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Abstract. Normalized-cut graph partitioning aims to divide the set
of nodes in a graph into k disjoint clusters to minimize the fraction
of the total edges between any cluster and all other clusters. In this
paper, we consider a fair variant of the partitioning problem wherein
nodes are characterized by a categorical sensitive attribute (e.g., gen-
der or race) indicating membership to different demographic groups.
Our goal is to ensure that each group is approximately proportion-
ally represented in each cluster while minimizing the normalized cut
value. To resolve this problem, we propose a two-phase spectral al-
gorithm called FNM. In the first phase, we add an augmented La-
grangian term based on our fairness criteria to the objective func-
tion for obtaining a fairer spectral node embedding. Then, in the
second phase, we design a rounding scheme to produce k clusters
from the fair embedding that effectively trades off fairness and par-
tition quality. Through comprehensive experiments on nine bench-
mark datasets, we demonstrate the superior performance of FNM
compared with three baseline methods.

1 Introduction

Machine learning algorithms are widely used to make decisions that
can directly affect people’s lives in various domains, including bank-
ing [22], healthcare [11], education [41], and criminal justice [9], to
name a few. However, a large body of work [18, 42] has indicated
that these algorithms, if left unchecked, often present discriminatory
outcomes for particular demographic groups. To address such con-
cerns, recent studies have incorporated different notions of fairness
into unsupervised learning problems [12, 16, 33, 39]. In particular,
Chierichetti et al. [16] pioneered fair clustering for a set of points
represented as vectors in Euclidean space and further characterized
by a categorical sensitive attribute (e.g., gender or race) indicating
membership in a demographic group (e.g., female or Asian). In addi-
tion to minimizing the typical clustering objective, the problem also
requires that the proportion of each demographic group within each
cluster is roughly the same as its proportion in the dataset population
(referred to as proportional fairness). Beyond clustering, however,
fairness in the partitioning of graphs is relatively under-explored de-
spite its broad applications to community detection [15, 44, 54] and
computer vision [14, 60].

In this paper, we aim to fill this gap by defining a fair version of the
normalized-cut graph partitioning problem [50,59]. Informally, for a
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graph G = (V,E), the original partitioning objective is to divide the
set V of nodes into k disjoint clusters such that the fractions of inter-
cluster edges are minimized while the fractions of intra-cluster edges
are maximized. Such an objective is measured by the normalized cut
(Ncut) value. In our fair variant, we further assume that each node be-
longs to one of m sensitive groups and consider the notion of range-
based proportional fairness [7] generalized from that in [16]. Specif-
ically, this requires that, in each of the k clusters, the proportion of
nodes of any group c ∈ {1, 2, . . . ,m} is at least βc (lower bound)
and at most αc (upper bound) for two parameters βc, αc ∈ [0, 1]. Our
overall objective, thus, is to produce a k-partition that minimizes the
Ncut value while also satisfying the above fairness constraint.

To the best of our knowledge, the most relevant algorithms to our
problem are those for spectral clustering with group fairness con-
straints [34,55] due to the inherent connection between spectral clus-
tering and normalized-cut graph partitioning. But those algorithms
suffer from two key limitations when applied to graph partitioning.
First, although they incorporate a special case of the range-based fair-
ness constraint with αc = βc, ∀c ∈ {1, 2, . . . ,m} (i.e., the original
proportional fairness in [16]) into spectral node embedding, they still
consider running standard k-means [37] on node vectors to obtain a
k-partition. Consequently, they cannot guarantee how close the par-
titioning is to satisfying the (original or range-based) fairness con-
straint. Second, they do not provide any tunable trade-off between
fairness and partition quality.

Our Contributions. In this paper, we propose a novel algorithmic
framework for fair normalized-cut graph partitioning that addresses
the above two limitations. That is, we parameterize the desired level
of range-based proportional fairness as a constraint to be satisfied
and naturally trade off the Ncut value (i.e., quality) and proportional-
ity (i.e., fairness) of the partitioning. Similar to [50,59], we transform
the problem of minimizing the Ncut value of a graph into an equiv-
alent trace minimization problem on its Laplacian matrix. Generally,
our algorithm, which we refer to as FNM, comprises two phases. In
the first phase, we relax the original integer trace minimization prob-
lem to allow fractional memberships, add an augmented Lagrangian
term [46] based on our fairness criteria to the objective function of
the relaxed problem, and use the OptStiefelGBB method [58] to ob-
tain a fairer embedding from which the partitioning found is closer
to being fair. Then, in the second phase, we apply a novel rounding
scheme, adapted from Lloyd’s k-means clustering algorithm [37],
to generate a fair partitioning from node vectors in the embedding

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230416

1389



space. Specifically, we initialize the cluster centers, alternately assign
vectors fairly to clusters, and update the centers for a fixed number
of iterations or until the stopping condition is met. Each assignment
step first solves a linear program to produce k nearly-fair clusters and
then performs reassignments to construct strictly-fair clusters with-
out significantly reducing partition quality.

Finally, we evaluate the performance of our FNM algorithm on
nine benchmarking datasets ranging in size from 155 to 1.6M nodes
along three metrics – partition quality, fairness, and time efficiency,
compared to three competitive baselines and ten variants for abla-
tion study. Our key findings are summarized below: i) FNM offers
improved trade-offs between fairness and partition quality compared
to the three baselines while scaling effectively to million-node-sized
graphs; ii) our proposed fair embedding and rounding algorithms in-
dependently and jointly improve the quality of graph partitions with
range-based proportional fairness constraints compared to general
node embeddings and rounding schemes.

1.1 Other Related Works

Min-Cut Graph Partitioning. Partitioning nodes in a graph into dis-
joint subsets to minimize an objective function, such as ratio cut [28],
normalized cut [50], and Cheeger cut [10], is a fundamental com-
binatorial optimization problem. Since all those graph partitioning
problems are NP-hard [28, 50], different heuristic algorithms were
designed for them, among which spectral methods [28, 29, 45, 50]
have attracted the most attention. The basic idea of spectral methods
is to relax the original integer minimization problems into continuous
optimization problems, which are solved by computing the eigen-
vectors of the Laplacian matrix, and to find the partitioning using
k-means or an alternative rounding method. Other relaxation-based
methods [13, 31, 35] improved the efficiency over original spectral
methods by avoiding eigendecomposition. However, none of them
incorporate the notion of fairness into graph partitioning problems.

