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Abstract. Existing deep subspace clustering algorithms are dif-
ficult to scale to large-scale data. There are two reasons: Firstly,
the existing subspace clustering algorithms almost all need to find
the self-expressive coefficient matrix whose size is proportional to
the square of the data set size at once. Secondly, spectral cluster-
ing needs to solve the eigenvector of the affinity matrix. These two
points make the computational complexity of clustering very high
when the data scale is large. This paper proposes Self-Expressive
Network-Based Deep Embedded Subspace Clustering (SE-DESC), a
subspace clustering method that can be applied to large-scale single-
view and multi-view data. Using the idea of siamese networks, we
design a self-expressive network to calculate the self-expressive co-
efficient between two data points, reducing the parameter amount of
the self-expressive model to a constant. It can effectively avoid com-
putational complexity. Then, we use a deeply embedded network to
learn an embedding for each data point to map the data into the spec-
tral space, avoiding the high computational complexity of spectral
clustering. Extensive experiments demonstrate that SE-DESC im-
proves the clustering performance on large-scale data compared to
state-of-the-art methods.

1 Introduction

With the development of information technology and multimedia,
people are generating large amounts of data all the time in their daily
lives. How to mine the valuable information contained in big data has
become the focus of data mining. The data generated in real life is
often characterized by high dimensions and large scale, which brings
new challenges to data mining [2, 8].

The clustering [10] is an important task in the field of machine
learning and an important part of data analysis and mining. It has
a wide range of applications in the field of big data processing [9].
However, traditional clustering algorithms such as k-means [12] and
Gaussian Mixture Models [19] are often ineffective when dealing
with high-dimensional data. Therefore, subspace clustering, which
performs better when dealing with high-dimensional data, has grad-
ually received extensive attention.

Due to the great success of deep neural networks in recent
years, many deep subspace clustering algorithms have been proposed
[20, 16, 17]. One of the more popular is the auto-encoder-based deep
subspace clustering algorithm, whose main idea is to use the auto-
encoder to map the input data into a potentially low-dimensional
space. Then, we can use a general subspace clustering algorithm

∗ Corresponding Author. Email: zhouj@swu.edu.cn

such as a sparse subspace clustering algorithm to obtain the clus-
tering results [6]. The deep subspace clustering algorithms achieve
good results on nonlinear subspace data. For example, Ji et al. pro-
posed DSC-Net [14] whose basic idea is to add a fully connected
layer in the middle of the auto-encoder to perform the self-expressive
process. DASC network [34] improves the performance of the algo-
rithm by introducing an adversarial network mechanism in DSC-Net.
DSSC network [1] introduces a new encoder to learn the weights of
the features and finally fuses the features weighted to perform the
self-expression process.

However, existing auto-encoder-based subspace clustering algo-
rithms have limitations in accuracy. Meanwhile, the presence of the
subsequent spectral clustering and the fact that the number of pa-
rameters is proportional to the square of the data size resulted in the
high computational complexity of the algorithm. This leads to the
fact that these algorithms cannot be applied to large-scale data. In
addition, because each view provides a separate dataset, large-scale
multi-view data [22] also presents new challenges to subspace clus-
tering [32].

In this paper, we propose a Self-Expressive Network-Based Deep
Embedded Subspace Clustering (SE-DESC) for large-scale single-
view and multi-view data. The network is mainly divided into two
parts. The first part is a self-expressive network [31], which uses the
idea of Siamese Networks to calculate the self-expressive coefficients
between data points. It reduces the parameter amount of the self-
expression model to a constant. The second part is a deep embedded
network, which aims to solve the problem of the high computational
complexity of spectral clustering. Meanwhile, SE-DESC employs a
soft assignment to obtain the final results and uses target distributions
to facilitate training. We conducted experiments on six public large-
scale datasets including four single-view datasets and two multi-view
datasets to demonstrate the effectiveness of the algorithm. Our con-
tribution can be summarised as follows:

1. We propose SE-DESC, a subspace clustering method for large-
scale single-view and multi-view data. The problem of not being
able to scale the algorithm to large-scale data due to the high com-
putational complexity of subspace clustering is addressed using
deep networks.

