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Abstract. Unsupervised Video Anomaly Detection (UVAD) uti-
lizes completely unlabeled videos for training without any human
intervention. Due to the existence of unlabeled abnormal videos in
the training data, the performance of UVAD has a large gap com-
pared with semi-supervised VAD, which only uses normal videos for
training. To address the problem of insufficient ability of the existing
UVAD methods to learn normality and reduce the negative impact
of abnormal events, this paper proposes a novel Enhanced Spatio-
temporal Self-selective Learning (ESSL) framework for UVAD. This
framework is designed for capturing both the appearance and mo-
tion features through effective network structures by solving the
spatial and temporal jigsaw puzzles. Specially, we develop a Self-
selective Learning Module (SLM) for UVAD, which prevents the
model learning abnormal features and enhances the model by se-
lecting normal features. Experimental results on three benchmark
datasets show that the proposed method not only surpasses the state-
of-the-art UVAD works, but also achieves the performance compara-
ble to the classic semi-supervised methods for video anomaly detec-
tion that needs normal videos selected manually. Code is available
at: https://github.com/xusuger/ESSL.

1 Introduction

Video Anomaly Detection (VAD) is a challenging task for detecting
abnormal events that deviate from normality [3], such as fires and
traffic accidents. Considering most of the abnormal events endan-
ger public safety, the research on VAD is important and significant
[26]. Due to the rarity and variety of abnormal events, it is impossi-
ble to collect all anomalies for fully-supervised learning [37]. There-
fore, classic semi-supervised VAD is conducted in a semi-supervised
learning scheme [17] by using only the normal videos. These meth-
ods detect anomalies that do not fit the normality mode of the de-
tection model. However, normal videos that are required for semi-
supervised learning need to be manually selected. In addition, clas-
sic VAD methods have difficulty in adapting to complex scenes. For
these reasons, weakly-supervised VAD methods [7, 20] are proposed,
which utilize videos with only video-level labels. Although weakly-
supervised VAD avoids manual selection at the fine-grained level,
it needs to inspect the entire video content. Thus, it is still a time-
consuming and laborious job, when facing with a large number of
surveillance videos.
∗ Corresponding Author. Email: xiaof@njupt.edu.cn.

Figure 1. An example from the CUHK Avenue dataset. Here,“running” is
identified as an anomaly event, and the shadow presents the ground-truth
corresponding to the abnormal event where the person is running. The red

dashed circle marks the failure case of the baseline for Unsupervised Video
Anomaly Detection (UVAD). It can be seen that the Area Under Curve

(AUC) of our method exceeds the baseline by 7.8% on UVAD tasks, and our
unsupervised method without manual annotations is competitive with the

classic semi-supervised method that needs manual annotations.

An ideal approach is the one that achieves VAD without any hu-
man intervention. Therefore, unsupervised VAD (UVAD), which is
quite challenging, utilizes only unlabeled videos for training, and
it has began to attract increasing attention from researchers. How-
ever, it leads to poor performance when the classic VAD methods
are applied to UVAD tasks. As shown in Figure 1, when the baseline
method for classic semi-supervised VAD is applied to UVAD tasks,
the performance declines 9%. Most of the existing methods [37, 39]
for UVAD focus on reconstructing the normality by using autoen-
coders and force the training model not to reconstruct anomalies. The
problem is that, due to the strong generalization ability of autoen-
coders [12], some anomalies can be reconstructed as well, which re-
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sults in a reduction of performance. Current research [37] has demon-
strated the benefits of deep reconstruction in UVAD. Therefore, our
work develops an effective framework to capture the deep normal
information.

Recent UVAD works [37, 39] reduce the impact of abnormal sam-
ples by comparing the pixel error of sequential video frames to elim-
inate abnormal samples or assign low weights to suspicious abnor-
mal samples, but such coarse-grained elimination does not have a
good effect. Hence, another problem is how to effectively reduce the
impact of abnormal samples on the learning of normal features. Im-
proved self-paced refinement [37] based on self-paced learning [28]
removes suspicious anomalies for VAD, however, requires precise
parameters. Thus, it is difficult to tune a suitable set of parameters
for models, which limits it to a wide range of applications. Due to
the participation of abnormal samples during the training process, the
accuracy of UVAD is obviously lower than classic semi-supervised
VAD, as shown in Figure 1.

