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Abstract. Users have the right to have their data deleted by third-
party learned systems, as codified by recent legislation such as the
General Data Protection Regulation (GDPR) and the California Con-
sumer Privacy Act (CCPA). Such data deletion can be achieved by full
re-training, but this incurs a high computational cost for modern ma-
chine learning methods. To avoid this cost, many approximate deletion
methods have been developed for supervised learning. Unsupervised
learning, in contrast, remains largely an open problem when it comes
to efficient approximate data deletion. In this paper, we introduce (1)
an efficient method for approximate deletion in generative models,
and (2) statistical tests for estimating whether training points have
been deleted. We provide theoretical guarantees under various learner
assumptions. We then empirically demonstrate our methods across a
variety of generative methods.

1 Introduction

Machine learning has proved to be an increasingly powerful tool.
With this power comes responsibility and there are growing concerns
in academia, government, and the private sector about user privacy
and responsible data management. Recent regulations (e.g., GDPR
and CCPA) have introduced a right to erasure whereby a user may
request that their data is deleted from a database. While deleting
user data from database is straightforward, a savvy attacker might
still be able to reverse-engineer the data by examining a machine
learning model trained on it [1]. Re-training a model (after deleting the
requested data) is computationally expensive, especially for modern
deep learning methods [20]. This has motivated machine unlearning
[7] where learned models are altered (in a computationally cheap way)
to emulate the re-training process. In this paper we focus on machine
unlearning for generative models, a class of unsupervised learning
methods which learn the probability distribution from data.

Prior work in supervised learning proposed approximate data dele-
tion to approximate the re-trained model without actually performing
the re-training [17, 31, 40, 18]. While these methods have achieved
great success, approximate data deletion for unsupervised learning
largely remains an open question. In this paper we present a density-
ratio-based framework for approximate deletion in generative models.
We present two novel contributions:

1. We propose a fast method for approximate data deletion for gener-
ative models.
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2. We provide statistical tests to estimate whether training data have
been deleted from a generative model given only sampling access
to it.

For both contributions, we provide theoretical guarantees under a vari-
ety of learner assumptions. We also perform empirical investigations
on real and synthetic datasets. In particular, our fast deletion algorithm
is > 10× faster than re-training on real datasets.

The supervised and unsupervised settings have two major differ-
ences in the context of data deletion. The first is the definition – what
does it mean to effectively delete training data? In the supervised
setting, it is the classification function approximates the re-trained
one, while in generative models it is to approximate the re-trained gen-
erative distribution. The other difference is the user’s capability when
evaluating data deletion. In the supervised setting, one can construct
an input sample and query its predicted target. In contrast, a user can
only draw samples from a generative model and then investigate the
empirical distribution to evaluate the effectiveness of approximate
data deletion.

In Section 2 we present our density-ratio-based framework and
provide theoretical guarantee under various learner assumptions. We
introduce practical algorithms for approximate deletion (our first
primary contribution) in Section 3. We then study statistical tests
with sampling access (our second primary contribution) in Section 4.
We perform empirical investigations (Section 5) on real and synthetic
data for both our fast deletion method and statistical test. We discuss
related work in Section 6 and conclude with a discussion of future
work in Section 7.

2 A Density Ratio Based Framework

Let p∗ be a distribution over Rd and X be N i.i.d. samples from
p∗. We consider a generative learning algorithm A which aims to
model p∗. We denote the distribution A learns from X as pA(X), and
we refer to p̂ = pA(X) as the pre-trained model. Let X ′ ⊂ X be
N ′ samples we would like to delete from p̂, and p̂′ = pA(X\X′) be
the ground-truth re-trained model. A notation table is provided in
Appendix A. In this paper, we present solutions to two problems:

1. Fast deletion: given p̂, approximate p̂′ more efficiently than full
re-training.

2. Deletion test: assuming q ∈ {p̂, p̂′}, test whether q = p̂ or q = p̂′

by drawing samples.
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Figure 1: Our density-ratio-based framework for approximated data
deletion for a generative learning algorithm A(·). We train a DRE ρ̂E
between X and X \ X ′. We then multiply the DRE ρ̂E to the pre-
trained model p̂ to obtain D(p̂, X,X ′). The goal is to let D(p̂, X,X ′)
approximate the re-trained model p̂′. We model X \ X ′ to be i.i.d.
samples from p′∗, enabling theoretical guarantees.

Algorithm 1 Sampling from the approximated model

1: Inputs: p̂, ρ̂E .
2: while True do

3: Sample y ∼ p̂ and u ∼ Uniform([0, 1]).
4: if ρ̂E(y) > B · u then

5: return y
6: end if

7: end while

2.1 Framework

We present a density-ratio-based framework to perform fast (approxi-
mate) deletion and our deletion test. The density ratio between two dis-
tributions μ1 and μ2 on R

d is defined as ρ(μ1, μ2) : R
d → R

+, x �→
μ2(x)/μ1(x)

1. Let ρ̂ = ρ(p̂, p̂′) be the density ratio between pre-
trained and re-trained models. In our proposed framework, we learn a
density ratio estimator (DRE) ρ̂E = DRE(X,X \X ′) between X
and X \X ′ to approximate ρ̂. Then, to perform fast deletion we define
the approximated model D(p̂, X,X ′) : Rd → R

+, x �→ ρ̂E(x)·p̂(x),
which we abbreviate as ρ̂E · p̂ for conciseness.

Core to both our method of fast deletion and our deletion test is our
DRE based framework (summarized in Fig. 1). We model X \X ′ to
be a set of i.i.d. samples from some distribution we denote as p′∗, and
define ρ∗ = ρ(p∗, p′∗). We assume ‖ρ∗‖∞ ≤ ∞. Intuitively, deleting
some samples from p∗ will only increase likelihood of regions far
from these samples by at most a constant factor, and reduce likelihood
of regions around these samples. We also assume N ′ � N (only a
small fraction of training samples are to be deleted). Intuitively, the
pre-trained and re-trained models are likely similar. This allows us to
provide approximation bounds for consistent learning algorithms A.
In Section 2.2 we derive such bounds for various forms of consistency.

In the supervised setting, approximate deletion can be done by
altering the pre-trained model to be closer to the (never computed)
re-trained model. In contrast, we alter the process of sampling from
the unsupervised pre-trained model to simulate sampling from the
re-trained model. Drawing samples from the approximated model
is done in two steps: first draw samples from p̂, and then perform
rejection sampling according to ρ̂E . Note that this procedure requires
there exists a known constant B ≥ ‖ρ̂E‖∞, which we discuss further
in Section 2.3. We present this procedure in Alg. 1.

2.2 Approximation under Consistency

A learning algorithm A is said to be consistent if pA(X) converges to
p∗ as N → ∞ [45], where each specific type of convergence leads to

1 We choose this order for cleaner theory.

a specific definition of consistency. If A is consistent, then we have
p̂ ≈ p∗ and p̂′ ≈ p′∗ for large N . In this section, we derive DREs for
two kinds of consistency to achieve approximated deletion: ρ̂E such
that the approximated model D(p̂, X,X ′) := ρ̂E · p̂ ≈ p̂′.

In Def. 1, we introduce ratio consistency, which bounds the density
ratio between true and learned distributions. We show in Thm. 2 that
approximation in L1 distance can be achieved in this case.

Definition 1 (Ratio Consistent (RC)). A is (cN , δN )-RC if for
any density μ, with probability at least 1 − δN , it holds that
‖ log ρ(pA(Z), μ)‖∞ ≤ log cN , where Z contains N i.i.d. samples
from μ, and cN → 1, δN → 0 as N → ∞.

Theorem 2 (Approximation under RC). If A is (cN , δN )-RC, then
there exists a DRE ρ̂E such that with probability at least 1− 2(δN +
δN−N′), it holds that ‖ρ̂E · p̂− p̂′‖1 ≤ 4(cN + cN−N′ − 2).

We then look at a more practical definition of consistency in Def.

3, which bounds the total variation distance (half of L1 distance)
between true and learned distributions. We show in Thm. 4 that
approximation in expectation is achieved in this case.

Definition 3 (Total Variation Consistent (TVC)). A is (εN , δN )-TVC
if for any density μ, with probability at least 1 − δN , it holds that
‖pA(Z) − μ‖1 ≤ εN , where Z contains N i.i.d. samples from μ, and
εN → 0, δN → 0 as N → ∞.

Theorem 4 (Approximation under TVC). Define ‖h‖1,μ =∫
x
μ(x)|h(x)|dx. If A is (εN , δN )-TVC, then there exists a DRE

ρ̂E such that with probability at least 1− 2(δN + δN−N′), it holds
that ‖ρ̂E · p̂− p̂′‖1,p̂ ≤ 2(εN−N′ + ‖ρ∗‖∞εN ).

We prove these theorems by construction. Full proofs are provided
in Appendix B.1. For each, the high level idea is to choose a fixed con-
sistent algorithm A0, and define ρ̂E(Z1, Z2) = ρ(pA0(Z1), pA0(Z2)).
This yields ρ̂E(X,X \X ′) ≈ ρ∗ ≈ ρ̂ and therefore D(p̂, X,X ′) =
ρ̂E · p̂ ≈ p̂′. We summarize the results in Table 1.

2.3 Practicability under Stability

In practice, we need ‖ρ̂E‖∞ to be finite in order to perform rejection
sampling in Alg. 1 (see Line 3). Under this constraint, to satisfy
ρ̂E ≈ ρ̂, we need ‖ρ̂‖∞ to be finite as a prerequisite. In this section,
we study several stability conditions of the learning algorithm A that
guarantee ‖ρ̂‖∞ to be finite.