Fair Clustering. There has been rich literature on fair clustering al-
gorithms. Chierichetti et al. [16] first introduced the notion of pro-
portional fairness for clustering and then proposed fairlet decompo-
sition algorithms for fair k-median and k-center clustering in the case
of two groups. Following this work, the problem has been further
generalized to handle more than two groups [30], permit lower and
upper bounds on the fraction of points from a group [7,8,27], and al-
low probabilistic group memberships [21]. In addition, more efficient
fair clustering algorithms have been proposed based on faster fairlet
computation [5] or coresets [30,49]. Then, several studies [19,20,61]
explored how to achieve better trade-offs between the fairness and
clustering objectives. Other fair variants of clustering problems fo-
cused on different fairness notions, including individual-level fair-
ness [39, 43, 53], fair center selection [33, 52], and minimax losses
among groups [17, 24, 40]. However, all the above methods are pri-
marily designed for i.i.d. data rather than graph data. They cannot
be directly applied to graph partitioning because graphs are high-
dimensional and sparse, and they will incur huge computational costs
and often return inferior results due to the curse of dimensionality.

There were also a few studies on fairness in spectral methods and
other graph clustering problems. In addition to [34, 55], Gupta and
Dukkipati [26] further investigated spectral clustering with individ-
ual fairness constraints. Moreover, Ahmadian et al. [1], Friggstad and
Mousavi [23], and Ahmadian and Negahbani [2] studied fair correla-
tion clustering on signed graphs. Anagnostopoulos et al. [3] applied
spectral methods to fair densest subgraph discovery on graphs. These
algorithms are interesting but not comparable to our algorithm.

2 Problem Definition

Normalized-Cut Graph Partitioning. Define [n] := {1, 2, . . . , n}
for any positive integer n. Let G = (V,E) be an undirected graph,
where V = [n] is the set of n nodes and E ⊆ V × V is the set of
edges. We use W = (wij)i,j∈[n] to denote the adjacency matrix of
G, where each entry wij ≥ 0 is the weight of edge (i, j) (always
equal to 1 for the unweighted case) if it exists or 0 otherwise. We
consider wii = 0 for any i ∈ [n]. The degree matrix D = (di)i∈[n]

is a diagonal matrix with the degree di =
∑n

j=1 wij ≥ 0 of each
node i on its diagonal. Given an undirected graph G, an integer k ≥
2, we aim to find a partitioning C = {C1, . . . , Ck} of V into k
disjoint clusters, i.e.,

⋃k
l=1 Cl = V and Cl ∩ Cl′ = ∅ for any l �=

l′ ∈ [k], to minimize the normalized cut [59] (Ncut) value as follows:

Ncut(C) :=
k∑

l=1

cut(Cl)

vol(Cl)
=

k∑
l=1

∑
i∈Cl,j∈V \Cl

wij∑
i∈Cl,j∈V wij

. (1)

The Ncut minimization problem is well-known as NP-hard [50].
Fairness Constraint. In the fair variant of graph partitioning, we
consider that the node set V consists of several demographic groups
defined by a categorical sensitive attribute, e.g., gender or race. For-
mally, suppose that V is divided into m disjoint groups indexed by
[m], and an indicator function φ : [n] 	→ [m] maps each node i ∈ [n]
to the group φ(i) it belongs to. Let Vc = {i ∈ [n] : φ(i) = c} be the
subset of nodes from group c in V . We assume that

⋃m
c=1 Vc = V

and Vc ∩ Vc′ = ∅, ∀c �= c′ ∈ [m]. For ease of presentation, we de-
note the group membership as an indicator matrix M ∈ {0, 1}n×m,
where Mi,c = 1 if φ(i) = c and 0 otherwise. We follow a no-
tion of range-based proportional fairness in [7] to require that every
demographic group is approximately proportionally represented in
all the k clusters. We define the fairness constraint by two vectors
α,β ∈ [0, 1]m that specify the upper and lower bounds αc, βc on
the percentage of nodes from group c. We say a partitioning C is
(α,β)-proportionally fair if βc ≤ |Vc∩Cl|

|Cl| ≤ αc for any Cl and Vc.
In practice, we parameterize α,β by a fairness variable σ ∈ [0, 1] as
αc = min{rc/(1−σ), 1} and βc = rc·(1−σ), where rc = |Vc|/n.1

For example, if the percentage of females is 60% in the popula-
tion of all nodes, the fairness constraint requires that the percentage
of females in each cluster should be between 48% and 75% when
σ = 0.2. The value of σ can be interpreted as how loose the fairness
constraint is, where σ = 0 corresponds to every group in each cluster
having the same ratio as that group in the population, and σ = 1 cor-
responds to no fairness constraint at all. Given all the above notions,
we formally define the normalized-cut graph partitioning problem
under (α,β)-proportional fairness as follows.

Definition 1 Given an undirected graph G = (V,E), a set of m
groups V1, . . . , Vm ⊆ V , two fairness vectors α,β ∈ [0, 1]m, and
an integer k ≥ 2, find an (α,β)-proportionally fair partitioning
C = {C1, . . . , Ck} of V into k disjoint clusters such that Ncut(C)
in Eq. 1 is minimized.

The problem in Definition 1 is NP-hard since the vanilla Ncut min-
imization problem is its special case when m = 1. Next, we will
approach the problem by extending the spectral Ncut minimization
algorithm. Note that our method can be adapted to ratio cut [28] and
any other cut measure with an equivalent spectral formulation. This
paper focuses on Ncut due to its prevalence and space limitations.

1 Any other parameterization scheme (e.g., βc = rc · (1 − σ) and αc =
βc + σ) is also compatible with our formulation as long as it guarantees
that βc ≤ αc and βc, αc ∈ [0, 1] for any c ∈ [m].
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3 Our Algorithm

We now introduce our two-phase spectral algorithm, FNM, for the
problem of normalized-cut minimization with range-based propor-
tional fairness constraints. Next, we will present our range-based fair
spectral embedding and rounding methods in Sections 3.1 and 3.2.