To address the above problems, our motivation is to expect the
training process of UVAD to focus on modeling normality, just like
classic VAD, while without human intervention and automation. To
realize such an idea, we present a novel Enhanced Spatio-temporal
Selection Learning (ESSL) framework for UVAD. The framework
is based on constructing spatial and temporal jigsaw puzzles, and it
effectively solves both jigsaw puzzles through the enhanced network
structure to capture the appearance and motion features of normal
events. Specially, we propose a simple yet effective and plug-and-
play module named Self-selective Learning Module (SLM), which
can autonomously filter out abnormal samples and guide the model
to learn towards the normality.

Our main contributions are summarized as follows: (1) We pro-
pose an enhanced spatio-temporal framework that can effectively
capture the normality features of normal events by solving jigsaw
puzzles. (2) We propose a SLM for UVAD to force the model on
learning normal features rather than abnormal features and develop
the training process of UVAD approximating to classic VAD with-
out manual annotations. (3) Experimental results on three bench-
mark datasets show that our method not only surpasses the State-
Of-The-Art (SOTA) UVAD networks, but also achieves the compet-
itive performance in comparison to classic methods for classic semi-
supervised VAD.

2 Related Work

Unsupervised Video Anomaly Detection (UVAD). Both semi-
supervised and weakly-supervised methods for VAD require manual
labeling for training data, which is time-consuming and laborious. To
achieve a fully automatic VAD that does not require human interven-
tion, the UVAD has gained a growing attention [37, 39]. Ordinal re-
gression [26] constructs a self-trained network to achieve end-to-end
UVAD. Generative cooperative learning framework [39] for UVAD
comprises a generator, a discriminator and a cross-supervision mod-
ule, where the generator is forced not to reconstruct anomalies. The
localization-based reconstruction method [37] points out that deep
reconstruction is surprisingly effective for UVAD. Therefore, to re-
duce the interference of abnormal samples, we propose a novel ESSL
framework that not only eliminates suspicious abnormal samples, but
also enhances the ability of the network to learn normality.

Object-Centric Method. In surveillance videos, there are both
static backgrounds and dynamic events, such as walking people and
moving cars. In VAD tasks, anomalies are often dynamic events, thus

we should pay more attention to those dynamic events that are more
prone to anomalies than static backgrounds. Object-centric methods
can largely reduce the negative effect of complex backgrounds on
normality learning. Specially, the work in [13] trains object-centric
convolutional autoencoders for both motion and appearance features
for VAD. Localization-based reconstruction method [37] tries to re-
construct the object-centric cube for VAD. Some self-supervised
works [9, 31] utilize objects in videos to build proxy tasks for VAD.
In this paper, we follow existing works and apply an object detector
to construct an object training set.

Normality Advantage. Recent studies [32, 37] unveil a property
named “normality advantage". It means that anomalies are unusual
events and the probability of occurrence is extremely low, while the
main content of videos are normal. Exploiting the large difference in
the number of normal and abnormal events just provides us with an
opportunity to separate of normal events from abnormal events. Be-
sides, there may be multiple object-level events in one frame, but
only one event is abnormal. However, frame-level based methods
treat the whole frame as an anomaly. Recent works further magnify
normality advantage by extracting object-level events as the basic
training data. In order to leverage the normality advantage, we pro-
pose the SLM that can effectively reduce the negative impact of ab-
normal samples in UVAD.

Self-supervised Learning. Self-supervised learning seeks super-
visory signals from data for training. It commonly constructs pretext
tasks, such as jigsaw puzzles and image rotations, to capture deep
features. Although recent works demonstrate the high effectiveness
of self-supervised learning in VAD, there are only a few works to ex-
plore self-supervised learning for VAD. A self-supervised and multi-
task learning method [9] utilizes multiple proxy tasks to train a 3D
Convolutional Neural Network (CNN) for VAD. Further, in order to
make proxy tasks simple yet effective, the latest work in [31] tries to
train the 3D CNN to solve decoupled spatio-temporal jigsaw puzzles.
However, most of the existing works focus on how to build proxy
tasks but only use a shallow 3D CNN to handle the proxy tasks. Con-
sidering these, we design an enhanced spatio-temporal framework
that effectively captures normality features to solve jigsaw puzzles.

3 Our Method

As shown in Figure 2, our method contains three stages includ-
ing the jigsaw construction, the enhanced spatial-temporal module,
and SLM. First, we transform the extracted Spatio-Temporal Cubes
(STCs) to construct the spatial jigsaws and temporal jigsaws. Then,
we input the jigsaw STCs into the framework to predict the correct
spatial and temporal order, respectively. Finally, the proposed model
eliminates potential anomalous samples through SLM, and the re-
maining ones participate in back propagation.

3.1 Jigsaw Construction

To avoid interference from complex backgrounds and capture both
appearance and motion features, we construct two different jigsaw
puzzles based on objects for the network to solve.