2. We use self-expressive networks to calculate the self-expressive
coefficients between data points, reducing the number of param-
eters while giving the network the ability to generalize to unseen
new samples.

3. We use a deep embedded network to replace the computational
process of spectral clustering, eliminating the need to compute the
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eigenvectors of the affinity matrix and solving the problem of high
computational effort in spectral clustering.

2 Related Work

2.1 Sparse subspace clustering

Sparse subspace clustering (SSC) [7, 23] is based on a self-expressive
model that represents each data point as a linear combination of all
other data points. Therefore, we can obtain a self-expressive coef-
ficient matrix, which is solved by imposing a regularization term
constraint on the coefficient matrix. By solving, a set of sparse so-
lutions can be obtained. That is, each data point is represented only
by those data points from the same subspace as it. According to the
self-expression coefficient matrix obtained, the spectral clustering al-
gorithm is carried out to obtain the final clustering result.

Let X ∈ Rn×d be a data set with n data points, each with d
dimensions. Then, the self-expressive model can be expressed as:

xi = ci1x1 + ci2x2 + · · ·+ 0 · xi + · · ·+ cinxn =
n∑

j �=i

cijxj (1)

where cij is the self-expressive coefficient between xi and xj .
When a data point belongs to the same subspace as other data

points, the self-expression coefficient between each data point is non-
zero and as dense as possible. Instead, their self-expression coef-
ficients with other data points are zero and as sparse as possible.
To achieve this, we add a regularization term constraint on the self-
expressive coefficients:

min ||C||p s.t. X = XC, diag(C) = 0 (2)

where C is self-expressive coefficient matrix and p is the regular-
ization term. After deriving the self-expressive coefficient matrix, the
affinity matrix W is constructed as follows:

W =
|C|+ ∣∣CT

∣∣
2

(3)

Finally, a spectral clustering algorithm is performed based on the
affinity matrix W to obtain the final clustering results.

2.2 Spectral Clustering

The main idea of spectral clustering[24, 18] is to consider each sam-
ple as a node in the graph, and the weights of edges between nodes
as the similarity between samples. Then, the graph is cut into mul-
tiple subgraphs according to graph cut theory. The weights of edges
between nodes within each subgraph should be as large as possi-
ble, while the weights of edges between nodes in different subgraphs
should be as small as possible. Finally, each subgraph can be consid-
ered as a cluster.

X = {x1, x2, x3, . . . , xn, } denotes a data set with n data points,
and wij represents the similarity between each sample:

wij =

⎧⎨⎩
0 others

exp

(
−‖xi−xj‖2

2σ2

)
xi ∈ KNN (xj)

(4)

The Laplacian matrix L = D − W can be constructed from
W , where Dii =

∑
j Wij . Spectral clustering is to divide the

nodes in graph G into multiple subsets A1, A2, A3, . . . , Ak satis-
fying A1 ∪A2 ∪A3 ∪ . . .∪AK = V andAi ∩Aj = ∅(i �= j, i, j ∈
{1, 2, 3, . . . ,K}). Define the cut function as:

cut (A1, A2, . . . , Ak) =
1

2

k∑
i=1

f
(
Ai, Ai

)
(5)

f(A,B) =
∑

i∈A,j∈B wij represents the sum of the weights of
all connected edges between two subgraphs. In order to achieve the
objective of having the largest possible edge weights between nodes
in the same subset and the smallest possible edge weights between
different subsets, the cut function is minimized. To avoid the influ-
ence of outlier points, the optimization scheme is RatioCut cut.
Minimize the cut function and the number of nodes in each sub-
graph to avoid the situation where there are particularly few nodes
in a particular subgraph. That is:

RatioCut (A1, A2, . . . , Ak) =
1

2

k∑
i=1

f
(
Ai, Ai

)
|Ai| (6)

|Ai| denotes the number of nodes of subgraph Ai. Since the
above problem is an NP-Hard puzzle, define k indicator vectors
hj = {h1j , h2j , . . . , hnj} , j = 1, 2, . . . , k, and the following con-
ditions are satisfied:

hij =

{
0 vi /∈ Aj
1√|Aj | vi ∈ Aj

(7)

When the i-th node does not belong to the j-th subgraph, the value
of the corresponding position of the indicator vector is 0, otherwise,
the value is 1√|Aj | .

