Noisy-Class

RAND 41.09± 0.43 38.27± 0.27 32.70± 0.18 32.11± 0.42
CONF 38.27± 1.48 32.88± 0.25 39.53± 0.08 27.04± 0.26
MARG 37.86± 4.33 39.16± 0.83 26.34± 3.25 30.40± 2.46
BALD 43.31± 1.34 46.90± 0.39 35.64± 0.32 31.65± 0.30

CORESET 41.81± 1.17 47.19± 2.03 47.33± 3.31 40.31± 1.51

BADGE 41.52± 1.04 47.84± 0.38 42.40± 1.66 39.33± 1.74

LHD 43.70± 1.10 46.28± 1.69 41.25± 1.39 40.43± 1.92

Method Clean Noisy-Blank Noisy-Diverse Noisy-Class

RAND + FT 59.64± 0.63 45.45± 0.72 40.31± 1.03 43.12± 0.82
CONF + FT 61.40± 1.39 58.66± 2.07 57.09± 2.79 49.78± 2.35
MARG + FT 61.91± 0.46 58.33± 0.01 52.94± 2.11 52.46± 24.18
BALD + FT 66.64± 0.66 65.31± 0.20 44.34± 1.34 53.00± 0.40
CORESET + FT 64.00± 0.90 61.13± 0.31 59.25± 0.06 53.01± 0.15
BADGE + FT 64.40± 0.76 64.30± 1.26 61.36± 0.57 53.78± 0.28

LHD + FT 75.35± 0.21 75.78± 0.99 70.50± 0.56 64.34± 0.10

Table 2: Classification accuracy on SVHN with a Resnet model after
10 rounds of active learning. (+FT represents Fine-tuning)

Method Clean Noisy-Blank Noisy-Diverse Noisy-Class

RAND 80.06± 0.20 80.35± 0.46 71.49± 1.30 53.93± 0.98
CONF 77.84± 2.45 75.84± 2.68 76.41± 1.70 30.00± 4.71
MARG 79.11± 0.77 79.84± 1.57 53.82± 3.59 38.45± 3.97
BALD 78.76± 1.69 84.69± 2.57 69.10± 4.13 43.06± 0.76

CORESET 80.71± 0.78 86.97± 0.94 86.61± 0.21 65.52± 0.40

BADGE 80.48± 0.81 86.90± 1.46 84.41± 1.01 59.98± 0.55

LHD 78.50± 0.99 86.97± 0.12 82.98± 0.67 66.01± 0.76

Method Clean Noisy-Blank Noisy-Diverse Noisy-Class

RAND + FT 90.60± 0.67 85.9± 0.38 71.49± 1.30 53.93± 0.98
CONF + FT 89.92± 0.81 89.85± 1.03 83.31± 2.40 57.28± 1.02
MARG + FT 89.73± 1.01 90.76± 0.45 84.74± 2.45 68.12± 3.79
BALD + FT 91.10± 0.23 90.90± 0.36 67.21± 1.34 63.73± 4.80
CORESET + FT 87.81± 1.58 89.21± 0.59 87.46± 0.24 70.92± 0.36
BADGE + FT 92.49± 1.12 91.27± 0.87 88.76± 0.63 71.50± 0.22

LHD + FT 94.26± 0.12 93.54± 0.23 90.92± 0.84 75.51± 1.09

5 Experiments

We experimented with different active learning algorithms, datasets,
and noising benchmarks. In all experiments, we started with 2000
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labeled points and queried k = 1000 examples in each round of ac-
tive learning, for a total of 10 rounds. We evaluate the performance
of two benchmarking datasets - (1) CIFAR10 [25], which contains
colored images belonging to 10 classes, and (2) SVHN [28], which
contains images of street numbers on houses. In all cases, the data
pool comprises 80% noisy data points and 20% clean data points.
Experiments were conducted on the ResNet18 architecture. Our im-
plementation uses the BADGE’s codebase [4].

Figure 3: Performance over multiple rounds of active learning acqui-
sition on CIFAR10 dataset. The training is complemented with fine-
tuning. LHD outperforms other techniques by a significant margin.

Figure 4: Performance over multiple rounds of active learning acqui-
sition on SVHN dataset. The training is complemented with fine-
tuning. LHD outperforms other techniques by a significant margin.

From the analysis of the final results for CIFAR-10 and SVHN
shown in Table 1 and Table 2 respectively, we draw 3 main conclu-
sions.

Firstly, we see that the uncertainty-based techniques (CONF and
MARG) perform sub-optimally on the noisy data, even worse than
random sampling. Methods that factor in diversity has much bet-

ter performance. This results are supported by Table 3 and Table 4
(Appendix), which shows the percentage of clean (non-noisy) ex-
amples which are selected over the course of training by different
active learning algorithms. The uncertainty-based techniques sam-
ple mainly noisy examples, whereas diversity based methods select
mainly clean examples. The proposed LHD method has comparable
performance to the other diversity based methods.

Secondly, when the fine-tuning technique is added, we observe a
significant and consistent boost in the performance of all algorithms
across all settings.