Spatio-Temporal Cube (STC). As mentioned in Section 2,
anomalies are often dynamic events, thus we are more interested
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Figure 2. Overview of the proposed framework. First, the network transforms the extracted Spatio-Temporal Cubes (STCs) to construct the spatial jigsaws
and temporal jigsaws. Then, we input the jigsaws into the dual-branch network to predict the correct spatial order and temporal order, respectively. Finally, the

model eliminates potential anomalous through the SLM, and the remaining ones participate in back propagation. Here, LS denotes the loss of the spatial
branch, and LT denotes the loss of the temporal branch. Lfinal represents the final total loss.

Figure 3. Extraction of the Spatio-Temporal Cube (STC). Objects are
detected by YOLOv3 from temporally adjacent T frames to build the STC

by cropping, resizing and stacking.

in dynamic events than static backgrounds. Considering that object-
centricity can largely reduce the negative effect of complex back-
grounds, similar to most of the object-centric works [9, 37], we apply
a pre-trained YOLOv3 detector to detect and obtain a large number
of objects. Then, for each object in a frame, we use the same bound-
ing box to extract equal-size patches on its temporally adjacent T
frames to build a stacked STC, as one STC example shown in Figure
3. We regard a STC as a basic event and apply it as a basic train-
ing sample. Noted that the number of normal events is obviously
more than abnormal events even in an abnormal frame, the STC uti-
lizes this phenomenon to further strengthen the normality advantage
mentioned above, which enhances our network as conducive to learn
normal features as possible.

Jigsaw Puzzles. Before the training data are fed into the network,
we shuffle the spatial and temporal order of the original STC to con-
struct jigsaw puzzles. Figure 4 shows the construction process of the
jigsaw puzzles. We first divide each object in the STC into n × n
equal-size mini-patches, then randomly shuffle the mini-patches but

Figure 4. Construction of jigsaw puzzles. We first divide each object in the
Spatio-Temporal Cube (STC) into n× n equal-size mini-patches, then

randomly shuffle these mini-patches without shuffling the temporal
permutation to construct the spatial jigsaw. Similarly, we shuffle the

temporal permutation of T objects in the STC without shuffling the spatial
permutation to construct the temporal jigsaw.

keep the temporal permutation to construct the spatial jigsaw. Simi-
larly, we randomly shuffle the T objects but keep the spatial permu-
tation to construct the temporal jigsaw. Finally, these jigsaws are fed
into the network to predict the correct permutation order. As shown
in Figure 2, for a batch of STCs, we perform corresponding ran-
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Figure 5. Structure of RAB. It mainly contains a residual module, an
attention module and skip connections. The residual module captures deep

features, while the attention module learns appropriate weights for the
feature maps through two Fully Connected (FC) layers. Skip connections

ensure that the original input can be directly mapped to the next layer. If the
size of the input and output feature maps are not in equal-size, the
connection of stride = 2 is adopted. Otherwise, the connection of

stride = 1 is adopted.

dom shuffling operations to construct spatial and temporal jigsaws,
respectively. Then, we feed the spatial and temporal jigsaws into their
respective prediction branch.

3.2 Enhanced Spatio-temporal Module (ESM)

We construct pair-wise permutation branches to learn spatial and
temporal normality by solving spatial and temporal jigsaw puzzles.
Besides, we further embed residual attention modules in the network
to enhance the ability of the network to capture deep features.

Enhanced Residual Attention Block (RAB). Figure 5 shows the
detailed structure of RAB, including a residual module, an attention
module and skip connections. The residual module contains two 3D
convolutions (Conv3d), two 3D InstanceNorms and a ReLU activa-
tion function. It adjusts mainly the number of channels and the size of
the feature maps to capture deep features. The attention module first
performs a global pooling operation on the feature map with the size
of C ×H ×W from the residual module to obtain attention weights
with the size of C×1×1. Then, two Full-Connected (FC) layers are
applied to learn new attention weights with the size of C×1×1. Af-
ter passing through the Sigmoid activation layer, these new weights
are multiplied by the original feature maps from the residual module
to obtain new feature maps with the size of C×H×W . With the help
of skip connection (stride = 1), the input feature maps are directly
added to the new feature maps to get the outputs. In addition, if the
sizes of input and output feature maps are inconsistent, we choose
the other skip connection (stride = 2) with an 1 × 1 Conv3d to

resize the input feature maps. For a clear explanation, the complete
operation is defined as follows:

Y = SC(X) +RM(X)AM(RM(X)), (1)

where X and Y denote the input and output feature maps, respec-
tively. SC(·) represents the skip connection, RM(·) represents the
residual module operation, and AM(·) represents the attention mod-
ule operation.