According to the properties of the Laplacian matrix, there are:

hT
i Lhi =

1

2

∑
m=1

∑
n=1

wmn (him − hin)
2

=
cut

(
Ai, Ai

)
|Ai|

= RatioCut
(
Ai, Ai

)
(8)

At this point, hi indicates that the indicator vectors are arranged in
rows, and from the definition of the indicator vectors. We know that
they are orthogonal to each other. It is as follows:

RatioCut (A1 , A2, . . . , Ak) =
k∑

i=1

hT
i Lhi

=
k∑

i=1

(
HTLH

)
ii

= Tr
(
HTLH

)
(9)

Then, the problem of solving the minimum value of
RatioCut (A1, A2, . . . , Ak) converts to

argmin
H

Tr
(
HTLH

)
s.t. HTH = I (10)

The maximum value of hT
i Lhi is the maximum eigenvalue of the

matrix L and the minimum value is the minimum eigenvalue of the
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matrix L. Thus, we convert the problem of cutting the graph into k
groupings into finding the eigenvectors h1, h2, . . . , hk correspond-
ing to the first k smallest eigenvalues of the graph Laplacian matrix
L and finding the quadratic sum of L (the cut consumes the least en-
ergy), i.e.,

∑k
i=1 h

T
i Lhi. The matrix H = [h1,h2, . . . ,hk] is then

treated as a new dataset with k dimensional features n samples for
k-means clustering. We can see that it is clustered for each sample
and the clustering of the number of categories is k, i.e., clustering for
each row of H (assumed to be denoted as hri, i = 1, 2, . . . , n).

3 Method

As shown in Figure 1, the SE-DESC network consists of SENet and
DESC. The first part is a self-expressive network based on SENet
[31]. It is mainly used to solve for self-expressive coefficients wij

between data points xi and xj . The second part is a multilayer per-
ceptron network with an orthogonal layer for mapping data points
into an embedding space. Finally the probability of the data points
belonging to each cluster is obtained through the fully connected
layer and softmax layer.

Figure 1: SE-DESC network structure. The network have consisted of SENet
and DESC. SENet is mainly used to solve for self-expressive coefficients wij

between data points xi and xj . DESC is a multilayer perceptron network with
orthogonal layers for mapping data points into an embedding space.

The training of the whole network is also divided into two steps:
the first step is to train the self-expressive network based on the loss
LSE , and the second step is to train the DESC network according

to according to the loss LDESC , which consists of two parts. Lspec

is computed by embedding space and self-expressive network output
to obtain the orthogonal embedding representation.Lce is the cross-
entropy loss of the soft assignment and target distributions used to
update the soft assignment, i.e. the clustering result.When the train-
ing is completed, the data to be clustered can be input into the net-
work to get the clusters to which the data points belong. It can be
found that SE-DESC has the ability to generalize to unseen new sam-
ples. The following subsections will develop a detailed description of
the SE-DESC method.

3.1 Self-expressive network

The self-expressive network is based on the idea of siamese network
and consists of two independent branches of a multilayer percep-
tron with a residual structure which is called the query network and
the key network. The residual structure is designed to make network
training easier. Unlike siamese network, the two branches do not
share parameters and do not need to define positive and negative sam-
ples, and the loss functions are different. As shown in the left half of
Figure 1, the two data points on the input side are passed through the
query and key networks to obtain their respective embedding repre-
sentations. Then, the two output vectors are inner-produced to obtain
an output value. Finally, an activation function is used to obtain the
final output, which is the self-expressive coefficient between the data
points. The activation function uses a soft threshold activation func-
tion, which can filter out the smaller coefficients to achieve a sparse
effect and the threshold is learnable. The loss function for the self-
expressive network training process is as follows:

LSE =
n∑

j=1

l
(
xj , X; Θ

)
(11)

l(xj , X; Θ)is the sum of the self-expressive loss and the coeffi-
cient regularization loss, specifically:

l
(
xj , X; Θ

)
=

γ

2
‖xj −

∑
i �=j

f
(
xi, xj ; Θ

)
xi‖22

+
∑
i �=j

r(f(xi, xj ; Θ)) (12)

where the self-expressive loss expects any data point to be rep-
resented as a linear combination of other data points from the same
subspace.f(·) denotes the self-expressive network mapping function,
while Θ is a parameter of the network. Specifically:

f
(
xi, xj ; Θ

)
= σ

(
qTj ki

)
(13)