We organize these stability conditions in the order from strong
to weak. We first discuss several strong, classic stability conditions
that guarantee ‖ρ̂‖∞ to be small (Def. 5 – 7, Thm. 8). To state our
definitions, let Z (Ẑ) be any training (test) set and z (ẑ) be any sample
in Z (Ẑ).

Definition 5 (Differentially Private (DP) [11]). A is ε-DP if
| log pA(Z\{z})(Ẑ)− log pA(Z)(Ẑ)| ≤ ε.

Definition 6 (Uniformly Stable (US) [5]). A is ε-US if
| log pA(Z\{z})(ẑ)− log pA(Z)(ẑ)| ≤ ε.

Definition 7 (Lower Bounded in Likelihood Influence (LBLI) [25]).
A is ε-LBLI if pA(Z\{z})(ẑ) ≤ eεpA(Z)(ẑ).

We discuss relationship among DP, US and LBLI algorithms below.
Note that ε-DP implies ε-US and ε-US implies ε-LBLI. If A is ε-DP
or ε-US, the re-trained model satisfies p̂′ ≈ p̂, and there is no need
to perform deletion. If A is ε-LBLI but not ε-US, then there exists
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a sample ẑ such that p̂′(ẑ) � p̂(ẑ). Intuitively, in non-parametric
methods, ẑ can be samples near X ′. ε-LBLI can be achieved under
some regulatory assumptions on the loss function and the Hessian
matrix with respect to parameters [13, 14, 2]. Then, we have the
following result.

Theorem 8. If A is ε-DP, ε-US, or ε-LBLI, then log ‖ρ̂‖∞ ≤ N ′ε.

Next, we move on to weaker stability assumptions to the learner.
We introduce ratio stability, a concept crafted for our framework
(Def. 9), which bounds the difference between log density ratios of
true and learned distributions. We discuss its connection with ratio
consistency (Thm. 10), and bound the difference between ‖ρ̂‖∞ and
‖ρ∗‖∞ (Thm. 11). Finally, we discuss a special type of error stability
[5] (Def. 12) and show a concentration bound on ρ̂ (Thm. 13).

Definition 9 (Ratio Stable (RS)). A is (ε, δ)-RS if for any densities
μ1, μ2 such that supx μ2(x)/μ1(x) < ∞, with probability at least
1− δ, when i.i.d. samples Zi ∼ μi satisfy |Z1| = |Z2|+ 1, it holds
that ‖ log ρ(μ1, pA(Z1))− log ρ(μ2, pA(Z2))‖∞ ≤ ε.

Theorem 10. If A is (cN , δN )-RC, then A is (2 log cN , 2δN )-RS.

Theorem 11. If A is (ε, δ)-RS, then with probability at least 1−N ′δ,
it holds that log ‖ρ̂‖∞ ≤ N ′ε+ log ‖ρ∗‖∞.

Definition 12 (Error Stable (ES) [5]). A is (ε, k)-ES if
|Eẑ∼pA(Z)

[
log

(
pA(Z\{z})(ẑ)/pA(Z)(ẑ)

)]k | < ε.

Theorem 13. Let N ′ = 1. If A is (ε, 2)-ES, then with probability at
least 1− δ, it holds that log ρ̂(x) ≤ √

ε(1− δ)/δ for x ∼ p̂.

We prove these theorems by induction and statistical inequalities.
See Appendix B.2 for proofs. We summarize the results in Table 2.

Table 1: High-level summary of approximation results between the
approximated model D(p̂, X,X ′) and the re-trained model p̂′ under
different consistency assumptions to the learner A.

Assumption Approximation Result
RC (Def. 1) in ‖ · ‖1 with high probability

TVC (Def. 3) in ‖ · ‖1,p̂ with high probability

Table 2: High-level summary of bounds on log ‖ρ̂‖∞ under different
stability assumptions to the learner A.

Assumption Bound on log ‖ρ̂‖∞
DP (Def. 5) O (ε)
US (Def. 6) O (ε)

LBLI (Def. 7) O (ε)
RS (Def. 9) const +O (ε) with high probability.
ES (Def. 12) O

(√
ε/δ

)
with probability 1− δ.

3 Density Ratio Estimators for Fast Data Deletion

A key step in the proposed framework is to train a density ratio
estimator (DRE) ρ̂E between X and X \X ′. There is a rich literature
of DRE techniques [43, 34, 30, 22, 37, 21, 9, 10]. All of these methods
are designed for settings with little or no prior information about the
data. We leverage the strong prior information that one set (X\X ′) is a
strict subset of the other (X) to design more focused DRE methods for
our data deletion setting. In Section 3.1, we derive a simple DRE based
on probabilistic classification, and compare it with standard methods
[43]. In Section 3.2, we use variational divergence minimization [34]
to train a DRE that can handle high dimensional real-world datasets.

3.1 Probabilistic Classification

We derive a simple DRE based on probabilistic classification [43]. Let
f be a classifier on {X \ X ′, X ′}, where f(x) = Prob (x ∈ X ′).
Let nu be the event that X \X ′ is used to train the model, and de be
the event that X is used to train the model. We apply the Bayes rule
as follows 2:

ρ̂E(x) =
Prob (x|nu)
Prob (x|de) =

Prob (nu|x) /Prob (nu)
Prob (de|x) /Prob (de)

=
N

N −N ′ ·
1
2
Prob (x ∈ X \X ′)

Prob (x ∈ X ′) + 1
2
Prob (x ∈ X \X ′)

=
N

N −N ′ ·
1
2
(1− f(x))

f(x) + 1
2
(1− f(x))

=
N

N −N ′ ·
1− f(x)

1 + f(x)
.

As an example, consider Kernel Density Estimation (KDE) [38, 35],
a class of consistent algorithms which learn an explicit probability
density.

Example 14 (KDE). Let A be KDE with Gaussian kernel function
Kσ(x) = N (x; 0, σ2I). Then, The following classifier f exactly
recovers ρ̂E = ρ̂:

f(x) =

∑N′
i=1 Kσ(x− xi)(∑N′

i=1 +2
∑N

i=N′+1

)
Kσ(x− xi)

. (1)

Example 14 indicates that we need to up-weight samples in X \X ′

in the classifier, in addition to the DRE in the general setting derived
by [43]. This observation is universal as 1− f(x) is shared by both
cases (x ∈ X and x ∈ X \X ′) when we compute DRE.

3.2 Variational Divergence Minimization

Note that KDE and classification-based DRE are especially amenable
to our methods but may not be able to deal with complicated, high-
dimensional datasets [10]. Now, we consider the learner to be a Gen-
erative Adversarial Network (GAN) [15], a class of powerful implicit
deep generative models. For these models, we derive a DRE based
on variational divergence minimization (VDM) [34]. Because neural
networks can have large capacity and VDM is designed to distinguish
distributions, VDM-based DRE is more applicable with complicated
data such as images compared to classification-based DRE. We begin
with the definition of φ-divergence below.

Definition 15 ([27]). Let φ : [0,∞) → R be a strictly con-
vex function such that φ(x) is finite for x > 0, φ(1) = 0 and
φ(0) = limx→0+ φ(x). The φ-divergence between distributions μ
and ν is defined as Dφ(μ‖ν) =

∫
x
ν(x)φ [μ(x)/ν(x)] dx.

Dφ(p
′
∗||p∗) satisfies the following variational bound [33]:

Dφ(p
′
∗||p∗) ≥ sup

T

(
Ex∼p′∗T (x)− Ex∼p∗φ

∗(T (x))
)
, (2)

where φ∗ is the conjugate function of φ defined as φ∗(t) :=
supu(ut − φ(u)). The optimal T is T (x) = d

dt
φ(p′∗(x)/p∗(x)) =

d
dt
φ(ρ∗(x)), and in this case (2) achieves equality. Then, VDM is

optimizing the right-hand-side of (2), usually via a neural network.
Once the optimal T is obtained, we can solve ρ̂E = ( d

dt
φ)−1(T ).

2 The notations nu and de follow [43].
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To perform the actual training in practice, we optimize the empirical
version of the lower bound (2) based on the i.i.d. assumptions on X
and X \X ′.

Tφ = argmax
T

Ex∼X\X′T (x)− Ex∼Xφ∗(T (x)), (3)

We provide specific algorithms to train DRE for two φ-divergences
below. In both examples, T is a neural network.

Example 16 (Jensen-Shannon). Let Dφ be Jason-Shannon diver-
gence. With an additional log(·) term, we recover the discriminator
loss in GAN [15]:

Tφ = argmax
T

Ex∼X\X′ log T (x) + Ex∼X log(1− T (x)). (4)

In this case, the estimated density ratio is ρ̂φ = Tφ/(1− Tφ).

Example 17 (Kullback–Leibler). Let Dφ be KL divergence. Then,
we recover the discriminator loss in KL-GAN [28]:

Tφ = argmax
T

Ex∼X\X′T (x)− Ex∼XeT (x). (5)

In this case, the estimated density ratio is ρ̂φ = exp(Tφ − 1).

Note that given enough capacity and data, we have ρ̂φ ≈ ρ∗ rather
than ρ̂, which may cause some bias. This bias can be alleviated when
the learner A is consistent and expressive enough, such as in the case
of GANs [29]. We find KL divergence works well in practice.