3.1 Range-based Fair Spectral Embedding

(Unconstrained) Spectral Normalized-Cut Minimization. We be-
gin with a review of (unconstrained) spectral normalized-cut mini-
mization. According to [59], the Ncut value can be expressed in terms
of the graph Laplacian L := D −W and a cluster membership in-
dicator matrix H ∈ R

n×k as Ncut(C) = trace(H�LH), where

Hi,l =

⎧⎨
⎩

1√
vol(Cl)

, if i ∈ Cl;

0, otherwise;
∀i ∈ [n], ∀l ∈ [k]. (2)

As such, the Ncut minimization problem is equivalent to minimiz-
ing trace(H�LH) over all possible H in the form of Eq. 2. How-
ever, the transformed problem is still NP-hard due to its combinato-
rial nature. Therefore, the (normalized) spectral method [59] solves
the following relaxed continuous optimization problem by allowing
fractional assignments of nodes to clusters:

min
H∈Rn×k

trace(H�LH) s.t. H�DH = Ik, (3)

where Ik is an identity matrix of size k×k. Note that H in the form
of Eq. 2 must satisfy H�DH = Ik. To solve the problem in Eq. 3,
under an assumption that di > 0, ∀i ∈ [n] (i.e., G has no isolated
node), we substitute H with D− 1

2T as follows:

min
T∈Rn×k

trace(T�D− 1
2LD− 1

2T ) s.t. T�T = Ik. (4)

By Rayleigh-Ritz theorem [38, § 5.2.2], an optimal solution to the
problem in Eq. 4 is the matrix T which has the eigenvectors of
D− 1

2LD− 1
2 with respect to its k smallest eigenvalues as columns.

Range-based Fair Spectral Ncut Minimization. We incorporate
range-based proportional fairness into the problem in Eq. 4. Let us
define two matrices A = [α, . . . ,α]�,B = [β, . . . ,β]� ∈ R

n×m

with the two fairness vectors α,β ∈ [0, 1]m as their rows. By
definition, a partitioning C = {C1, . . . , Ck} denoted as H in the
form of Eq. 2 is fair if and only if (A − M)�H ≥ 0 and
(M − B)�H ≥ 0, where 0 is the zero matrix of size m × k,
because βc · |Cl| ≤ |Vc ∩ Cl| ≤ αc · |Cl| if and only if the (c, j)-
th entries of (M − B)�H and (A − M)�H are nonnegative for
any c ∈ [m] and l ∈ [k]. In this way, the fairness constraints are
expressed equivalently as linear constraints in matrix form.

Given the above result, the problem in Definition 1 is transformed
to minimizing trace(H�LH) over all H in the form of Eq. 2 with
two additional linear constraints of (A − M)�H ≥ 0 and (M −
B)�H ≥ 0. By applying the same relaxation procedure as for the
unconstrained problem, we obtain the following relaxed problem for
range-based fair spectral Ncut minimization:

min
T∈Rn×k

trace(T�D− 1
2LD− 1

2T ) (5a)

subject to T�T = Ik (5b)

(A−M)�D− 1
2T ≥ 0 (5c)

(M −B)�D− 1
2T ≥ 0 (5d)

Algorithm 1 Range-based Fair Spectral Embedding

Input: Graph G with adjacency matrix W ∈ R
n×n, group matrix

M ∈ R
n×m, fairness vectors α,β ∈ [0, 1]m, an integer k ≥ 2

Parameters: T1, Λ0, μ0, ξ, ε1; T2, τ , ε2
Output: Embedding matrix H ∈ R

n×k

1: Compute D,L and A,B based on W and α,β, respectively.
2: Initialize an arbitrary matrix T0 ∈ R

n×k with T�
0 T0 = Ik.

3: for t = 0, 1, . . . , T1 do

4: Formulate the problem in Eq. 7 with Tt, Λt, and μt.
5: repeat

6: Use Eq. 9 or 12 to compute T ′
t w.r.t. Tt and τ .

7: Set Tt ← T ′
t and update τ using the Barzilai-Borwein

method [6].
8: until ‖∇TtLμt(Tt,Λt)‖F ≤ ε2 or after T2 iterations
9: Set Tt+1 ← Tt and update Λt+1, μt+1 based on Eq. 8.

10: if ‖min{P (Tt+1),0}‖F ≤ ε1 then

11: H ← D− 1
2Tt+1 and break.

12: end if

13: end for

14: return H

Unlike Eq. 4, the problem in Eq. 5 cannot be directly solved by eigen-
decomposition due to two additional constraints in Eqs. 5c and 5d.
Range-based Fair Spectral Embedding with Augmented La-

grangian Method and OptStiefelGBB. To resolve the problem in
Eq. 5, we propose a novel algorithm based on the augmented La-
grangian method [46] for constrained optimization and OptStiefel-
GBB [58] for optimization with orthogonal constraints, as presented
in Algorithm 1, to find a solution T and a matrix H = D− 1

2T
denoting a fractional assignment of each node in V to k clusters.

The basic idea of the augmented Lagrangian method is to solve a
constrained optimization problem by converting the constraints into
penalty and Lagrange multiplier terms in the objective function. In
our problem, the violation of fairness constraints in Eqs. 5c and 5d
by a matrix T is denoted as the following penalty matrix:

P (T ) := [(A−M)�D− 1
2T , (M −B)�D− 1

2T ] ∈ R
m×2k.

Based on [46, § 17.4], the objective function in Eq. 5a with penalty
and Lagrange multiplier terms is as follows:

Lμ(T ,Λ) := trace(T�D− 1
2LD− 1

2T )

+
m∑

c=1

2k∑
l=1

ρ(Pc,l(T ),Λc,l, μ), (6)

where μ > 0 is the penalty parameter, Λ is the estimation of La-
grange multipliers, and ρ is defined as:

ρ(p, λ, μ) :=

{
−λp+ 1

2
μp2, if p− λ

μ
≤ 0;

− 1
2μ

λ2, otherwise.

The augmented Lagrangian method starts from the initial parameters
μ0 > 0, Λ0 = 0m×2k and a solution T0 ∈ R

n×k with T�
0 T0 = Ik.

Then, it solves a sub-problem and iteratively updates the parameters.
Here, the t-th sub-problem (t = 0, 1, . . .) to solve is:

min
T∈Rn×k

Lμt(T ,Λt) s.t. T�T = Ik. (7)

By solving Eq. 7, it obtains a new solution Tt+1 and then updates μ
and Λ as follows:

Λt+1 = max{Λt − μtP (Tt+1),0}, μt+1 = ξμt, (8)
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where ξ > 1 is an amplification parameter. The augmented La-
grangian method terminates when the fairness violation of Tt+1, de-
fined as ‖min{P (Tt+1),0}‖F , is below an error parameter ε1 ≥ 0.
After that, we finally obtain a “nearly fair” embedding matrix H =

D− 1
2Tt+1 w.r.t. Tt+1.