Where σ(·) denotes the soft threshold activation function that
filters the smaller coefficients and retains only the higher self-
expressive coefficients to achieve sparsity. qj denotes the embedding
representation obtained by xj after the query network and ki denotes
the embedding representation obtained by xi after the key network.
r(·) is a regular term added to the self-expression coefficients. To

alleviate the problem of over-segmentation caused by the L1 norm
that splits data points belonging to the same subspace, we choose the
elastic net regularization proposed in [28]. It is a weighted sum of
the �1 and �2 norm, where λ is a balancing parameter.

r(·) = λ‖ · ‖+ 1− λ

2
(·)2 (14)
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After the training is completed, the network parameters are fixed
and the data is input for self-expressive coefficients. The data points
to be input are entered into the two branches of the network and the
output is the self-expressive coefficients between them:

wij = f
(
xi, xj ; Θ

)
(15)

To be consistent with SSC[7], wij and wji are not necessarily
equal, we make the query network and the key network did not share
parameters.

For large-scale data, only a fraction of it is selected for training, so
the computational effort is greatly reduced. The existing deep sub-
space clustering algorithms feed the entire dataset directly into the
model for self-expressive. The number of parameters is proportional
to the square of the data size. Here, the number of parameters in
the self-expressive network is a constant, avoiding the O

(
n2

)
com-

putational complexity. At the time of inference, the self-expressive
network can be extended to the entire dataset as the data distribution
is consistent.

3.2 Deep Embedded Subspace Clustering

The deep embedded network component consists of a multilayer per-
ceptron with orthogonal layers designed to map the input data into
the embedding space, and the objective function[21] of this compo-
nent is:

Lspec =
1

n2

n∑
i,j=1

wij ‖ pi − pj ‖2 (16)

Where pi and pj are the embedding representations obtained af-
ter data xi and xj have passed through the DESC network. wij is a
self-expressive coefficient matrix. By minimizing Lspec, the lower-
dimensional representations of data points with greater similarity
(i.e., greater wij) are made more similar, and the output is forced
to be orthogonalized in order to avoid mapping all sample points into
the same embedding space. Instead of directly using the output of
the self-expressive network as wij , we use the idea from the DSESC
algorithm [33].When the data input to the self-expressive network is
a Batch, the self-expressive coefficient matrix is regarded as a repre-
sentation of the sample. The KNN algorithm is used to construct the
affinity matrix based on the self-expressive coefficients:

wij =

{
1 ifci ∈ KNN(cj)
0 others

(17)

Obviously, the size of the input Batch plays an important role and
the experimental section will analyze the value of Batch size.

To avoid DESC from mapping all data points to the same point in
the embedding space and getting nonsensical solutions, we set the
last layer of the DESC network as an orthogonal layer can make
the output data points orthogonalized. According to [21], it can be
achieved by QR factorization. The square root method (Cholesky
decomposition) is one way to achieve QR factorization, which can
represent a symmetric positive definite matrix as a decomposition of
the product of a lower triangular matrix L and its transpose. Specifi-
cally, let Ỹ be the input of the orthogonal layer, then the square root
method can be expressed as:

Ỹ T Ỹ = LLT (18)

L is the orthogonal matrix, setting
√
m

(
L−1

)T as the weight of
the orthogonal layer can make the output vector orthogonalized. m

is the Batch size of the input data. Here, Batch size will have some
influence. We will analyze the appropriate value of Batch size in our
experiments.