4 Statistical Tests for Data Deletion

Our second main contribution is our statistical deletion tests to distin-
guish whether a generative model has has particular points deleted.
Formally, we assume sample access to a distribution q, which is ei-
ther the pre-trained model p̂ or the re-trained model p̂′. We consider
the following hypothesis test: H0 : q = p̂; H1 : q = p̂′.3 Sev-
eral statistics for this test (not in the data deletion setting) have been
proposed, including likelihood ratio (LR) [32], Ali-Silvey-Csiszár
(ASC) statistics [19], and maximum mean discrepancy (MMD) [16].
In this section, we adapt LR and ASC to the data deletion setting,
and discuss MMD in Appendix C.3. In practice, we may not know
p̂′, so we use H ′

1 : q = D(p̂, X,X ′) to approximate H1. We present
theory on the approximation between H1 and H ′

1 when these statistics
are used, thus providing an efficient way to test H0 vs H1 without
re-training.4

4.1 Likelihood Ratio

A common goodness-of-fit method is the likelihood ratio test. In terms
of having the smallest type-2 error, the likelihood ratio test is the most
powerful of statistical tests [32] and is performed as follows. Given
m samples Y ∼ q, the likelihood ratio statistic is defined as

LR(Y, p̂, p̂′) =
1

m

∑
y∈Y

log
p̂′(y)
p̂(y)

=
1

m

∑
y∈Y

log ρ̂(y).

As it is solely determined by Y and ρ̂, we abbreviate it as LR(Y, ρ̂).
When we use H ′

1 to approximate H1 in practice, we compute
LR(Y, ρ̂E). By Thm. 18, it approximates LR(Y, ρ̂) with high prob-
ability under RC (Def. 1), and in Thm. 19, we show approximation
when ρ̂E is close to ρ̂. Statistical properties of likelihood ratio and
proofs to these theorems are in Appendix C.1.
3 This is different from two-sample tests, where H1 is q �= p̂, and we do not

have knowledge of p̂′.
4 It is unclear how to test H0 vs H1 even with re-training if A does not yield

explicit likelihood (e.g., GAN).

Theorem 18. If A is (cN , δN )-RC, then there exists a ρ̂E such that
with probability at least 1−2(δN+δN−N′), it holds that |LR(Y, ρ̂)−
LR(Y, ρ̂E)| ≤ 2(log cN + log cN−N′).

Theorem 19. (1) If ‖ log ρ̂ − log ρ̂E‖∞ ≤ ε, then |LR(Y, ρ̂) −
LR(Y, ρ̂E)| ≤ ε.
(2) If max(‖ log ρ̂− log ρ̂E‖1,p̂, ‖ log ρ̂− log ρ̂E‖1,p̂′) ≤ ε, then with
probability at least 1−δ, it holds that |LR(Y, ρ̂)−LR(Y, ρ̂E)| ≤ ε/δ.

4.2 ASC Statistics

ASC statistics are used to estimate the φ-divergence (Def. 15) [19].
Because a broad family of φ functions can be used, these statistics
include a wide range of statistics. Drawing m samples Y ∼ q and
another m samples Ŷ from p̂, the ASC statistic is defined as

ˆASCφ(Ŷ , Y, ρ̂) =
1

m

[ ∑
y∈Ŷ

+
∑
y∈Y

] φ(ρ̂(y))

1 + ρ̂(y)
.

When we use H ′
1 to approximate H1 in practice, we com-

pute ˆASCφ(Ŷ , Y, ρ̂E). In Thm. 20, we show it approximates
ˆASCφ(Ŷ , Y, ρ̂) when ρ̂E is close to ρ̂.

Theorem 20. If max(‖ψ(ρ̂)−ψ(ρ̂E)‖1,p̂, ‖ψ(ρ̂)−ψ(ρ̂E)‖1,p̂′) ≤ ε
where ψ(t) = φ(t)/(1 + t), then with probability at least 1 − δ, it
holds that | ˆASCφ(Ŷ , Y, ρ̂)− ˆASCφ(Ŷ , Y, ρ̂E)| ≤ 2ε/δ.

Statistical properties of ASC statistics and our proof of the above
theorem are in Appendix C.2.

5 Experiments

Empirically, we address the following questions. 1) DRE Approxima-

tions: do the methods in Section 3 produce ratios ρ̂E that approximate
the target ratio ρ̂? 2) Fast Deletion: is D(p̂, X,X ′) = ρ̂E · p̂ indistin-
guishable from the re-trained model p̂′? And 3) Hypothesis Test: do
tests in Section 4 distinguish samples from pre-trained and re-trained
models?

We first survey these questions in experiments on two-dimensional
synthetic datasets. We then look at GANs trained on MNIST [26] and
Fashion-MNIST [46].

5.1 Classification-based DRE for KDE on Synthetic
Datasets

Experiment setup. We generate two synthetic distributions (p∗)
over R2 based on mixtures: a mixture of 8 Gaussian distributions
(MoG-8) (Fig. 2a), and a checkerboard distribution with 8 squares
on a 4× 4 checkerboard (CKB-8) (Appendix D.2). We define p′∗ to
be a weighted mixture version of p∗: four re-weighted clusters have
weight λ ∈ (0, 1) (for MoG-8, they are the clusters at 3, 6, 9, and
12 o’clock), and the other four have weight 1 (see Fig. 2b). We draw
N = 400 samples from p∗ to form X , and randomly reject 1 − λ
fraction of samples in re-weighted clusters to form the deletion set
X ′ (see Fig. 2f). We run KDE using a Gaussian kernel and σA = 0.1
to obtain pre-trained models in Fig. 2c, re-trained models in Fig. 2d,
and their ratio ρ̂ in Fig. 2e. We use KDE because its density is explicit
and thus we are able to compute the exact likelihood ratio to examine
the effectiveness of our DRE-based framework.
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Method and results. We use the classification-based DRE de-
scribed in Section 3.1. We up-weigh X \ X ′ when training the
classifiers according to Example 14. We consider two types of non-
parametric classifiers: kernel-based classifiers (KBC) defined in (1)
with potentially different σ = σC = σA, and k-nearest-neighbour
classifiers (kNN) defined as the fraction of positive votes in k nearest
neighbours.5 For each classifier, we draw four sets of i.i.d. samples
(each of size m):

1. Ŷ ∼ p̂ (pre-trained model);
2. YD ∼ p̂ · ρ̂E (approximated model) marked in blue;
3. YH0 ∼ (q under H0) = p̂ marked in orange;
4. YH1 ∼ (q under H1) = p̂′ marked in green.6

We compute LR and ˆASC statistics for each set and for both density
ratios {ρ̂, ρ̂E}. The above procedure is repeated for R = 250 times
and we report empirical distributions of these statistics.

We demonstrate results for MoG-8 with KBC-based DRE and LR
statistics. More extensive experiments with k-NN classifiers, ASC
statistics, and other hyper-parameters are provided in Appendix D.1.
Results for CKB-8 are qualitatively similar to MoG-8 and are provided
in Appendix D.2.

We investigate question 1 (DRE Approximations) in two ways.
First, we compare ρ̂E and ρ̂ in Fig. 3. We find that both KBC and k-NN
lead to good approximations. We then conduct Kolmogorov–Smirnov
(KS) tests between the distributions of LR(YH0 , ρ̂) vs LR(YH0 , ρ̂E).
If ρ̂ ≈ ρ̂E on supp(p̂) then the KS statistics will be close to 0,
meaning the two compared distributions are indistinguishable. In Fig.
4a, we plot KS statistics for KBC with different σC . The KS statistics
decrease as σC gets close to σA. We also find larger λ (where fewer
samples are deleted) leads to better estimation, as expected.

We investigate question 2 (Fast Deletion) by asking whether the
approximated model ρ̂E · p̂ and the re-trained model p̂′ can be dis-
tinguished by the ground truth ratio ρ̂. We do this by comparing the
distributions of LR(YH1 , ρ̂) vs LR(YD, ρ̂); see qualitative compar-
isons in Fig. 5a and quantitative results in Fig. 4b. We find for a wide
range of classifiers, it is hard to distinguish between approximated
and re-trained models, especially when λ is larger.

Finally, we answer question 3 (Hypothesis Test) by comparing
the distributions of LR(YH0 , ρ̂E) vs LR(YH1 , ρ̂E): see qualitative
comparisons in Fig. 5b and quantitative results in Fig. 4c. We find
ρ̂E can distinguish between samples from pre-trained and re-trained
models for a wide range of classifiers. In terms of the size of the
deletion set, larger λ makes the two models less distinguishable.

5.2 VDM-based DRE for GAN

Experimental setup. The pre-trained model is a DCGAN [36]
trained on the full MNIST and Fashion-MNIST. We construct the
deletion set X ′ by randomly selecting samples with certain labels
(see details in Appendix E).

Method and results. We train VDM-based DRE based on (5)
introduced in Section 3.2. We set T to be the same architecture as the
discriminator.

5 We use non-parametric classifiers because the learning algorithm is non-
parametric. In preliminary experiments we found parametric classifiers
such as logistic regression are less effective. We conjecture this is due to
imbalanced labels, but leave a further investigation as future work.

6 These colors are used in distribution comparisons and label statistics in Fig.
5, Fig. 6, Fig. 7 and the Appendix.

We investigate question 2 (Fast Deletion) by comparing label dis-
tribution of m = 50K generated samples from the re-trained and
approximated models. We randomly select 10%− 40% samples with
even or odd labels as the deletion set. For each setting we run ex-
periments with five random seeds. Results for deleting 30% samples
with even labels are shown in Fig. 6a-6b, and additional results for
different deletion sets are provided in Appendix E. We find approxi-
mated models generate fewer samples with even labels, and the label
distributions are close to re-trained models.

We investigate question 3 (Hypothesis Test) similarly to Section
5.1. We draw i.i.d. samples Ŷ , YH0 ∼ p̂, and YH1 ∼ p̂′, each of
size m = 1K. We then compute LR and ˆASC statistics for each
set with density ratio ρ̂E . This procedure is repeated for R = 100
times. We compare distributions of LR(YH0 , ρ̂E) vs LR(YH1 , ρ̂E)
and ˆASCφ(Ŷ , YH0 , ρ̂E) vs ˆASCφ(Ŷ , YH1 , ρ̂E) in Fig. 7 and Ap-
pendix E. In most cases, ρ̂E can clearly distinguish samples between
pre-trained and re-trained models.