Then, we consider how to solve the sub-problem in Eq. 7 with Opt-
StiefelGBB [58], a general method for optimization under orthogo-
nality constraints. Its core idea is to model the feasible region as a
(n, k)-Stiefel manifold [57], i.e., {T ∈ R

n×k : T�T = Ik}, and
to apply Cayley transformation [56] to update the solution at each
iteration. For the problem in Eq. 7, given a matrix T ∈ R

n×k with
T�T = Ik and the gradients ∇TLμ(T ,Λ) (∇T for short) of the
augmented objective function Lμ(T ,Λ) w.r.t. T , the updated matrix
T ′ is expressed as T − τ

2
Ω(T + T ′), where τ > 0 is the step size

and Ω = ∇TT
� − T∇�

T . By applying Cayley transformation [56]
on Ω, T ′ has a closed form expression as:

T ′ = (In +
τ

2
Ω)−1(In − τ

2
Ω)T . (9)

Then, we compute the gradients using the chain rule as follows:

∇T = 2D− 1
2LD− 1

2T +A′∇ρ[0,k] +B′∇ρ[k,2k], (10)

where A′ = ((A−M)�D− 1
2 )�, B′ = ((M−B)�D− 1

2 )�, and
∇ρ[0,k], ∇ρ[k,2k] are the first and last k columns of ∇ρ ∈ R

m×2k,
respectively. The (c, l)-entry of ∇ρ is expressed as

(∇ρ)c,l =

{
−Λc,l + μPc,l(T ), if Pc,l − Λc,l

μ
≤ 0;

0, otherwise.
(11)

Since computing the inversion of the matrix In + τ
2
Ω ∈ R

n×n

is time-consuming, the Sherman-Morrison-Woodbury formula [46,
Appendix A] is further applied to devise a much more efficient up-
date scheme when k � n that only computes the inversion of a much
smaller matrix I2k + τ

2
Y �X ∈ R

2k×2k as follows:

T ′ = T − τX(I2k +
τ

2
Y �X)−1Y �T (12)

where X = [∇T ,T ] ∈ R
n×2k and Y = [T ,−∇T ] ∈ R

n×2k.
According to [58], T ′ by Eqs. 9 and 12 has two important proper-
ties: (i) T ′�T ′ = Ik if T�T = Ik; (ii) Lμ(T

′,Λ) ≤ Lμ(T ,Λ).
Thus, with a proper step size τ , OptStiefelGBB always converges to
a feasible stationary point after sufficient iterations. Following [58],
we use the Barzilai-Borwein method [6] to adaptively adjust the step
size τ at each iteration.

Time Complexity. Let T1 and T2 denote the maximum numbers of
iterations in the augmented Lagrangian method and OptStiefelGBB,
respectively. Computing the gradients ∇T for Lμ(T ,Λ) w.r.t. T
takes O ((|E|+ nm)k) time. Updating T with Eq. 9 or 12 needs
O(n3) or O(nk2) time, respectively. As m, k ≤ n and |E| ≤ n2,
the time complexity of Algorithm 1 is O(T1T2n

3). When k � n,
m = O(k), and |E| = O(n), the time complexity of Algorithm 1 is
reduced to O(T1T2nk

2).

3.2 Range-based Fair Rounding

Like vanilla spectral methods, the output H of Algorithm 1 is a k-
dimensional node embedding matrix where the i-th row vector hi

represents a fractional assignment of node i ∈ [n] to k clusters. Thus,
we must round the fractional solution into an integral one for parti-
tioning. However, a k-means clustering on embedding vectors, the

standard rounding technique for spectral methods, is infeasible for
the fair variant because the produced clusters may not be fair.

Next, we propose a novel rounding algorithm to produce a strictly
fair partitioning scheme in Algorithm 2. Generally, it follows the
same procedure as Lloyd’s k-means clustering algorithm [37], which
initializes k cluster centers, assigns each vector to one of the k cen-
ters to generate the clusters, and updates each center to the median of
each generated cluster iteratively until the stopping condition is met.
The difference from Lloyd’s algorithm is that it requires the gener-
ated clusters at every iteration to be (α,β)-proportionally fair.

Nearly-Fair Initial Assignment via LP. Our rounding algorithm be-
gins with running k-means++ [4] on the set H = {hi ∈ R

k : i ∈
[n]} of embedding vectors2 to obtain an initial set Q = {q1, . . . , qk}
of centers at the first iteration. Then, we formulate the following fair
assignment problem [7] to assign the vectors in H to Q to mini-
mize the l2-loss while ensuring that the cluster around each center is
(α,β)-proportionally fair:

Definition 2 Given a point set H with m disjoint groups H1, . . . ,
Hm, a set Q of k centers, and two fairness vectors α,β ∈ [0, 1]m,
find an assignment ϕ : H → Q that minimizes

∑
h∈H‖h−ϕ(h)‖2

and ensures that βc · |Cl| ≤ |Hc∩Cl| ≤ αc · |Cl|, ∀c ∈ [m], l ∈ [k],
where Cl = {h ∈ H : ϕ(h) = ql}.

By denoting an assignment as an indicator matrix S ∈ {0, 1}n×k,
where Si,l = 1 if ϕ(hi) = ql and 0 otherwise, the problem in
Definition 2 is represented as the following integer program (IP1):

IP1 := min trace(C�S) (13a)

subject to (A−M)�S ≥ 0 (13b)

(M −B)�S ≥ 0 (13c)

S1k = 1n, 1
�
nS ≥ 1�

k (13d)

S ∈ {0, 1}n×k, (13e)

where Eq. 13a denotes the minimization of the l2-loss by setting the
cost matrix C ∈ R

n×k with Ci,l = ‖hi − ql‖2, Eqs. 13b and 13c
represent the fairness conditions, and the two constraints in Eq. 13d
mean that each vector must be assigned to exactly one center, and
each center must be assigned with at least one vector. Since IP1 is
NP-hard [51], we relax it to a linear program (LP1) by substituting
the condition of Eq. 13e with S ∈ [0, 1]n×k. After obtaining the
optimal solution S∗ to LP1 using any LP solver, we assign each
vector hi to the center ϕ(hi) = ql∗ with l∗ = argmaxl∈[k] S

∗
i,l.