Furthermore, to avoid post-processing, we add a set of classifica-
tion layers after the orthogonal layers. The final output is the proba-
bility that a data point belongs to each cluster, which we call a soft
assignment due to the lack of accuracy of this classification. Let qij
denote the probability of assigning sample i to cluster j. Then we in-
troduce a target distribution to iteratively optimise by learning from
high-confidence assignments. Let sij be the target distribution corre-
sponding to qij , then:

sij =

q2ij∑
i qij∑

j

(
q2ij∑
i qij

) (19)

The soft assignment, i.e. the clustering result, is updated by min-
imising the cross-entropy loss between the soft assignment and the
target distribution. Then the loss function for this part is:

Lce = CrossEntropy(S‖Q) = −
∑
i

qi log (si) (20)

This strengthens the prediction by learning from the high confi-
dence of soft assignment. Then the loss function of the entire DESC
network is:

LDESC = Lspec + βLce (21)

Where β is a hyperparameter to control the proportion of the loss
function. The network also uses the Adam optimizer to optimize the
final training loss LDESC .

After the final network is trained, the data to be clustered is input
to get the probability of belonging to each cluster. The cluster that
corresponds to the largest of these values is the cluster to which the
data point belongs.The SE-DESC network training is divided into
two steps, the first step is to train the self-expressive network. Its
training process is shown in Algorithm 1. The second step is to train
the DESC network, and its training process is shown in Algorithm 2.
Since there is no need to solve all the self-expressive coefficients at
once and no need to perform the operation of solving the eigenvector,
the computational complexity of the algorithm is greatly reduced and
can be extended to large-scale data sets.

Algorithm 1 Training process of self-expressive network
Input: training data X , hyperparameters γ, λ, maximum number of

iterations T , t = 0
1: repeat

2: Randomly sample a data point xj

3: xj is passed through the query network to obtain qj
4: For xi in X and j �= i:
5: xi is passed through the key network to get ki
6: Calculate the self-expressive coefficient cij = qTj ki
7: Calculate the value of the loss function according to Eq.12
8: Use Adam optimizer for back propagation
9: t = t+ 1

10: until t ≥ T or converge
Output: Trained self-expressive network
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Algorithm 2 SE-DESC network training flow
Input: training data X , hyperparameter β , Batch size m, maximum

number of iterations T , number of clustering k
1: The self-expressive network is trained according to Algorithm 1
2: repeat

3: Random sampling m samples form a Batch data input to
DESC to get the output of the orthogonal layer Ỹ

4: Calculate the cholesky decomposition: LLT = Ỹ T Ỹ ;
5: Set the weight of DESC network orthogonal layer

as:
√
m(L−1)

T ; Randomly sampling m samples to form
a Batch is input to both the query and key networks and the
DESC network to obtain the self-expressive coefficient matrix
and the embedding representation

6: Construct the similarity matrix according to Eq.17
7: Calculate the loss function according to Eq.21
8: Update the network parameters using the backpropagation al-

gorithm
9: t = t+ 1

10: until t ≥ T or converge

4 Experiments

4.1 Datasets

In order to verify the effectiveness of the SE-DESC algorithm, we
select six public datasets of a relatively large scale for our experi-
ments. It includes four single-view image datasets of MNIST, Fash-
ionMNIST, CIFAR10, and CIFAR100 and two multi-view datasets
of Caltech101 and NUSWIDEOBJ. The statistical information of the
experimental dataset is shown in Table 1.

• MNIST: handwritten digital grayscale images, including numbers
0-9, 60,000 training data, and 10,000 test data, totaling 70,000
images. Its size is 28×28.

• FashionMNIST: Grayscale images of fashion products, including
10 products with different styles such as jackets, pants, shirts,
dresses, bags, and so on. It is divided into training set and test
set with a total of 70,000 images, and the size is also 28×28.

• CIFAR10/100: natural color images. Cifar10 has 10 classes with
6000 images per class. Cifar100 has 100 classes with 600 images
per class. Compared to CIFAR10, CIFAR100 is more challenging
due to a large number of categories.

• Caltech101: An image dataset created by the California Institute
of Technology with 101 classes, each image is represented by six
feature sets: Gabor, Wavelet Moments, Centrist, HOG, GIST, and
LBP. a subset of which is selected for this experiment, with 2386
images and containing 20 classes.

• NUSWIDEOBJ: A web image dataset created by the Media
Search Lab at the National University of Singapore, with 81
classes including 5 views. A total of 30,000 samples from 31 of
these classes are selected here for the experiments.