To evaluate generation quality, we evaluate the Inception Score
(IS) of pre-trained, re-trained, and approximate deletion model in Ap-
pendix E.4. The generation qualities are similar across these models.

Time Complexity Analysis. Empirically, our approximated dele-
tion gives a 10.9× speedup over re-training on MNIST, and a 12.0×
speedup on Fashion-MNIST.

The training time complexity can be measured by the number of
gradient computations. Let the time complexity of computing the
gradients of the generator/discriminator be TG and TD . Let NR be
the epochs for retraining, ND = NR/5 be the epochs for training
DRE, and NI be the number of iterations per epoch. Re-training has
complexity CR = NR ∗ NI ∗ (TD + TG/5) (as the generator is
updated every 5 iterations). Training DRE has complexity CD =
ND ∗NI ∗ TD . The fraction of these two complexities, which is the
theoretical speedup, is CR/CD = 5 + TG/TD .

6 Related Work

Exact data deletion from learned models (where the altered model
is identical to the re-trained model) was introduced as machine un-
learning [7, 4]. Such deletion can be performed efficiently for rel-
atively simple learners such as linear regression [8] and k-nearest
neighbors [39]. Machine unlearning for convex risk minimization
was shown theoretically possible under total variation stability [44].
Others have introduced further definitions of approximate data dele-
tion [17, 31, 40, 18] and developed efficient methods for approximate
deletion in supervised learning.

The unsupervised setting has received substantially less attention
with respect to data deletion. A notable exception is clustering [12, 3].
Our work instead focuses on generative models where the goal is to
learn adistribution from data rather than finding clusters. Potential
avenues for future work include forging a deeper connection between
approximate data deletion for generative models and differential pri-
vacy [11] and using recent advances in certified removal [17] for
generative models.

Outside of the context of data deletion, density ration estimation
seeks to estimate the ratio between two densities from samples. For
example, the ratio can be estimated via probabilistic classification
[43] or variational divergence minimization [34]. There are also many
other techniques in the literature [47, 43, 34, 30, 22, 37, 21, 9, 10], all
designed for settings with little prior information about the data. In
contrast, we consider a setting where we have strong prior information
(the only two possibilities are that X ′ was or was not deleted, rather
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(a) p∗ (b) p′∗ (c) p̂ (d) p̂′ (e) ρ̂ (f) X ′ and X \X ′

Figure 2: Visualization of the experimental setup of MoG-8. (a) Data distribution p∗. (b) Distribution p′∗ with λ = 0.8. (c) Pre-trained KDE p̂ on
X with σA = 0.1. (d) Re-trained KDE p̂′ on X \X ′ with σA = 0.1. (e) Density ratio ρ̂ = p̂′/p̂. (f) Deletion set X ′ and the remaining set
X \X ′.

(a) ρ̂ (b) KBC (σC=0.075) (c) KBC (σC=0.125) (d) k-NN (k=10) (e) k-NN (k=20)

Figure 3: Answer to question 1: visualization of ratios in the setting of MoG-8 with λ = 0.6 and σA = 0.1. (a) ρ̂. (b-c) ρ̂E for KBC-based DRE.
(d-e) ρ̂E for kNN-based DRE. These DREs are visually close to ρ̂.

(a) LR(YH0 , ρ̂) vs LR(YH0 , ρ̂E) (b) LR(YH1 , ρ̂) vs LR(YD, ρ̂) (c) LR(YH0 , ρ̂E) vs LR(YH1 , ρ̂E)

Figure 4: KS test results (y-axis) between distributions of LR statistics for KBC with different log10 σC (x-axis). Smaller KS values (y-axis)
indicate the two compared distributions are closer. When σC ≈ σA, (a) answers question 1 (DRE Approximations) by showing ρ̂E ≈ ρ̂ on the
support of p̂, (b) answers question 2 (Fast Deletion) by showing YH1 (from p̂′) and YD (from the approximated model) cannot be distinguished
by ρ̂, and (c) answers question 3 (Hypothesis Test) by showing our DRE easily distinguishes YH0 (from p̂) and YH1 (from p̂′). Results for ASC
statistics are in Appendix D and are similar to LR.

than in prior work where the two samples can be arbitrarily separated).
We adapt probabilistic classification [43] and variational divergence
minimization [34] for our setting as they lend themselves naturally to
incorporating the knowledge that training data is being deleted. An
avenue of future work is incorporating such knowledge into other
density ratio estimation methods, any of which can be used within our
general framework in Fig. 1.

6.1 Further Discussion of Our Contributions in
Relationship to Related Areas

We discuss our contributions in relationship to three related areas:
differential privacy, membership inference, and influence functions.

Relationship to differential privacy. First, we note that if the
learner is differentially private [11], then the re-trained model is close
to the pre-trained model. This means that there is no need to perform
data deletion, and it is by definition impossible to test whether training
points have been deleted.

Relationship to membership inference. Second, membership in-
ference attackers query whether a particular sample is used for training

[42]. This is akin to when the deletion set X ′ = {x′} contains only
one sample and membership inference is performed to test whether
the training set contains x′ or not. In contrast, our deletion test is
based on additional prior knowledge and tests whether the training set
is X or X \ {x′}. Therefore, membership inference is stronger but
harder than the deletion test.

Relationship to influence functions. Finally, we highlight that in-
fluence functions [23, 24, 2, 25] designed for likelihood in generative
models can potentially be used to estimate density ratio in our frame-
work. The influence function of a sample is a measure of the impact
of removing that sample from the training set on the loss function
of a particular test sample [23]. When the deletion set only contains
one sample, we could use the approximate influence score [25] to
derive DRE for deep generative models. We could then generalize to
deleting multiple samples by summing individual influences [24, 2],
which is another important direction of future work.
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(a) Answer to question 2: these distributions largely overlap with
each other, indicating the approximated model cannot be distin-
guished from the re-trained model.

(b) Answer to question 3: these distributions are separated from
each other, indicating the DRE can distinguish between samples
from pre-trained and re-trained models.

Figure 5: Distributions of (a) LR(YH1 , ρ̂) vs LR(YD, ρ̂) and (b) LR(YH0 , ρ̂E) vs LR(YH1 , ρ̂E). The approximated models and ρ̂E are derived
from KBC-based DREs with five σC values (first row) and kNN-based DREs with five k values (second row). x-axis is LR statistic and y-axis is
frequency.

(a) MNIST

(b) Fashion-MNIST

Figure 6: The Fast Deletion question: label distributions of 50K gener-
ated samples from pre-trained, re-trained, and approximated models
on MNIST (a) Fashion-MNIST (b). Mean and standard errors of five
random runs are reported. The label distributions of the approximated
model is close to the re-trained model.

7 Conclusions and Future Work

In this paper, we propose a density-ratio-based framework for data
deletion in generative modeling. Using this framework, we introduce

Figure 7: The Hypothesis Test question: distributions of LR(YH0 , ρ̂E)
vs LR(YH1 , ρ̂E) on MNIST. These distributions are separated from
each other, indicating the DRE can distinguish between samples from
pre-trained and re-trained models.

our two main contributions: a fast method for approximate data dele-
tion and a statistical test for estimating whether or not training points
have been deleted. We provide formal guarantees for both contribu-
tions under various learner assumptions. In addition, we investigate
our approximate deletion method and statistical test on real and syn-
thetic datasets for various generative models. Our experiments confirm
that (1) our methods accurately approximate the target density ratio,
(2) our deletion method efficiently yields a model indistinguishable
from the re-trained model, and (3) our hypothesis tests accurately dis-
tinguish samples from pre-trained and re-trained models. We highlight
a limitation and important future direction: Our density-ratio-based
framework results in stability limitations when applied to more com-
plex datasets, as density ratio estimation becomes challenging when
data have higher dimensions and more complex patterns.
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A Notation Table

Table 3: Notations used in this paper.

p∗ data distribution
X training set: N i.i.d. samples from p∗
X′ deletion set: N ′ samples from X
A algorithm of the generative model
p̂ pretrained generative model on X
p̂′ retrained generative model on X \X′
p′∗ distribution s.t. X \X′ are i.i.d. samples from p′∗
ρ∗ density ratio p′∗/p∗
ρ̂ density ratio p̂′/p̂

DRE density ratio estimator
ρ̂E abbreviation for DRE(X,X \X′); DRE between X and X \X′

D(p̂, X,X′) approximate deletion ρ̂E · p̂
q the distribution to be tested
m number of samples drawn from models
Y m i.i.d. samples from q
YHi

m i.i.d. samples from q under Hi, i = 1, 2

Ŷ m i.i.d. samples from the pretrained model p̂
YD m i.i.d. samples from the approximate deletion D(p̂, X,X′)
R number of repeats for each statistic

MMD2 squared MMD metric
ˆMMD

2
u unbiased MMD estimator

LR likelihood ratio
Dφ the φ-divergence
ˆASCφ ASC statistic, or the φ-divergence estimator
IF influence functions
ĨF influence function estimator
C number of checkpoints to compute ĨF

η learning rate to compute ĨF
λ parameter used to define ρ∗ in 2d experiments

KDE kernel density estimator
KBC kernel-based classifier
kNN k nearest neighbour classifier
σ bandwidth used to define kernel N (0, σ2I) in KDE
σA bandwidth of the learning algorithm in 2d experiments
σC bandwidth of KBC in 2d experiments
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B Theory for the Framework in Section 2

B.1 Omitted Proofs in Section 2.2

Proof of Thm. 2

Proof. Notice that

ρ̂ =
p̂′

p̂
=

p̂′

p′∗
· p

′
∗

p∗
· p∗
p̂
.

With probability at least 1− δN

1

cN
≤ p∗

p̂
≤ cN .

With probability at least 1− δN−N′

1

cN−N′
≤ p̂′

p′∗
≤ cN−N′ .