Reassignments to Generate Strictly Fair Clusters. Although the
above assignment scheme can produce fairer clusters than standard
k-means without fairness constraints, it may still violate the fairness
conditions after rounding a fractional solution by LP1 to an inte-
gral one. Therefore, we must reassign some vectors (nodes) to other
centers to produce a strictly fair partitioning scheme. To reduce the
quality loss led by reassignments, we should (i) move as few nodes
as possible and (ii) find the node leading to the smallest Ncut growth
at each reassignment. For (i), we should seek a fair assignment ϕ′

closest to the current assignment ϕ. Given an assignment ϕ, we use
a matrix N = (ncl)c∈[m],l∈[k] ∈ R

m×k, where ncl = |Hc ∩ Cl|,
to denote the number of nodes from each of the m groups in k clus-
ters. Then, we define the problem of computing an optimal scheme
with the least number of reassigned nodes in the following integer

2 The nodes in V and vectors in H , as well as the groups defined on V and
H , will be used interchangeably in this subsection.
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Algorithm 2 Range-based Fair Rounding

Input: Embedded vectors H ⊆ R
k (resp. V ), group indicator φ on

H and V , fairness vectors α,β ∈ [0, 1]m, an integer k ≥ 2
Parameters: T3, ε3
Output: Partitioning C∗ = {C∗

1 , . . . , C
∗
k}

1: Initialize C∗ = ∅ and t = 0.
2: Run k-means++ on H to obtain an initial set Q of centers.
3: repeat

4: Set t ← t+ 1.
5: Compute C w.r.t. H , Q and solve LP1 to obtain S∗.
6: Assign each vector hi ∈ H to a center ϕ(hi) = ql∗ ∈ Q,

where l∗ = argmaxl∈[k] S
∗
i,l.

7: Solve IP2 to obtain N ′ and compute Δ = N ′ −N .
8: while there is any c ∈ [m] and l ∈ [k] with Δcl �= 0 do

9: Pick arbitrary c, Cl, Cl′ with Δcl < 0 and Δcl′ > 0.
10: Let cand = {i ∈ [n] : φ(i) = c ∧ ϕ(hi) = ql}.
11: Set i∗ ← argmini∈cand δl,l′(i) and ϕ(hi∗) = ql′ .
12: Update N and Δ for the reassignment of i∗.
13: end while

14: Generate a partitioning C = {C1, . . . , Ck} from ϕ, where
Cl = {i ∈ [n] : ϕ(hi) = ql} for each l ∈ [k].

15: if C∗ = ∅ or Ncut(C∗) > Ncut(C) then

16: C∗ ← C.
17: end if

18: Set Q′ ← Q and Q ← {ql =
1

|Cl|
∑

i∈Cl
hi : l ∈ [k]}.

19: until
∑k

l=1‖ql − q′
l‖ ≤ ε3 for ql ∈ Q, q′

l ∈ Q′ or t ≥ T3

20: return C∗

program (IP2):

IP2 := min
m∑

c=1

k∑
l=1

|n′
cl − ncl| (14a)

subject to βcn
′
l ≤ n′

cl ≤ αcn
′
l, ∀c ∈ [m], l ∈ [k] (14b)

k∑
l=1

n′
cl − ncl = 0, ∀c ∈ [m] (14c)

n′
cl ∈ Z

+, ∀c ∈ [m], l ∈ [k] (14d)

where n′
cl is the number of nodes in Cl from Hc after reassignments,

n′
l =

∑m
c=1 n

′
cl, and the objective value is twice as many as the

number of reassignments from ϕ to fair ϕ′. To solve IP2, we can
call an exact IP solver to find its optimal solution, which may take
exponential time in the worst case but is still efficient in practice
because the values of k and m are pretty small or run a heuristic
search method, e.g., hill-climbing, to obtain a near-optimal solution
in polynomial time. Using either method, we can find a reassignment
scheme denoted as Δ = N ′−N , where Δcl = n′

cl−ncl is greater
than 0 if Δcl nodes from Vc should be moved to Cl, is smaller than
0 if −Δcl nodes from Vc should be moved from Cl, or is equal to 0
if no reassignment is needed. For (ii), we first select a pair of clusters
Cl and Cl′ with Δcl < 0 and Δcl′ > 0 for a specific c, which
corresponds to the movement of a node in Vc from Cl to Cl′ . As
reassignments can reduce partition quality, we want to find the node
leading to as small Ncut growth as possible. Since computing the
Ncut value of a given partitioning from scratch is time-consuming
and we only need to recalculate the changed parts (i.e., one node and
two clusters) for a reassignment, we obtain the following equation to
update the Ncut value incrementally by taking the difference between
the Ncut values after and before reassigning a node i from Cl to Cl′

Table 1. Statistics of datasets in the experiments.

Dataset |V | |E| Sensitive Attribute m
Facebook 155 1,412 gender 2
German 1,000 21,742 gender 2

SBM 1,000 57,156 – 5
DBLP 1,061 2,576 continent 3

LastFM 7,624 27,806 country 4
Deezer 28,281 92,752 gender 2
Credit 29,460 136,196 education 3

Pokec-A 1,097,077 10,792,894 age 4
Pokec-G 1,632,803 22,301,964 gender 2

and eliminating all the unchanged terms:

δl,l′(i) =
cut(Cl)− di + 2zil

vol(Cl)− di
− cut(Cl)

vol(Cl)

+
cut(Cl′) + di − 2zil′

vol(Cl′) + di
− cut(Cl′)

vol(Cl′)
, (15)

where zil =
∑

j∈Cl
wij . For each reassignment, we compute δl,l′(i)

based on Eq. 15 for each eligible node i (i.e., i ∈ Vc ∩ Cl) and pick
the node with the smallest δl,l′(i) accordingly. After that, we update
N ,Δ and select the next group and pair of clusters for reassign-
ment. The above process terminates when N = N ′ and all the clus-
ters have been fair. We obtain a fair partitioning C = {C1, . . . , Ck}
from the final assignment, based on which we obtain an updated set
Q = {q1, . . . , qk} of centers where ql =