Lastly, with fine-tuning, the proposed LHD algorithm outperforms
all other techniques. We analyze the performance of the techniques
with fine-tuning throughout the 10 active learning rounds, as shown
in Figure 3 and Figure 4, which shows that LHD outperforms all
the other techniques throughout active learning rounds. Furthermore,
Figure 4 demonstrates catastrophic failure of uncertainty-based ac-
tive learning techniques in certain rounds of active learning, which
happens due to over sampling of noisy examples in those rounds.

Additional experiments for different levels of noise can be found in
Table 5, and Table 6 (ref. Appendix) shows the time taken by differ-
ent active learning algorithms to complete 10 rounds of acquisition
on a Tesla V100 GPU. We see that LHD takes much less time com-
pared to the diversity-based techniques, viz. BADGE and CORESET.

6 Theoretical Analysis of Confidence Sampling in
Heteroskedastic Setting

While previous work [22] has suggested that selecting high-loss ex-
amples can accelerate training, our experiments show that selecting
examples with the lowest prediction confidence can fail catastroph-
ically on heteroskedastic distributions. In this section, we provide
a theoretical account of why training only on high loss examples
(which would have low confidence given a well-calibrated model)
can lead to poor performance on heteroskedastic distributions.

6.1 Notation

Let D = ((xi, yi))
n
i=1 be a training dataset of n samples where xi ∈

X ⊆ Rdx is the input vector and yi ∈ Y ⊆ Rdy is the target vector
for the i-th sample. A standard objective function is

L(θ;D) := 1
n

∑n
i=1 Li(θ;D)

where θ ∈ Rdθ is the parameter vector of the prediction model
f( · ; θ) : Rdx → Rdy , and Li(θ;D) := �(f(xi; θ), yi) with the
function � : Rdy × Y → R≥0 is the loss of the i-th sample.

Similar to the notation of order statistics, we first introduce
the notation of ordered indexes: given a model parameter θ, let
L(1)(θ;D) ≥ L(2)(θ;D) ≥ · · · ≥ L(n)(θ;D) be the decreas-
ing values of the individual losses L1(θ;D), . . . , Ln(θ;D), where
(j) ∈ {1, . . . , n} (for all j ∈ {1, . . . , n}). That is, {(1), . . . , (n)}
as a perturbation of {1, . . . , n} defines the order of sample indexes
by loss values. Whenever we encounter ties on the values, we employ
an arbitrary fixed tie-breaking rule in order to ensure the uniqueness
of such an order.

Denote ri(θ;D) =
∑n

j=1 {i = (j)}γj where (j) depends
on (θ,D). Given an arbitrary set Θ ⊆ Rdθ , we define Rn(Θ)
as the (standard) Rademacher complexity of the set {(x, y) 	→
�(f(x; θ), y) : θ ∈ Θ}:

Rn(Θ) = ED̄,ξ

[
supθ∈Θ

1
n

∑n
i=1 ξi�(f(x̄i; θ), ȳi)

]
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where D = ((x̄i, ȳi))
n
i=1, and ξ1, . . . , ξn are independent uniform

random variables taking values in {−1, 1} (i.e., Rademacher vari-
ables). Given a tuple (�, f,Θ,X ,Y), define M as the least upper
bound on the difference of individual loss values:

|�(f(x; θ), y)− �(f(x′; θ), y′)| ≤ M

for all θ ∈ Θ and all (x, y), (x′, y′) ∈ X × Y . For example, M = 1
if � is the 0-1 loss function. We can then write:

R̂n(Θ) = Eξ

[
supθ∈Θ

1
n

∑n
i=1 ξi�(f(xi; θ), yi)

]
.

6.2 Preliminaries

The previous paper [22] proves that the stochastic optimization
method that uses a gradient estimator that is purposely biased to-
ward those samples with the current top-q losses (i.e., ordered
SGD) implicitly minimizes a new objective function of Lq(θ;D) =
1
q

∑n
j=1 γjL(j)(θ;D), for any D (including g(D)), in the sense that

such a gradient estimator is an unbiased estimator of a (sub-) gradi-
ent of Lq(θ;D), instead of L(θ;D). Accordingly, the top-q-biased
stochastic optimization method converges in terms of Lq instead of
L.

Building up on this result, we consider generalization properties
of the top-q-biased stochastic optimization with the presence of ad-
ditional label noises in training data. We want to minimize the ex-
pected loss, E(x,y)∼P [�(f(x; θ), y)], by minimizing the training loss
Lq(θ; g(D)), where g(D) = ((gxi (xi), g

y
i (yi)))

n
i=1 is potentially

corrupted by arbitrary noise and corruption effects within arbitrary
fixed functions gxi and gyi for i = 1 . . . , n, where (xi, yi) ∼ P .
Thus, we want to analyze the generalization gap:

E(x,y)∼P [�(f(x; θ), y)]− Lq(θ; g(D))

[22] showed the benefit of the top-q-biased stochastic optimization
method in terms of generalization when gxi and gyi are identity func-
tions and thus when the distributions are the same for both expected
loss and training loss. In contrast, in our setting, the distributions are
different for expected loss and training loss with potential noise cor-
ruptions through gxi and gyi .