Therefore, with probability at least 1− δN − δN−N′ ,∫
Rd

p̂ |ρ̂− ρ∗| dx =

∫
Rd

p′∗

∣∣∣∣ p̂′p′∗ − p̂

p∗

∣∣∣∣ dx
≤ max

(
cN − 1

cN−N′
, cN−N′ − 1

cN

)
≤ 2(cN + cN−N′ − 2).

Now, we choose a fixed RC algorithm A0, and define ρ̂E(Z1, Z2) = ρ(pA0(Z1), pA0(Z2)). Then, with probability at least 1− δN − δN−N′ ,∫
Rd

p̂ |ρ̂E − ρ∗| dx ≤ 2(cN + cN−N′ − 2).

Therefore, with probability at least 1− 2δN − 2δN−N′ ,

‖ρ̂E · p̂− p̂′‖1 =

∫
Rd

p̂ |ρ̂E − ρ̂| dx ≤ 4(cN + cN−N′ − 2).

Proof of Thm. 4

Proof. Notice that ∫
Rd

p̂2 |ρ̂− ρ∗| dx =

∫
Rd

p̂
∣∣p̂′ − ρ∗p̂

∣∣ dx
=

∫
Rd

p̂
∣∣p̂′ − p′∗ + p′∗ − ρ∗(p̂− p∗ + p∗)

∣∣ dx
=

∫
Rd

p̂
∣∣p̂′ − p′∗ − ρ∗(p̂− p∗)

∣∣ dx.
With probability at least 1− δN , |p̂− p∗| ≤ εN , and with probability at least 1− δN−N′ , |p̂′ − p′∗| ≤ εN−N′ . Therefore, with probability at
least 1− δN − δN−N′ , ∫

Rd

p̂2 |ρ̂− ρ∗| dx ≤ εN−N′ + ‖ρ∗‖∞εN .

Now, we choose a fixed TVC algorithm A0, and define ρ̂E(Z1, Z2) = ρ(pA0(Z1), pA0(Z2)). Then, with probability at least 1− δN − δN−N′ ,∫
Rd

p̂2 |ρ̂E − ρ∗| dx ≤ εN−N′ + ‖ρ∗‖∞εN .

Therefore, with probability at least 1− 2δN − 2δN−N′ ,

‖ρ̂E · p̂− p̂′‖1,p̂ =

∫
Rd

p̂2 |ρ̂− ρ̂E | dx ≤ 2 (εN−N′ + ‖ρ∗‖∞εN ) .
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B.2 Omitted Proofs in Section 2.3

Proof of Thm. 8

Proof. By taking Z0 = Z, Z1 = Z \ {z}, and Ẑ = {ẑ}, we conclude ε-DP implies ε-US. By taking one side of the ε-US bound, we conclude
ε-US implies ε-LBLI.

Define

ρ̂k =
pA(X\X′

1:k−1
)

pA(X\X′
1:k

)

for k = 1, · · · , N ′. Then, ε-LBLI indicates log ‖ρ̂k‖∞ ≤ ε. Notice that

ρ̂ =
N′∏
k=1

ρ̂k.

Therefore, we have log ‖ρ̂‖∞ ≤ N ′ε.

Proof of Thm. 10

Proof. With probability at least 1− δN ,

− log cN ≤ log ρ(μi, pA(Zi)) ≤ log cN .

Therefore, with probability at least 1− 2δN ,∥∥log ρ(μ1, pA(Z1))− log ρ(μ2, pA(Z2))
∥∥
∞ ≤ 2 log cN .

Proof of Thm. 11

Proof. Define Zk = X \X ′
1:k and μk be the distribution such that Zk contains i.i.d. samples from μk. Specifically, μ0 = p∗ and μN′ = p′∗.

Then, we have

log ρ∗ − log ρ̂ = log
μN′

μ0
− log

pA(ZN′ )

pA(Z0)

=
N′∑
k=1

(
log

μk

μk−1
− log

pA(Zk)

pA(Zk−1)

)

=
N′∑
k=1

(
log ρ(μk−1, pA(Zk−1))− log ρ(μk, pA(Zk))

)
.

Therefore, with probability at least 1−N ′δ, we have

‖ log ρ∗ − log ρ̂‖∞ ≤ N ′ε,

which indicates log ‖ρ̂‖∞ ≤ N ′ε+ log ‖ρ∗‖∞.

Proof of Thm. 13

Proof. By rewriting ES for p̂ and p̂′, we have

Ex∼p̂ log ρ̂ = −KL
(
p̂‖p̂′) ,

Ex∼p̂(log ρ̂)
2 ≤ ε.

Because

Ex∼p̂(log ρ̂)
2 ≥ (Ex∼p̂ log ρ̂)

2 ,

we have KL (p̂‖p̂′) ≤ √
ε. Then, according to Cantelli’s inequality [6], for any positive a,

Prob
(
log ρ̂ ≥ −KL

(
p̂‖p̂′)+ a

) ≤ VAR(log ρ̂)

VAR(log ρ̂) + a2
.
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By letting

a =

√
1− δ

δ
· VAR(log ρ̂),

we have with probability at least 1− δ for samples x ∼ p̂,

log ρ̂(x) ≤
√

1− δ

δ
· (Ex∼p̂(log ρ̂)2 −KL (p̂‖p̂′)2)−KL

(
p̂‖p̂′)

≤
√

ε(1− δ)

δ
.
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C Statistical Tests in Section 4

C.1 Likelihood Ratio Tests

Proof of Thm. 18

Proof. By definition of RC, we have with probability at least 1− δN ,

| log p̂− log p∗| ≤ log cN ,

and with probability at least 1− δN−N′ ,

| log p̂′ − log p′∗| ≤ log cN−N′ .

Therefore, with probability at least 1− δN − δN−N′ ,

| log ρ̂− log ρ∗| ≤ log cN−N′ + log cN .

Now, we choose a fixed RC algorithm A0, and define ρ̂E(Z1, Z2) = ρ(pA0(Z1), pA0(Z2)). Then, we also have with probability at least
1− δN − δN−N′ ,

| log ρ̂E − log ρ∗| ≤ log cN−N′ + log cN .

Therefore, with probability at least 1− 2(δN + δN−N′),

| log ρ̂− log ρ̂E | ≤ 2(log cN−N′ + log cN ),

and the conclusion follows.

Proof of Thm. 19

Proof. (1) Notice that

|LR(Y, p̂, p̂′)− LR(Y, p̂, ρ̂E · p̂)| = 1

m

∑
y∈Y

| log ρ̂(y)− log ρ̂E(y)|

≤ 1

m
·mε

= ε.

(2) If H0 is true, then Y ∼ p̂. Then,

EY |LR(Y, p̂, p̂′)− LR(Y, p̂, ρ̂E · p̂)| = EY

∣∣∣∣∣ 1m
∑
y∈Y

(log ρ̂(y)− log ρ̂E(y))

∣∣∣∣∣
≤ EY

(
1

m

∑
y∈Y

|log ρ̂(y)− log ρ̂E(y)|
)

= Ey∼p̂ |log ρ̂(y)− log ρ̂E(y)|
= ‖ log ρ̂− log ρ̂E‖1,p̂
≤ ε.

By Markov’s inequality, we have with probability at least 1− δ, |LR(Y, p̂, p̂′)− LR(Y, p̂, ρ̂E · p̂)| ≤ ε/δ. The proof for H1 is similar.

Statistical properties of LR statistics. Let φ(t) = log(t)2. When H0 is true, we have

EY ∼p̂ LR(Y, p̂, p̂′) = Ep̂ log
p̂′

p̂
= −KL

(
p̂‖p̂′) ,

VARY ∼p̂ LR(Y, p̂, p̂′) =
1

m

(
Ep̂

(
log

p̂′

p̂

)2

−
(
Ep̂ log

p̂′

p̂

)2
)

=
1

m

(
Dlog2(p̂‖p̂′)−KL

(
p̂‖p̂′)2) .

When H1 is true, we have

EY ∼p̂′ LR(Y, p̂, p̂′) = Ep̂′ log
p̂′

p̂
= KL

(
p̂′‖p̂) ,

VARY ∼p̂′ LR(Y, p̂, p̂′) =
1

m

(
Ep̂′

(
log

p̂′

p̂

)2

−
(
Ep̂′ log

p̂′

p̂

)2
)

=
1

m

(
Dlog2(p̂

′‖p̂)−KL
(
p̂′‖p̂)2) .
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C.2 ASC Tests

Proof of Thm. 20

Proof. Take expectations Y ∼ q and Ŷ ∼ p̂. Then, we have

E| ˆASCφ(Ŷ , Y, ρ̂)− ˆASCφ(Ŷ , Y, ρ̂E)| = E

∣∣∣∣∣∣
1

m

⎛
⎝∑

y∈Ŷ

+
∑
y∈Y

⎞
⎠ (ψ(ρ̂(y))− ψ(ρ̂E(y)))

∣∣∣∣∣∣
≤ E

⎛
⎝ 1

m

∑
y∈Ŷ

|ψ(ρ̂(y))− ψ(ρ̂E(y))|
⎞
⎠

+ E

(
1

m

∑
y∈Y

|ψ(ρ̂(y))− ψ(ρ̂E(y))|
)

= Ey∼p̂|ψ(ρ̂(y))− ψ(ρ̂E(y))|+ Ey∼q|ψ(ρ̂(y))− ψ(ρ̂E(y))|
= ‖ψ(ρ̂)− ψ(ρ̂E)‖1,p̂ + ‖ψ(ρ̂)− ψ(ρ̂E)‖1,q
≤ 2ε.

By Markov’s inequality, we have with probability at least 1− δ, it holds that | ˆASCφ(Ŷ , Y, ρ̂)− ˆASCφ(Ŷ , Y, ρ̂E)| ≤ 2ε/δ.