1
|Cl|

∑
i∈Cl

hi. After Q is
updated, the above procedures, i.e., solving LP1 & IP2 and reassign-
ing nodes for fairness, will be executed again to acquire a new fair
partitioning. This iterative procedure will terminate until the set Q of
centers does not change significantly between two iterations or the
total number of iterations reaches a predefined threshold T3. Finally,
a fair partitioning with the smallest Ncut value among all iterations
will be returned as the final solution C∗.
Time Complexity. The k-means++ algorithm takes O(T0nk

2) time,
where T0 is the number of iterations. At each iteration of Algo-
rithm 2, computing C takes O(nk2) time. Using the interior point
method [32], solving LP1 takes O(n4.5k4.5m) time in the worst
case. The hill-climbing search takes O(nmk) time to solve IP2. Fur-
thermore, the time to perform one reassignment is O(n), and there
are at most O(n) reassignments. But unlike Lloyd’s k-means clus-
tering algorithm, Algorithm 2 does not guarantee convergence to a
local optimum after sufficient iterations. If the convergence is not
reached, it will stop and return the best partitioning found after T3

iterations. Suppose that T0 = O(T3), the overall time complexity of
Algorithm 2 is O(T3n

4.5k4.5m).

4 Experiments

In this section, we perform extensive empirical evaluations of our
FNM algorithm. We introduce our experimental setup in Section 4.1
and describe our results in Section 4.2.

4.1 Experimental Setup

Datasets. We use eight public real datasets with sensitive attributes
and one synthetic dataset in the experiments. Facebook, LastFM,
Deezer, Pokec-A, Pokec-G are all social networks; DBLP is a coau-
thor network; German and Credit are similarity graphs created from
i.i.d. data; and SBM is generated from a stochastic block model with
random groups. If a graph is disconnected, we will extract and use
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Table 2. Performance of different algorithms for normalized-cut graph partitioning with k = 5 clusters. Cells in lighter and darker gray colors denote results
satisfying looser (σ = 0.8) and tighter (σ = 0.2) fairness constraints, respectively. For the Ncut values, we highlight the best overall results on each dataset in
bold font and underline the best fair result when σ = 0.8. FSC is marked by “–” when it does not provide any solution due to huge memory consumption for

eigendecomposition on dense matrices.

Dataset
SC FSC sFSC FNM (σ = 0.8) FNM (σ = 0.2)

Ncut Balance Time (s) Ncut Balance Time (s) Ncut Balance Time (s) Ncut Balance Time (s) Ncut Balance Time (s)
Facebook 1.378 0.458 0.233 1.401 0.623 0.252 1.401 0.623 0.193 1.378 0.458 0.225 1.550 0.81 0.312
German 1.433 0.211 0.357 1.442 0.583 0.817 1.442 0.583 0.581 1.433 0.211 0.486 1.498 0.8 2.841

SBM 2.542 0.226 0.375 2.619 0.245 0.921 2.619 0.245 0.703 2.542 0.226 0.660 3.348 0.81 2.608
DBLP 0.022 0 0.317 0.024 0 0.568 0.024 0 0.435 0.050 0.2 0.658 0.269 0.8 0.698

LastFM 0.119 0 0.526 0.185 0 102.2 0.185 0 1.462 0.265 0.2 4.624 0.699 0.8 7.014
Deezer 0.038 0.406 2.989 – – – 0.040 0.406 8.246 0.038 0.406 6.465 0.216 0.81 9.120
Credit 0.035 0.738 9.097 – – – 0.035 0.665 41.28 0.034 0.748 10.74 0.049 0.8 12.33

Pokec-A 0.077 0 241.5 – – – 0.077 0 686.9 0.450 0.209 270.6 2.701 0.8 254.4
Pokec-G 0.070 0.141 445.8 – – – 0.070 0.141 1024 0.128 0.254 525.0 1.330 0.81 644.8

its largest connected component. Table 1 summarizes the statistics of
all processed datasets. Detailed descriptions of the above datasets are
provided in Appendix A of the full version of this paper [36].

Baselines. We compare our FNM algorithm with the following three
baseline methods for graph partitioning: (i) spectral clustering (SC)
[59], (ii) fair spectral clustering (FSC) [34], and (iii) scalable fair
spectral clustering (sFSC) [55]. In the ablation study, we compare
our range-based fair spectral embedding (rFSE) in Algorithm 1 with
the following six node embeddings: spectral embedding (SE) [59],
fair spectral embedding (FSE) [34], scalable fair spectral embedding
(sFSE) [55], DeepWalk (DW) [47], Node2Vec (N2V) [25], and Fair-
Walk (FW) [48]; and our range-based fair rounding (FR) in Algo-
rithm 2 with four alternatives: k-means++ [4], k-means++ with re-
assignments (K+R), fair k-means (FK) [7], and solving IP1 directly
(IP). Note that FR, FK, and IP do not work on Pokec-A and Pokec-G
because the IP/LP solver fails to provide solutions to IP1 or LP1 in
a reasonable time. Alternatively, we use K+R together with rFSE to
obtain the FNM results on both datasets.

Parameter Settings. For FNM, α,β are parameterized by σ ∈ [0, 1]
as per Section 2. By default, we set σ = 0.2 and 0.8 (resp. the com-
mon 80%-rule) to generate tight and loose fairness constraints. For
Algorithm 1, we set T1 = 100, ε1 = 10−6, T2 = 2, 000, τ = 10−3,
and ε2 = 10−3. We perform a grid search on ξ ∈ {2, 4, . . . , 10} and
μ0 ∈ {10−4, 10−2, 100, 102} and select the combination of ξ, μ0

achieving the lowest objective value for each experiment. For Al-
gorithm 2, we set T0 = 100, T3 = 10, and ε3 = 10−4 for all
experiments. Further details of our parameter-tuning procedure are
provided in Appendix B of the full version of this paper [36]. For the
baselines, we use the default parameters or the recommended meth-
ods for parameter tuning as given in their original papers.