For MNIST and FashionMNIST, we use convolution networks
[3] to extract 3472-dimensional features and use the PCA algorithm
to reduce to 500 dimensions. For CIFAR10 and CIFAR100, 128-
dimensional features are extracted using the method of MCR2 pro-
posed in [30]. MCR2 extracts the features of an image by data
enhancement techniques when unlabeled, and its extracted features
have the property of subspace distribution. All feature vectors are
normalized using the �2 norm. In the following subsections, we
present the experimental results.

Table 1: Experimental datasets statistics.

Datasets n size clusters

MNIST 70000 28×28 10
FashionMNIST 70000 28×28 10

CIFAR10 60000 32×32×3 10
CIFAR100 60000 32×32×3 100
Caltech101 2386 48,40,254,1984,512,928 20

NUSWIDEOBJ 30000 65,226,145,74,129 31

4.2 Experimental results

4.2.1 Contrast Method

Since the auto-encoder-based subspace clustering cannot be ex-
tended to large-scale datasets, several traditional clustering methods
and several deep clustering methods are selected for the comparison
method. It includes two traditional clustering algorithms, k-means,
and spectral clustering, EnSC [28] and SSC-OMP [29], two scalable
sparse subspace clustering algorithms, and DEC [26], IDEC [11],
VaDE [15], JULE [27], DAC [5], DCCM [25], PICA [13], SENet
[31], and EDESC [4] nine deep clustering methods, where SENet
and EDESC are deep subspace clustering algorithms. Here, we in-
troduce nine deep clustering methods.

• DEC [26]: the most classical deep clustering algorithm. It learns
the embedding representation of the samples by auto-encoder and
learns a set of centroids to compute a soft assignment. It uses the
KL divergence of the soft distribution and the target distribution
as the clustering loss to optimize the clustering centroids.

• IDEC [11]: an improved deep embedding clustering algorithm. It
builds on DEC to optimize the clustering label assignment feature
by integrating the clustering loss and the auto-encoder reconstruc-
tion loss.

• VaDE [15]: a VAE-based deep clustering method that models the
process of data generation through Gaussian mixture models and
deep neural networks. Optimization is performed using stochas-
tic gradient variational inference Bayesian and reparameterization
techniques.

• JULE [27]: a deep clustering algorithm based on a specific clus-
tering loss. It uses the agglomerative clustering results of the im-
ages as supervised signals to learn the embedding representations
which in turn will benefit the image clustering. This is iterated
until convergence.

• DAC [5]: a single-stage convolutional network-based image clus-
tering method. It treats pairs of images as a binary classification
problem, i.e., two images belong to one class or not. The cosine
distance between the image label features is used as the similarity
so that the learned label features tend to be one-hot vectors. An al-
ternating iterative adaptive algorithm is also used to optimize the
model.

• DCCM [25]: a deep integrated relevance mining clustering algo-
rithm. Three aspects of pseudo-supervision, data augmentation,
and triple mutual information are used to explore the various cor-
relations behind unlabeled data.

• PICA [13]: a divisional confidence maximization clustering algo-
rithm. Learn the semantically most reasonable data partitioning
by maximizing the global partitioning confidence of the clustering
method, which enables all clusters to be mapped one-to-one to the
true class. It is implemented by introducing microdividable uncer-
tainty metrics and their stochastic approximations and proposing
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an objective loss function based on minimizing uncertainty met-
rics.

• SENet [31]: drawing on the idea of Siamese networks to calculate
the self-expressive coefficients between data points, training this
network only requires sampling part of the data. Thus, it avoids
the higher computational complexity.

• EDESC [4]: This algorithm learns a set of vector bases for each
subspace, satisfying that each data point only has a larger inner
product with the vector bases belonging to that subspace and a
smaller inner product with the vector bases of other subspaces.
Based on this, the subspace to which each data point belongs can
be found.