Statistical properties of ASC statistics. When H0 is true, we have

EY ∼p̂,Ŷ ∼p̂
ˆASCφ(Ŷ , Y, ρ̂) = Ep̂

(
2φ(ρ̂(y))

1 + ρ̂(y)

)
.

When H1 is true, we have

EY ∼p̂′,Ŷ ∼p̂
ˆASCφ(Ŷ , Y, ρ̂) = (Ep̂ + Ep̂′)

φ(ρ̂)

1 + ρ̂

= Ep̂(1 + ρ̂) · φ(ρ̂)

1 + ρ̂

= Ep̂ (φ(ρ̂(y))) .

C.3 MMD Tests

Definition of MMD. Let KMMD(·, ·) be a kernel function. The Maximum Mean Discrepancy (MMD) [16] between p̂ and q is defined as

MMD2(q, p̂) = (Ex,y∼p̂ − 2Ex∼p̂,y∼q + Ex,y∼q)KMMD(x, y).

Given m i.i.d. samples Ŷ ∼ p̂ and m i.i.d. samples Y ∼ q, an unbiased estimator of MMD2 is

ˆMMD
2

u(Y, Ŷ ) =
1

m(m− 1)

∑
i�=j

(KMMD(yi, yj) +KMMD(ŷi, ŷj))− 2

m2

∑
i,j

KMMD(yi, ŷj).

Asymptotic and concentration properties[41, 16]. Define

h((yi, ŷi), (yj , ŷj)) = KMMD(yi, yj) +KMMD(ŷi, ŷj)−KMMD(yi, ŷj)−KMMD(yj , ŷi).

Then, we have

ˆMMD
2

u(Y, Ŷ ) =
1

m(m− 1)

m∑
i �=j

h((yi, ŷi), (yj , ŷj)).

Define

σ2
u = 4

(
Ey∼q
ŷ∼p̂

[
Ey′∼q
ŷ′∼p̂

h((y, ŷ), (y′, ŷ′))

]2

−
[
Ey,y′∼q
ŷ,ŷ′∼p̂

h((y, ŷ), (y′, ŷ′))

]2)

= 4 · Ey∼q
ŷ∼p̂

VARy′∼q
ŷ′∼p̂

h((y, ŷ), (y′, ŷ′)).
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Then, it holds that
√
m

(
ˆMMD

2

u(Y, Ŷ )−MMD2(q, p̂)
)
→ N (0, σ2

u) in distribution

As for concentration properties, with probability at least 1− δ, it holds that

MMD2
u(Y, Ŷ )−MMD2(q, p̂) ≤ 4

√
1

m
log

1

δ
· sup

x,y
KMMD(x, y),

with have the same bound on the other side.

Asymptotic and concentration properties in the context of deletion test. Now, we look at these properties in the context of deletion test.
If H0 is true,

EY ∼p̂
ˆMMD

2

u(Y, Ŷ ) = 0,

VARY ∼p̂
ˆMMD

2

u(Y, Ŷ ) =
4

m
· Ey∼p̂

ŷ∼p̂
VARy′∼p̂

ŷ′∼p̂

h((y, ŷ), (y′, ŷ′)).

And with probability at least 1− δ, ∣∣∣ ˆMMD
2

u(Y, Ŷ )
∣∣∣ ≤ 4

√
1

m
log

2

δ
· sup

x,y
KMMD(x, y).

If H1 is true,

EY ∼p̂′ ˆMMD
2

u(Y, Ŷ ) = MMD2(p̂′, p̂),

VARY ∼p̂
ˆMMD

2

u(Y, Ŷ ) =
4

m
· Ey∼q

ŷ∼p̂
VARy′∼q

ŷ′∼p̂

h((y, ŷ), (y′, ŷ′)).

And with probability at least 1− δ,∣∣∣ ˆMMD
2

u(Y, Ŷ )−MMD2(p̂′, p̂)
∣∣∣ ≤ 4

√
1

m
log

2

δ
· sup

x,y
KMMD(x, y).

Example 21 (KDE). Now, we compute MMD(p̂′, p̂)2 for KDE with the standard Gaussian kernel. We let KMMD be the standard RBF kernel:
KMMD(x, y) = exp(−‖x− y‖2/2). Let x, x′ ∼ q, y, y′ ∼ p̂, and zi, z

′
i ∼ N (xi, I). Then,

Ex,x′KMMD(x, x
′) =

1

N2

N∑
i=1

N∑
j=1

Ezi,z
′
j
KMMD(zi, z

′
j)

Ey,y′KMMD(y, y
′) =

1

(N −N ′)2

N∑
i=N′+1

N∑
j=N′+1

Ezi,z
′
j
KMMD(zi, z

′
j)

Ex,yKMMD(x, y) =
1

N(N −N ′)

N∑
i=1

N∑
j=N′+1

Ezi,z
′
j
KMMD(zi, z

′
j).

By rearranging, we have

MMD2(p̂′, p̂) =

⎛
⎝ N ′2

N2(N −N ′)2

N∑
i=N′+1

N∑
j=N′+1

− N +N ′

N2(N −N ′)

N′∑
i=1

N∑
j=N′+1

+
1

N2

N∑
i=1

N′∑
j=1

⎞
⎠Ezi,z

′
j
KMMD(zi, z

′
j).

We then compute Ezi,z
′
j
KMMD(zi, z

′
j).

Ezi,z
′
j
KMMD(zi, z

′
j) =

∫
Rd

∫
Rd

N (zi;xi, I)N (z′j ;xj , I)KMMD(zi, z
′
j)dzidz

′
j

=

∫
Rd

∫
Rd

1

(2π)d
exp

(
−‖zi − xi‖2 + ‖z′j − xj‖2

2
− ‖zi − z′j‖2

2

)
dzidz

′
j .

We apply a change-of-variable formula:

zi = − vi√
2
− v′j√

6
+

2

3
xi +

1

3
xj ,

zj = − vi√
2
+

v′j√
6
+

1

3
xi +

2

3
xj .
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Then,

‖zi − xi‖2 + ‖z′j − xj‖2
2

+
‖zi − z′j‖2

2
=

1

2

(
‖vi‖2 + ‖v′j‖2 + ‖xi − xj‖2

3

)
.

Therefore,

Ezi,z
′
j
KMMD(zi, z

′
j) =

∫
Rd

∫
Rd

1

(2π)d
exp

(
−‖vi‖2 + ‖v′j‖2

2
− ‖xi − xj‖2

6

) ∣∣∣∣det
(
∂(zi, z

′
j)

∂(vi, v′j)

)∣∣∣∣
d

dvidv
′
j

= 3−
d
2 exp

(
−‖xi − xj‖2

6

)
.

Summing up, we have

MMD2(p̂′, p̂) = 3−
d
2

⎛
⎝ N ′2

N2(N −N ′)2

N∑
i=N′+1

N∑
j=N′+1

− N +N ′

N2(N −N ′)

N′∑
i=1

N∑
j=N′+1

+
1

N2

N∑
i=1

N′∑
j=1

⎞
⎠ exp

(
−‖xi − xj‖2

6

)
.
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D Experiments on Two-Dimensional Synthetic Datasets

D.1 MoG-8

Setup. The MoG-8 data distribution is defined as

p∗(x) =
1

8

8∑
i=1

N (x; (cos θi, sin θi), 0.1I),

where θi =
2πi
8

. The modified distribution p′∗ with weight λ is defined as

p′∗(x) =
1

4(1 + λ)

8∑
i=1

wiN (x; (cos θi, sin θi), 0.1I),

where wi = 1 for even i and λ for odd i. The construction algorithm for X is randomly sampling a cluster id between 1 and 8 and randomly
drawing a sample from the corresponding Gaussian distribution. The construction algorithm for X ′ is to include a sample x ∈ X with probability
1− λ if x is from i-th Gaussian for odd i. The distributions and data with different λ are shown in Fig. 8.

(a) p∗ (b) p′∗(λ = 0.9) (c) p′∗(λ = 0.8) (d) p′∗(λ = 0.7) (e) p′∗(λ = 0.6) (f) p′∗(λ = 0.5)

Figure 8: Visualization of the experimental setup of MoG-8. (a) Data distribution p∗. (b) - (f) p′∗ with different λ values. A larger λ means less
data is deleted.

Other hyperparameters are set as follows. The number of training samples N = 400 unless specified. The number of samples for the deletion
test m = 400 unless specified. The number of repeats for each setup is R = 250 unless specified. The learning algorithm KDE has bandwidth
σA = 0.1 unless specified.
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Question 1 (DRE Approximations). We visualize ρ̂ and ρ̂E in Fig. 9 (extension of Fig. 3). These figures give qualitative answers to question
1.

λ = 0.5

λ = 0.6

λ = 0.7

λ = 0.8

λ = 0.9

(a) ρ̂ (b) KBC (σC=0.075) (c) KBC (σC=0.125) (d) k-NN (k=10) (e) k-NN (k=20)

Figure 9: Visualization of ratio ρ̂ in (a) and ρ̂E in (b)-(e) for different classifier-based DREs.
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We visualize KS test results for KBC with different bandwidth σC in Fig. 10 (extension of Fig. 4a). When σC ≈ σA = 0.1, the KS values are
small, indicating KBC with these σC can lead to classifier-based DRE ρ̂E that is close to ρ̂. In terms of statistics, the estimation is most accurate
under KL and least accurate under Hellinger distance. In terms of λ, the estimation is more accurate for larger λ, where less data are deleted, as
expected.