Evaluation Metrics. Each method is evaluated in three aspects.
First, we measure partition quality by the Ncut value in Eq. 1. Sec-
ond, we adopt the notion of balance in [7, 16] as the metric for
fairness. Given a set C = {C1, . . . , Ck} of k clusters and a set
{V1, . . . , Vm} of m groups, the proportion of group c in cluster Cl

is defined as rcl = |Cl ∩ Vc|/|Cl|. Then, the balance of C is de-
fined by balance(C) := minc∈[m],l∈[k] min{rc/rcl, rcl/rc}, where
rc = |Vc|/n. Higher balance implies that the partitioning scheme is
closer to being proportionally fair. Balance also serves as an indica-
tor of whether the fairness constraints parameterized by σ are satis-
fied because C is (α,β)-proportionally fair iff balance(C) ≥ 1− σ.
Third, we use CPU time to evaluate the efficiency of each method.

Implementation. We implement FNM in Python 3 and use Gurobi
Optimizer to solve LPs and IPs. For each baseline, we either use a
standard implementation in the SciPy library or the implementation

published by the original authors. The experiments were conducted
on a desktop with an Intel Core i5-9500 processor @3.0GHz and
32GB RAM running Ubuntu 20.04. Our code and data are published
at https://github.com/JiaLi2000/FNM.

4.2 Experimental Results

Overview. Table 2 presents the performance of different algorithms
for normalized-cut graph partitioning with two fairness constraints
parameterized by σ = 0.8 and 0.2 when k = 5 on all nine datasets.

In terms of partition quality and fairness, the (unconstrained) SC
mostly achieves the lowest Ncut values but fails to provide a fair par-
titioning when σ = 0.8 on four datasets while never meeting tighter
fairness constraints when σ = 0.2. Although FSC and sFSC provide
more balanced partitions than SC in some cases, they still cannot
guarantee the satisfaction of fairness constraints. In addition, FSC
does not return any results on medium and large graphs with over
10k nodes due to huge memory consumption for eigendecomposi-
tion on dense matrices. Next, we observe that FNM always provides
fair partitioning schemes in all cases. If unconstrained SC returns fair
solutions when σ = 0.8, FNM will achieve nearly the same Ncut
values. Otherwise, the Ncut values of FNM will increase slightly to
ensure fairness. Moreover, the Ncut values of FNM for σ = 0.2 are
significantly higher than those for σ = 0.8, which can be regarded
as the price of fairness.

In terms of time efficiency, FNM runs slower than SC as it is more
time-consuming in embedding and rounding. But FNM runs faster
than FSC in most cases since it does not require eigendecomposi-
tion. Compared to sFSC, which improves the scalability of FSC by
avoiding eigendecomposition on dense matrices, FNM runs slower
on smaller graphs due to a longer time for fair rounding but becomes
faster on larger graphs owing to the efficiency improvements in fair
embedding. Finally, FNM is more efficient when σ = 0.8 than when
σ = 0.2 due to fewer iterations for convergence.

Trade-off between Quality and Fairness. We present the perfor-
mance of four algorithms with different fairness constraints parame-
terized by σ = 0.1, 0.2, . . . , 1 in Figure 1. We ignore σ = 0 since
no solution may exist for indivisibility. Since the results of SC, FSC,
and sFSC are independent of σ, they are drawn as horizontal lines
in the figure. For FNM, as the value of σ decreases (when the fair-
ness constraints become looser), the Ncut and balance values also de-
crease. When σ = 1 (no fairness constraint), FNM returns partitions
of similar quality to SC. To our knowledge, FNM is the only known
algorithm that achieves different trade-offs between partition quality
(i.e., Ncut) and fairness (i.e., balance) w.r.t. σ. We illustrate the per-
formance of four algorithms as a function of the numbers of clusters

J. Li et al. / Spectral Normalized-Cut Graph Partitioning with Fairness Constraints1394



Ncut Balance SC FSC sFSC FNMSC FSC sFSC FNM BalanceBalance

0.2 0.4 0.6 0.8 1.0
σ

1.3

1.4

1.5

1.6

1.7

1.8

N
cu
t

0.0

0.2

0.4

0.6

0.8

1.0

B
al
an
ce

(b) Facebook

0.2 0.4 0.6 0.8 1.0
σ

2.5

2.7

2.9

3.1

3.3

3.5

N
cu
t

0.0

0.2

0.4

0.6

0.8

1.0

B
al
an
ce

(c) SBM

0.2 0.4 0.6 0.8 1.0
σ

0.00

0.08

0.16

0.24

0.32

0.40

N
cu
t

0.0

0.2

0.4

0.6

0.8

1.0

B
al
an
ce

(d) DBLP

0.2 0.4 0.6 0.8 1.0
σ

0.0

0.2

0.4

0.6

0.8

1.0

N
cu
t

0.0

0.2

0.4

0.6

0.8

1.0

B
al
an
ce

(e) LastFM

0.2 0.4 0.6 0.8 1.0
σ

0.02

0.04

0.06

0.08

0.10

0.12

N
cu
t

0.0

0.2

0.4

0.6

0.8

1.0

B
al
an
ce

(f) Credit

Figure 1. Quality (i.e., Ncut) and fairness (i.e., balance) of k = 5 partitions created by SC, FSC, sFSC, and FNM as a function of parameter σ. Note that
when σ varies, FNM offers trade-offs between fairness and quality but SC, FSC, and sFSC remain unchanged in both measures.
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Figure 2. Quality (i.e, Ncut) and fairness (i.e., balance) of SC, FSC, sFSC, and FNM (σ = 0.8, 0.2) as a function of the number of clusters k.

k in Figure 2. We vary k from 2 to 10 on three smaller datasets and
from 5 to 50 on two larger datasets. For each algorithm, the Ncut
value increases with k. Meanwhile, the balance of each algorithm
generally drops with increasing k, and FNM is the only algorithm
that consistently achieves a balance of at least 1 − σ, i.e., guaran-
teeing the satisfaction of fairness constraints. Furthermore, FNM has
comparable Ncut values to SC, FSC, and sFSC and higher balances
on most datasets when σ = 0.8. But on the LastFM dataset, FNM
has higher Ncut values than other algorithms when σ = 0.8 because
it performs reassignments to ensure a balance of at least 0.2. When
σ = 0.2, as FNM assigns more nodes to non-closest clusters for
fairness than when σ = 0.8, it often has inferior partition quality,
especially when k is large.

Note that the results that examine the quality of the partition by
varying σ and k in the remaining four datasets, as well as the time
efficiency by varying σ and k in all the nine datasets, are deferred to
Appendix C of the full version of this paper [36].