4.2.2 Experimental setup

The self-expressive network is composed of three fully-connected
layers with residual structure and dimensions of 1024-1024-
1024.The deep embedded network uses three fully-connected layers
with dimensions of 1024-512-512, and the activation function also
adopts ReLU.Since the large-scale training task is more demanding
on the hardware of the machine, we use an RTX 3080 graphics card
to accelerate the training of the network. The hyperparameter λ is
set to 0.9 and γ is set to 200 for the self-expressive network, and the
hyperparameter β is set to 200 for the deep embedded network (the
optimal parameter value is not fixed for each dataset, so we need to
manually adjust the parameter value size in order to find the optimal
parameter for each dataset), and the learning rate is set to 0.0001.
The random sampling size is set to 0.0001 for MNIST, FashionM-
NIST, and CIFAR10, and the random sampling size is set to 0.0001
for MNIST, FashionMNIST, and CIFAR10. For MNIST, Fashion-
MNIST and CIFAR10, 5000 samples are randomly sampled as the
training set, 2000 epochs are trained for the self-expressive network,
and 1000 epochs are trained for the deep embedded network. for the
CIFAR100 dataset, due to the large number of categories, 10,000
samples are randomly sampled as the training set. The evaluation
metrics are also selected as ACC and NMI values, meanwhile, since
the size of the training set has a direct impact on the training process
as well as the training results, we also analysed the training time of
the networks under different sizes of training sets.

4.2.3 Analysis of experimental results

Firstly, we conducted a comparison experiment, and the results are
shown in Table 2 (– indicates that the code of the method is not open-
source and there is no corresponding data in the paper). The exper-
imental results in Table 2 show that: on the MNIST dataset, the ac-
curacy of SE-DESC is only more than 60%, which is a big gap com-
pared with the comparison algorithms, and we will analyse the reason
for this in our future work; on the FashionMNIST dataset, SE-DESC
has a big gap compared with SENet but is still competitive compared
with most other comparison algorithms; on the CIFAR10 dataset,
SE-DESC has a big gap compared with SENet but is still compet-
itive compared with most other comparison algorithms. On the CI-
FAR10 dataset, SE-DESC achieves good results, second only to the
SENet algorithm; on the CIFAR100 dataset, one possible reason for
the poor results of SE-DESC is that this dataset has a large number
of categories, and SE-DESC does not work well with datasets that
have a large number of categories. However, although the experi-
ments on the CIFAR100 dataset did not achieve the expected results,
the results are still competitive. In summary, the SE-DESC algorithm
achieved some results on the four large-scale single-view datasets

and achieved scalability compared to other selfencoder-based sub-
space clustering algorithms. But the results were not good on the
MNIST dataset, which needs to be further analysed. In addition,
the SE-DESC algorithm is not effective when encountering datasets
with many categories such as CIFAR100, so how to deal with high-
dimensional datasets with a large number of categories will be a valu-
able research direction in the future.

Table 2: Compare experimental results on a single-view dataset.

Methods MNIST FashionMNIST CIFAR10 CIFAR100

ACC NMI ACC NMI ACC NMI ACC NMI

k-means 0.541 0.507 0.505 0.578 0.525 0.589 0.130 0.084
SC 0.728 0.856 0.625 0.700 0.455 0.574 0.136 0.090

EnSC 0.980 0.945 0.672 0.705 0.613 0.601 0.347 0.362
SSC-OMP 0.928 0.842 0.274 0.421 0.326 0.498 0.051 0.209

DEC 0.865 0.837 0.518 0.546 0.301 0.257 0.185 0.136
IDEC 0.881 0.867 0.592 0.604 0.316 0.273 0.191 0.140
VaDE – – 0.578 0.630 0.156 0.036 – –
JULE 0.964 0.913 0.563 0.608 0.272 0.192 0.137 0.103
DAC 0.978 0.935 0.615 0.632 0.522 0.396 0.238 0.185

DCCM – – – – 0.623 0.496 0.327 0.285
PICA – – – – 0.696 0.591 0.337 0.310
SENet 0.968 0.918 0.697 0.663 0.765 0.655 0.280 0.423

EDESC 0.913 0.862 0.631 0.670 0.627 0.464 0.385 0.370
SE-DESC 0.589 0.590 0.576 0.617 0.710 0.626 0.286 0.426

Figure 2: Training time for different sizes of training datasets.