(a) LR statistics with λ = 0.8 and different m,N,R (b) ASC statistics with φ(t) = log(t)

(c) ASC statistics with φ(t) = t log(t) (KL) (d) ASC statistics with φ(t) = (
√
t− 1)2 (Hellinger)

Figure 10: KS tests between distributions of statistics for KBC with different σC . (a) LR(YH0 , ρ̂) vs LR(YH0 , ρ̂E) with λ = 0.8 and different
m,N,R, complementary to Fig. 4a. (b)-(d) ˆASCφ(Ŷ , YH0 , ρ̂) vs ˆASCφ(Ŷ , YH0 , ρ̂E) for different φ. Smaller values indicate the two compared
distributions are closer.
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Question 2 (Fast Deletion). We visualize distributions of LR and ASC statistics between YH1 and YD in Fig. 11 (extension of Fig. 5a). The
more overlapping between the distributions, the less distinguishable between the approximated and re-trained models. KBC is generally better
than kNN. For kNN a moderate k (e.g. between 10 and 50) has better overlapping.

(a) LR for KBC-based DRE (λ = 0.6) (b) LR for KBC-based DRE (λ = 0.7)

(c) LR for KBC-based DRE (λ = 0.8) (d) LR for KBC-based DRE (λ = 0.9)

(e) ASC for KBC-based DRE (φ(t) = log(t)) (f) ASC for KBC-based DRE (φ(t) = t log(t))

(g) LR for kNN-based DRE (λ = 0.6) (h) LR for kNN-based DRE (λ = 0.7)

(i) LR for kNN-based DRE (λ = 0.8) (j) LR for kNN-based DRE (λ = 0.9)

(k) ASC for kNN-based DRE (φ(t) = log(t)) (l) ASC for kNN-based DRE (φ(t) = t log(t))

Figure 11: (a)-(f) KBC-based DRE. (g)-(l) kNN-based DRE. (a)-(d)&(g)-(j) LR(YH1 , ρ̂) vs LR(YD, ρ̂). (e)-(f)&(k)-(l) ˆASCφ(Ŷ , YH1 , ρ̂) vs
ˆASCφ(Ŷ , YD, ρ̂).
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We visualize KS test results for KBC with different bandwidth σC in Fig. 12 (extension of Fig. 4b). The KS values are small for a wide range
of σC , indicating KBC with these σC can lead to approximated models indistinguishable from the re-trained model. There is no clear difference
between LR and ASC statistics. In terms of λ, the models are less distinguishable when λ is larger, as expected.

(a) LR statistics with λ = 0.8 and different m,N,R (b) ASC statistics with φ(t) = log(t)

(c) ASC statistics with φ(t) = t log(t) (d) ASC statistics with φ(t) = (
√
t− 1)2

Figure 12: KS tests between distributions of statistics for KBC with different σC . (a) LR(YH1 , ρ̂) vs LR(YD, ρ̂) with λ = 0.8 and different
m,N,R, complementary to Fig. 4b. (b)-(d) ˆASCφ(Ŷ , YH1 , ρ̂) vs ˆASCφ(Ŷ , YD, ρ̂) for different φ. Smaller values indicate the two compared
distributions are closer.
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Question 3 (Hypothesis Test). We visualize distributions of LR and ASC statistics between YH0 and YH1 in Fig. 13 (extension of Fig. 5b).
The separation between the distributions indicates how the DRE can distinguish samples between pre-trained and re-trained models. We observe
separation for a wide range of classifiers, and KBC is generally comparable to kNN. In terms of statistics, the LR is better than ASC. In terms of
λ, larger λ makes the two models less distinguishable.

(a) LR for KBC-based DRE (λ = 0.6) (b) LR for KBC-based DRE (λ = 0.7)

(c) LR for KBC-based DRE (λ = 0.8) (d) LR for KBC-based DRE (λ = 0.9)

(e) ASC for KBC-based DRE (φ(t) = log(t)) (f) ASC for KBC-based DRE (φ(t) = t log(t))

(g) LR for kNN-based DRE (λ = 0.6) (h) LR for kNN-based DRE (λ = 0.7)

(i) LR for kNN-based DRE (λ = 0.8) (j) LR for kNN-based DRE (λ = 0.9)

(k) ASC for kNN-based DRE (φ(t) = log(t)) (l) ASC for kNN-based DRE (φ(t) = t log(t))

Figure 13: (a)-(f) KBC-based DRE. (g)-(l) kNN-based DRE. (a)-(d)&(g)-(j) LR(YH0 , ρ̂) vs LR(YH1 , ρ̂). (e)-(f)&(k)-(l) ˆASCφ(Ŷ , YH0 , ρ̂) vs
ˆASCφ(Ŷ , YH1 , ρ̂).
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We visualize KS test results for KBC with different bandwidth σC in Fig. 14 (extension of Fig. 4c). The KS values are large for a wide range
of σC , indicating KBC with these σC can nicely distinguish pre-trained and re-trained model. LR statistics are slightly better than ASC statistics.
In terms of λ, the models can be more easily distinguished when λ is small, as expected.

(a) LR statistics with λ = 0.8 and different m,N,R (b) ASC statistics with φ(t) = log(t)

(c) ASC statistics with φ(t) = t log(t) (d) ASC statistics with φ(t) = (
√
t− 1)2

Figure 14: KS tests between distributions of statistics for KBC with different σC . (a) LR(YH0 , ρ̂) vs LR(YH1 , ρ̂) with λ = 0.8 and different
m,N,R, complementary to Fig. 4c. (b)-(d) ˆASCφ(Ŷ , YH0 , ρ̂) vs ˆASCφ(Ŷ , YH1 , ρ̂) for different φ. Smaller values indicate the two compared
distributions are closer.
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D.2 CKB-8

Setup. The CKB-8 data distribution is defined as
p∗ = Uniform(∪8

i=1Ωi),

where Ω1 = [0, 0.25]× [0, 0.25],Ω2 = [0, 0.25]× [0.5, 0.75],Ω3 = [0.25, 0.5]× [0.25, 0.5],Ω4 = [0.25, 0.5]× [0.75, 1],Ω5 = [0.5, 0.75]×
[0, 0.25],Ω6 = [0.5, 0.75]× [0.5, 0.75],Ω7 = [0.75, 1]× [0.25, 0.5],Ω8 = [0.75, 1]× [0.75, 1]. The modified distribution p′∗ with weight λ
is defined as

p′∗(x) =
1

4(1 + λ)

8∑
i=1

wi · Uniform(Ωi),

where wi = 1 for i ∈ {2, 3, 5, 8} and λ for i ∈ {1, 4, 6, 7}. The construction algorithm for X is randomly sampling a square id between 1 and
8 and randomly drawing a sample from the corresponding uniform distribution. The construction algorithm for X ′ is to include a sample x ∈ X
with probability 1− λ if x is from i-th square for i ∈ {1, 4, 6, 7}. The distributions and data with different λ are shown in Fig. 15 and 16.

(a) p∗ (b) p′∗(λ = 0.9) (c) p′∗(λ = 0.8) (d) p′∗(λ = 0.7) (e) p′∗(λ = 0.6) (f) p′∗(λ = 0.5)

Figure 15: Visualization of the experimental setup of CKB-8. (a) Data distribution p∗. (b) - (f) p′∗ with different λ values. A larger λ means less
data is deleted.

(a) p∗ (b) p′∗ (c) p̂ (d) p̂′ (e) ρ̂ (f) X ′ and X \X ′

Figure 16: Visualization of the experimental setup of CKB-8. (a) Data distribution p∗. (b) Distribution p′∗ with λ = 0.8. (c) Pre-trained KDE p̂
on X with σA = 0.1. (d) Re-trained KDE p̂′ on X \X ′ with σA = 0.1. (e) Density ratio ρ̂ = p̂′/p̂. (f) Deletion set X ′ and the remaining set
X \X ′.

Other hyperparameters are set as follows. The number of training samples N = 400 unless specified. The number of samples for the deletion
test m = 400 unless specified. The number of repeats for each setup is R = 250 unless specified. The learning algorithm KDE has bandwidth
σA = 0.1 unless specified.
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Question 1 (DRE Approximations). We visualize ρ̂ and ρ̂E in Fig. 17 (extension of Fig. 3 for CKB-8). These figures give qualitative answers
to question 1 (DRE Approximations).

λ = 0.5

λ = 0.6

λ = 0.7

λ = 0.8

λ = 0.9

(a) ρ̂ (b) KBC (σC=0.075) (c) KBC (σC=0.125) (d) k-NN (k=10) (e) k-NN (k=20)

Figure 17: Visualization of ratio ρ̂ in (a) and ρ̂E in (b)-(e) for different classifier-based DREs.
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We visualize KS test results for KBC with different bandwidth σC in Fig. 18 (extension of Fig. 4a for CKB-8). When σC ≈ σA = 0.1, the KS
values are small, indicating KBC with these σC can lead to classifier-based DRE ρ̂E that is close to ρ̂. Comparing to MoG-8, the conclusion for
CKB-8 is similar, but estimation is harder. One exception is when λ = 0.9, the estimation is very accurate under LR or ASC with φ(t) = log(t),
but not as accurate as other λ under ASC with φ(t) = t log(t).

(a) LR statistics (b) ASC statistics with φ(t) = log(t)

(c) ASC statistics with φ(t) = t log(t) (KL) (d) ASC statistics with φ(t) = (
√
t− 1)2 (Hellinger)

Figure 18: KS tests between distributions of statistics for KBC with different σC . (a) LR(YH0 , ρ̂) vs LR(YH0 , ρ̂E) with different λ. (b)-(d)
ˆASCφ(Ŷ , YH0 , ρ̂) vs ˆASCφ(Ŷ , YH0 , ρ̂E) for different φ. Smaller values indicate the two compared distributions are closer.
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Question 2 (Fast Deletion). We visualize distributions of LR and ASC statistics between YH1 and YD in Fig. 19 (extension of Fig. 5a for
CKB-8). The more overlapping between the distributions, the less distinguishable between the approximated and re-trained models. For both
KBC and kNN, the distribution pairs are slightly more separated than MoG-8, indicating fast deletion is harder for CKB-8. For kNN a moderate
k (e.g. between 10 and 50) has better overlapping.