6.3 Generalization Bound for Biased Query Samples

Theorem 1. Let Θ be a fixed subset of Rdθ . Then, for any δ > 0,
with probability at least 1 − δ over an iid draw of n examples D =
((xi, yi))

n
i=1, the following holds for all θ ∈ Θ:

E(x,y)[�(f(x; θ), y)] ≤
Lq(θ; g(D)) + 2R̂n(Θ) +M

(
2 + s

q

)√
ln(2/δ)

2n
−Qn,q(Θ, g)

where we define the top-q-biased factor as

Qn,q(Θ, g) := ED̄
[
infθ∈Θ

1
n

∑n
i=1

[ ri(θ;g(D̄))n
q

·
�(f(gxi (x̄i); θ), g

y
i (ȳi))− �(f(x̄i; θ), ȳi)

]]
.

The expected error E(x,y)[�(f(x; θ), y)] in the left hand side of
Theorem 1 is a standard objective for generalization, whereas the
right-hand side contains the data corruption function g. Here, we
typically have Rn(Θ) = O(1/

√
n) in terms of n. For example,

consider the standard feedforward deep neural networks of the form
f(x) = (ωT ◦ σT−1 ◦ ωT−1 ◦ σT−2 · · ·σ1 ◦ ω1)(x) where T is

the number of layers, ωl(a) = Wla with ‖Wl‖F ≤ Ml, and σl

is an element-wise nonlinear activation function that is 1-Lipschitz
and positive homogeneous (e.g., ReLU). Then, if ‖x‖ ≤ B for all
x ∈ X , using Theorem 1 of [19], we have that:

R̂n(Θ) ≤ B(
√

2 log(2)T+1)(
∏T

l=1 Ml)√
n

In Theorem 1, we can see that a label noise corruption g can
lead to the failure of the top-q-biased stochastic optimization via
increasing the training loss Lq(θ; g(D)) and decreasing the top-q-
biased factor Qn,q(Θ, g). Here, if there is no corruption g (i.e., if
gxi and gyi are identity functions), then we have that Qn,q(Θ, g) ≥
0 because Qn,q(Θ, g) = ED̄[infθ∈Θ Lq(θ; D̄) − L(θ; D̄)] ≥
0 due to Lq(θ; D̄) − L(θ; D̄) ≥ 0 for any θ and D̄ when
gxi and gyi are identity functions. Thus, the top-q-biased factor
Qn,q(Θ, g) can explain the improvement of the generalization of
the top-q-biased stochastic optimization over the standard unbiased
stochastic optimization. However, with the presence of the cor-
ruption g, ri(θ;g(D̄))n

q
�(f(gxi (x̄i); θ), g

y
i (ȳi)) can be smaller than

�(f(x̄i; θ), ȳi) by fitting the corrupted noise, resulting Qn,q(Θ, g) <
0. This leads to a significant failure in the following sense:

The generalization gap (E(x,y)[�(f(x; θ), y)]−Lq(θ; g(D))) goes
to zero as n approach infinity if Qn,q(Θ, g) ≥ 0 with no data cor-
ruption, but the generalization gap no longer goes to zero as as n
approach infinity if Qn,q(Θ, g) < 0 with data corruption.

To see this, let us look at the asymptotic case when n → ∞. Let
Θ be constrained such that Rn(Θ) → 0 as n → ∞, which has
been shown to be satisfied for various models and sets Θ, including
the standard deep neural networks above [6, 27, 5, 21, 19]. The third
term in the right-hand side of the Equation in Theorem 1 disappears
as n → ∞. Thus, if there is no corruption (i.e., if gxi and gyi are
identity functions), it holds with high probability that

E(x,y)[�(f(x; θ), y)] ≤ Lq(θ; g(D))−Qn,q(Θ, g) ≤ Lq(θ; g(D))

where Lq(θ; g(D)) is minimized by the top-q-biased stochastic opti-
mization. From this viewpoint, the top-q-biased stochastic optimiza-
tion minimizes the expected error for generalization when n → ∞,
if there is no corruption. However, if there is corruption,

E(x,y)[�(f(x; θ), y)] ≤ Lq(θ; g(D))−Qn,q(Θ, g) � Lq(θ; g(D))

Hence E(x,y)[�(f(x; θ), y)] − Lq(θ; g(D)) � 0 even in the
asymptotic case. The full proof of Theorem 1 can be found in the
Appendix.

7 Conclusion

Neural Active Learning is an active area of research, with many new
techniques competing to achieve better results. Our work seeks to
challenge the commonly held assumption that the training data is
independent and identically distributed (I.I.D) for the active learn-
ing setup. We show that the uncertainty-based techniques that are
competitive on homogeneous datasets with little label noise can fail
catastrophically when presented with diverse heteroskedastic distri-
butions. We also explore the different techniques (diversity-based
sampling, fine-tuning, and LHD) that can be used to mitigate these
failures. We believe that research has to be done exploring the var-
ious possible data distributions, since there is no guarantee that the
I.I.D assumption holds for real-world data, and develop algorithms
that are robust to the different data distributions.
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