Next, we conducted an experimental analysis on the impact of
Batch size on the clustering results. The size starts from 100 and
increases to 700 at an interval of 100, and observes the change of the
ACC value. The experimental results are shown in Table 3. The val-
ues in the table represent the ACC values of each data set. It can be
observed that as the Batch size increases from 100 to 700, the clus-
tering accuracy on all datasets fluctuates. We can see an overall trend
of increasing and then decreasing, while the best results are achieved
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Table 3: Experimental results of Batch size analysis

Batch Size MNIST FashionMIST CIFAR10 CIFAR100

100 0.4881 0.4375 0.4603 0.1565
200 0.5079 0.4786 0.5954 0.2163
300 0.5103 0.4914 0.6267 0.2538
400 0.5389 0.4870 0.6630 0.2640
500 0.5624 0.5651 0.7102 0.2858

600 0.4807 0.5762 0.6644 0.2703
700 0.5889 0.5169 0.6856 0.2731

on all datasets when the value is between 500 and 700. Therefore,
we set 500 as the best Batch size value for training. We can observe
the overall trend of increasing and then decreasing on most of the
datasets in Figure 3. This also indicates that 500 is a relatively suit-
able Batch size value.

Figure 3: Batch size analysis curve.

Figure 4: Online clustering plots of the FashionMNIST dataset and the CI-
FAR10 dataset.

Then, when the input is batch, we compare the clustering effect
of using the self-expressive coefficients directly as the affinity matrix
with that of using the KNN algorithm to obtain the affinity matrix
after the self-expressive coefficients. The experimental results (ACC
values) are shown in Table 4.

It can be found from Table 4 that the KNN algorithm is still a
relatively obvious improvement for constructing the affinity matrix
for clustering on most data sets. For MNIST, using the KNN algo-
rithm to construct the affinity matrix resulted in an improvement of
around 13% for the clustering ACC metric, while for FashionMNIST
it improved by around 7%, which verifies the effectiveness of it. One

possible reason for our analysis is that each sample only considers
the similarity between its k nearest neighbors, allowing the network
to learn the target more precisely, thus improving the performance of
the algorithm.

Table 4: Results of KNN module ablation experiment (ACC).

MNIST FashionMNIST CIFAR10 CIFAR100

non-KNN 0.4527 0.5074 0.6444 0.2821
KNN 0.5889 0.5762 0.7102 0.2858

Finally, we conducted online clustering experiments on the Fash-
ionMNIST and CIFAR10 datasets. We observed the online clustering
effect of the algorithm by recording the changes in ACC values dur-
ing the training process. The results of which are shown in Figure
4 (the left figure shows the experimental results of the FashionM-
NIST dataset, and the right figure shows the experimental results of
the CIFAR10 dataset). Figure 4 shows that the accuracy of the SE-
DESC algorithm can steadily increase during the training process and
gradually reach the convergence state. To verify the performance on
multi-view large-scale data, we conducted experiments on a large-
scale multi-view dataset. As shown in Table 5, the SE-DESC algo-
rithm is closer to the best result on the NUSWIDEOBJ dataset. On
the Caltech101 dataset, SE-DESC was less effective compared to the
comparison algorithm, a possible reason for this is that Caltech101
has a large number of categories and SE-DESC does not cluster well
on data with a large number of categories.

Table 5: Experimental results on multi-view datasets.

Methods NUSWIDEOBJ Caltech101

ACC NMI ACC NMI

LMVSC 0.1553 0.1295 0.1449 0.3332
MGGL 0.1204 0.0573 0.1412 0.2612
SMVSC 0.1916 0.1217 0.2750 0.3510

EOMSC-CA 0.1968 0.1327 0.2232 0.2470
SE-DESC 0.1933 0.0857 0.1707 0.1214

5 Conclusion

We propose a deep embedding subspace clustering algorithm based
on self-expressive networks, which focuses on the problem of sub-
space clustering on large-scale data. The network consists of a self-
expressive network to solve for the self-expressive coefficients be-
tween two data points and a deep embedded network to map sam-
ples to the embedding space instead of spectral clustering. SE-
DESC achieves good results on four common large-scale single-view
datasets. However, the performance improvement of SE-DESC is not
obvious on datasets with many categories and large-scale multi-view
datasets. It will be a future research direction to design a better algo-
rithm for large-scale multi-view datasets.
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