(a) LR for KBC-based DRE (λ = 0.8) (b) ASC for KBC-based DRE (φ(t) = log(t))

(c) ASC for KBC-based DRE (φ(t) = t log(t)) (d) LR for kNN-based DRE (λ = 0.8)

(e) ASC for kNN-based DRE (φ(t) = log(t)) (f) ASC for kNN-based DRE (φ(t) = t log(t))

Figure 19: (a)-(c) KBC-based DRE. (d)-(f) kNN-based DRE. (a)&(d) LR(YH1 , ρ̂) vs LR(YD, ρ̂). (b)-(c)&(e)-(f) ˆASCφ(Ŷ , YH1 , ρ̂) vs
ˆASCφ(Ŷ , YD, ρ̂).
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We visualize KS test results for KBC with different bandwidth σC in Fig. 20 (extension of Fig. 4b for CKB-8). The conclusions for CKB-8
are similar to MoG-8, except that the KS values are slightly higher, indicating the fast deletion is slightly harder for this dataset.

(a) LR statistics (b) ASC statistics with φ(t) = log(t)

(c) ASC statistics with φ(t) = t log(t) (d) ASC statistics with φ(t) = (
√
t− 1)2

Figure 20: KS tests between distributions of statistics for KBC with different σC . (a) LR(YH1 , ρ̂) vs LR(YD, ρ̂) with λ = 0.8. (b)-(d)
ˆASCφ(Ŷ , YH1 , ρ̂) vs ˆASCφ(Ŷ , YD, ρ̂) for different φ. Smaller values indicate the two compared distributions are closer.
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Question 3 (Hypothesis Test). We visualize distributions of LR and ASC statistics between YH0 and YH1 in Fig. 21 (extension of Fig. 5b for
CKB-8). The separation between the distributions indicates how the DRE can distinguish samples between pre-trained and re-trained models.
Similar to MoG-8, LR statistics lead to better separation than ASC.

(a) LR for KBC-based DRE (λ = 0.8) (b) ASC for KBC-based DRE (φ(t) = log(t))

(c) ASC for KBC-based DRE (φ(t) = t log(t)) (d) LR for kNN-based DRE (λ = 0.8)

(e) ASC for kNN-based DRE (φ(t) = log(t)) (f) ASC for kNN-based DRE (φ(t) = t log(t))

Figure 21: (a)-(c) KBC-based DRE. (d)-(f) kNN-based DRE. (a)&(d) LR(YH0 , ρ̂) vs LR(YH1 , ρ̂). (b)-(c)&(e)-(f) ˆASCφ(Ŷ , YH0 , ρ̂) vs
ˆASCφ(Ŷ , YH1 , ρ̂).
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We visualize KS test results for KBC with different bandwidth σC in Fig. 22 (extension of Fig. 4c for CKB-8). Similar to MoG-8, LR statistics
lead to better separation than ASC.

(a) LR statistics (b) ASC statistics with φ(t) = log(t)

(c) ASC statistics with φ(t) = t log(t) (d) ASC statistics with φ(t) = (
√
t− 1)2

Figure 22: KS tests between distributions of statistics for KBC with different σC . (a) LR(YH0 , ρ̂) vs LR(YH1 , ρ̂) with λ = 0.8. (b)-(d)
ˆASCφ(Ŷ , YH0 , ρ̂) vs ˆASCφ(Ŷ , YH1 , ρ̂) for different φ. Smaller values indicate the two compared distributions are closer.
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E Experiments on GAN

E.1 Setup

We run experiments on MNIST [26] and Fashion-MNIST [46]. Both datasets contain gray-scale 28× 28 images with 10 labels {0, 1, · · · , 9}.
We define the even-λ setting as the subset containing all samples with odd labels and a λ fraction of samples with even labels randomly
selected from the training set. The rest 1 − λ fraction of samples with even labels form the deletion set X ′. We have similar definition for
odd-λ. In experiments, we let λ ∈ {0.6, 0.7, 0.8, 0.9}.

The learner is a DCGAN [36]. For pre-trained and re-trained models, we train each of them for 200 epochs. To obtain DRE, we optimize (5),
where the network T has the same architecture as the discriminator and is trained for 40 epochs. The learning rate is halved for stability.

All experiments were run on a single machine with one i9-9940X CPU (3.30GHz), one 2080Ti GPU, and 128GB memory.
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E.2 Results on MNIST

Question 2 (Fast Deletion). We generate m = 50K samples from pre-retrained, re-trained, and approximated models (with rejection
sampling bound B = 10). We then compute the label distributions of these samples based on pre-trained classifiers. 7 Results for each deletion
set (including means and standard errors for five random seeds) are shown in Fig. 23. We find the approximated model generates less (even or
odd) labels some data with these labels are deleted from the training set. The variances for deleting odd labels are higher than deleting even
labels.

(a) even-0.9 (b) odd-0.9

(c) even-0.8 (d) odd-0.8

(e) even-0.7 (f) odd-0.7

(g) even-0.6 (h) odd-0.6

Figure 23: Label distributions of samples from pre-trained, re-trained, and approximated models. The closeness between green and light blue
distributions indicate how well the fast deletion performs.

7 https://github.com/aaron-xichen/pytorch-playground (MIT license)
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Question 3 (Hypothesis Test). We generate m = 1000 samples for each YHi , i = 1, 2, and Ŷ . We visualize distributions of LR and ASC
statistics between YH0 and YH1 in Fig. 24. The separation between the distributions indicates how the DRE can distinguish samples between
pre-trained and re-trained models. The separation for odd-λ is better than even-λ. In terms of statistics, the LR is slightly better than ASC. In
terms of λ, a smaller λ does not lead to more separation.

(a) ASC for VDM-based DRE (φ(t) = log(t))

(b) ASC for VDM-based DRE (φ(t) = t log(t))

(c) LR for VDM-based DRE

Figure 24: (a)-(b) ˆASCφ(Ŷ , YH0 , ρ̂) vs ˆASCφ(Ŷ , YH1 , ρ̂). (c) LR(YH0 , ρ̂) vs LR(YH1 , ρ̂)
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E.3 Results on Fashion-MNIST

Question 2 (Fast Deletion). Label distributions for each deletion set (including means and standard errors for five random seeds) are shown
in Fig. 25. Similar to MNIST, we find the approximated model generates less (even or odd) labels some data with these labels are deleted from
the training set., and the variances for deleting odd labels are slightly higher than deleting even labels.

(a) even-0.9 (b) odd-0.9

(c) even-0.8 (d) odd-0.8

(e) even-0.7 (f) odd-0.7

(g) even-0.6 (h) odd-0.6

Figure 25: Label distributions of samples from pre-trained, re-trained, and approximated models. The closeness between green and light blue
distributions indicate how well the fast deletion performs.
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Question 3 (Hypothesis Test). We generate m = 1000 samples for each YHi , i = 1, 2, and Ŷ . We visualize distributions of LR and ASC
statistics between YH0 and YH1 in Fig. 26. The separation between the distributions indicates how the DRE can distinguish samples between
pre-trained and re-trained models. The separation is good for some deletion sets (e.g. λ = 0.6) while not obvious for others (e.g. λ = 0.9),
indicating performing the deletion test for Fashion-MNIST is harder than MNIST. There is no significant differences between LR and ASC
statistics.

(a) ASC for VDM-based DRE (φ(t) = log(t)) (b) ASC for VDM-based DRE (φ(t) = t log(t))

(c) LR for VDM-based DRE

Figure 26: (a)-(b) ˆASCφ(Ŷ , YH0 , ρ̂) vs ˆASCφ(Ŷ , YH1 , ρ̂). (c) LR(YH0 , ρ̂) vs LR(YH1 , ρ̂)
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E.4 Comparison of Generation Quality

We measure the Inception Scores (IS) of the pre-trained, re-trained, and approximate deletion model. The results for MNIST are shown in Table
4, and the results for Fashion-MNIST are shown in Table 5. The generation qualities are highly comparable to each other.

Deleted set IS (pre-trained) IS (re-trained) IS (approximate deletion)
even-0.9 7.66± 0.01 7.61± 0.05 7.56± 0.19
odd-0.9 7.66± 0.01 7.68± 0.10 7.64± 0.34
even-0.8 7.66± 0.01 7.60± 0.09 7.49± 0.05
odd-0.8 7.66± 0.00 7.67± 0.02 7.59± 0.20
even-0.7 7.66± 0.01 7.52± 0.08 7.47± 0.05
odd-0.7 7.66± 0.01 7.68± 0.07 7.65± 0.08
even-0.6 7.66± 0.01 7.29± 0.04 7.52± 0.13
odd-0.6 7.66± 0.01 7.60± 0.06 7.11± 0.83

Table 4: Inception Score Comparison (MNIST).

Deleted set IS (pre-trained) IS (re-trained) IS (approximate deletion)
even-0.9 6.62± 0.01 6.57± 0.16 6.69± 0.10
odd-0.9 6.62± 0.01 6.48± 0.06 6.28± 0.12
even-0.8 6.62± 0.01 6.55± 0.08 6.75± 0.06
odd-0.8 6.62± 0.01 6.40± 0.10 6.22± 0.14
even-0.7 6.62± 0.01 6.73± 0.08 6.76± 0.03
odd-0.7 6.62± 0.01 6.34± 0.13 6.27± 0.13
even-0.6 6.62± 0.01 6.45± 0.04 6.69± 0.08
odd-0.6 6.62± 0.01 6.14± 0.15 6.29± 0.08

Table 5: Inception Score Comparison (Fashion-MNIST).
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