Ablation Study. In the ablation study, we first run each embedding
method to obtain a k-dimensional node embedding (for k = 5, 20)
on each graph and use the same fair rounding in Algorithm 2 to pro-
duce two fair partitioning schemes with σ = 0.8, 0.2 from node vec-
tors. SC, FSC, sFSC, and FNM are thus renamed SE, FSE, sFSE, and
rFSE since we only tested their spectral embedding performance. We
report the Ncut values on five small datasets (since FSE and FW can-
not provide any result on four large datasets) in Table 3. Our method,
rFSE in Algorithm 1, achieves the best or second-best partition qual-
ity among all methods in almost all cases. Here, SE and FSE/sFSE
are special cases of rFSE when σ = 1 (i.e., w/o fairness) and 0
(i.e., with strict proportionality), respectively. As such, SE performs
closely to rFSE when σ = 0.8, and FSE/sFSE provides similar em-
beddings to rFSE when σ = 0.2. Especially, sFSE slightly outper-

forms rFSE when σ = 0.2. Since sFSE and rFSE both provide em-
beddings with fractional fairness constraints, which are looser than
the original integral ones, using a tighter (fractional) constraint than
required (i.e., equal to 1 − σ) in the embedding phase could help
improve overall performance after rounding. The partition quality of
deep learning-based node embeddings (with or without fairness) is
much inferior to that of rFSE and other spectral embeddings since
they are not designed for graph partitioning.

Then, we evaluate the performance of each rounding method on
node vectors provided by rFSE on five small datasets for k = 5, 20
and σ = 0.8, 0.2 and present the Ncut values in Table 4. Our method,
FR in Algorithm 2, performs best among the four fair methods we
compare. We find that fair k-means for i.i.d. data in [7] may not be
appropriate to round embedding vectors though it adopts the same
fairness notion as ours. Despite having the lowest Ncut values, k-
means++ cannot produce fair partitions. When σ = 0.8, FR provides
partitions closer to k-means++ than when σ = 0.2 since fewer or no
reassignments are required as fairness constraints are looser.

5 Conclusion

This paper investigated the (α,β)-proportionally fair normalized
cut graph partitioning problem. We proposed a novel algorithm,
FNM, consisting of an extended spectral embedding method and a k-
means-based rounding scheme to provide a node partitioning with a
small Ncut value on the given graph while strictly following the pro-
portional fairness constraints. The comprehensive experimental find-
ings confirmed the superior performance of FNM in terms of parti-
tion quality, fairness, and efficiency. In future work, we will general-
ize our algorithm to handle other notions of fairness, e.g., individual
fairness [26, 39], in graph partitioning problems.
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Table 3. Performance of different embedding methods on partition quality (i.e., Ncut values). Here, the best result(s) are highlighted in a bold font, and the
second best result(s) are underlined.

Dataset k
σ = 0.8 σ = 0.2

SE FSE sFSE DW N2V FW rFSE (∗) SE FSE sFSE DW N2V FW rFSE (∗)

Facebook 5 1.378 1.401 1.401 1.374 1.438 1.444 1.378 1.676 1.536 1.536 1.676 1.575 1.689 1.546
20 13.840 13.887 14.057 13.050 13.230 14.825 13.753 14.861 14.882 14.882 14.541 14.708 15.461 14.346

German 5 1.433 1.442 1.442 1.500 1.492 1.492 1.433 1.537 1.471 1.471 1.519 1.502 1.505 1.498
20 11.856 11.879 11.869 11.977 11.922 12.638 11.811 12.927 12.889 12.884 12.954 13.012 13.059 12.852

SBM 5 2.542 2.619 2.619 2.585 2.807 2.941 2.542 3.377 3.345 3.345 3.490 3.509 3.515 3.348
20 16.812 16.998 17.012 17.294 17.357 17.430 16.785 17.844 17.812 17.784 18.131 18.194 18.104 17.799

DBLP 5 0.050 0.032 0.032 0.929 1.002 0.423 0.050 1.003 0.261 0.261 0.995 1.029 0.645 0.269
20 1.381 0.941 0.984 7.560 6.875 3.793 1.166 3.170 2.871 2.779 8.691 8.119 6.235 2.787

LastFM 5 0.294 0.453 0.453 0.846 0.754 1.392 0.265 0.908 0.677 0.677 1.704 1.667 1.900 0.699
20 3.983 4.666 4.943 7.313 6.942 8.316 2.922 7.367 7.699 7.680 10.698 10.612 11.607 7.080

Avg. Ranking 2.2 2.8 3.1 4.1 4.4 5.5 1.6 4.0 2.2 1.6 4.8 4.8 5.4 1.7

Table 4. Performance of different rounding methods on partition quality (i.e., Ncut values). Here, the best result(s) are highlighted in a bold font, and the
second best result(s) are underlined. Note that the results of k-means++ do not satisfy the fairness constraints and thus are just presented to show the “price of

fairness” in the rounding process.

Dataset k
σ = 0.8 σ = 0.2

k-means++ K+R FK IP FR (∗) k-means++ K+R FK IP FR (∗)

Facebook 5 (1.378) 1.378 1.378 1.378 1.378 (1.381) 1.640 1.576 1.599 1.546

20 (12.998) 14.161 13.947 13.333 13.753 (12.586) 14.991 14.887 14.615 14.346

German 5 (1.433) 1.433 1.442 1.433 1.433 (1.479) 1.526 1.498 1.499 1.498

20 (11.629) 11.995 11.948 11.883 11.811 (11.733) 13.611 13.166 13.069 12.852

SBM 5 (2.542) 2.542 2.542 2.542 2.542 (2.568) 3.350 3.350 3.350 3.348

20 (16.767) 16.839 16.834 16.803 16.785 (16.908) 18.006 17.926 17.889 17.799

DBLP 5 (0.022) 0.062 0.067 0.049 0.050 (0.024) 0.466 0.521 0.500 0.269

20 (0.400) 1.381 1.066 1.007 1.166 (0.404) 4.596 4.104 3.452 2.787

LastFM 5 (0.152) 0.320 0.272 0.266 0.265 (0.184) 0.801 0.805 0.791 0.699

20 (2.005) 5.751 5.139 3.211 2.922 (2.257) 10.723 11.144 9.911 7.080

Avg. Ranking – 2.9 2.8 1.4 1.4 – 3.4 2.8 2.4 1.0
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