Spatio-temporal framework. As shown in Figure 2, in order to
make the network efficient in solving different types of puzzle prob-
lems, which means that the network can better model the spatial and
temporal features, the proposed framework is constructed by two pre-
diction branches, which carry out the spatial and temporal permuta-
tion prediction, respectively. Each branch focuses on solving one jig-
saw puzzle. The residual structure of the block is introduced into the
dual-branch network, which allows us to build a deeper network that
improves the ability of our model to learn normality features. Since
these two features are equally important, the structures of these two
branches are exactly the same.

Permutation Prediction. Traditional methods [11, 14, 15] regard
the jigsaw puzzle as a multi-classification task and view each per-
mutation as one class. But they suffer from an significant limitation
in solving complex problems. For example, in the 3D jigsaw puz-
zle, a STC with 5 frames divided into 3 × 3 mini-patches results in
5!× (3×3)! = 43, 545, 600 possible permutations. It is extremely a
hard classification problem. To reduce the complexity, following the
work in [31], we employ a multi-label supervision, which predicts
the correct permutation order directly. Taking Figure 4 as an exam-
ple, the target of the spatial jigsaw is to predict the correct spatial
permutation [2, 0, 1, 3], and the target of the temporal jigsaw is to
predict the correct temporal permutation [3, 0, 4, 2, 1].

Like most of the classification works, we choose to use the Cross-
Entropy (CE) loss to optimize our network. For one STC, the losses
of two prediction branches are defined as follows:{

LS = 1
n2

∑n2

i=1 CE(si, ŝi)

LT = 1
T

∑T
i=1 CE(ti, t̂i)

(2)

where LS denotes the loss of the spatial branch, and LT denotes
the loss of the temporal branch. n2 represents the number of mini-
patches in an object, and T represents the number of object frames
in the STC. si and ŝi are the ground-truth spatial permutation and
the predicted location of one mini-patch, respectively. ti and t̂i are
the ground-truth temporal permutation and the predicted order of one
object frame, respectively.

3.3 Self-selective Learning Module (SLM)

Due to the above mentioned normality advantage in UVAD, the pro-
posed network has a bias towards solving normal jigsaw puzzles,
which results in larger losses for abnormal jigsaw puzzles than nor-
mal ones. It offers us an opportunity to rule out the effects of anoma-
lies. As shown in Figure 2, the SLM selectively filters the losses LS

and LT from two branches, and a certain amount of large losses are
directly dropped without participating in back propagation, while the
remaining ones are integrated to update the parameters of our model.

According to the analysis above, “ the losses of abnormal samples
are larger than normal ones”, we introduce a selection factor λ for

Q. Li et al. / ESSL: Enhanced Spatio-Temporal Self-Selective Learning Framework for Unsupervised Video Anomaly Detection 1401



dropout large losses to prevent abnormal samples from participating
in training. In a batch, let DS = {Di

S}NS
i=1 be the set of LS and

DT = {Di
T }NT

i=1 be the set of LT , where Di
S denotes the ith element

in LS , and Di
T denotes the ith element in LT , respectively. NS is

the number of LS , and NT is the number of LT . First, we sort DS

and DT as follows: {
QS = sort(DS)

QT = sort(DT )
(3)

where sort(·) is an ascending sort operator. QS and QT denote the
sorted DS and DT , respectively. With the help of the selection factor
λ, the numbers of retained losses are calculated as:{

RS = �λS ·NS�
RT = �λT ·NT �

(4)

where RS and RT represent the number of retained LS and the num-
ber of retained LT , respectively. �·� denotes a rounding up operator.
λS and λT are the selection factors for the spatial branch and the
temporal branch, respectively. We drop the large losses and retain
the small ones in a batch. Before applying the SLM, the model up-
dates its parameters by minimizing the original loss, which is defined
as:

Lorg = min(
1

NS

NS∑
i=1

Di
S +

1

NT

NT∑
i=1

Di
T ) (5)

where min(·) is the minimization operator. After applying SLM to
exclude suspicious anomalies, the learning objective of the model is
adapted as follows:

Lfinal = min(
1

RS

RS∑
i=1

Qi
S +

1

RT

RT∑
i=1

Qi
T ) (6)

where Qi
S represents the ith element of the sorted LS , and Qi

T rep-
resents the ith element of the sorted LT .

Warm-up. The working principle of SLM is based on the extreme
imbalance in the number of normal and abnormal data in VAD train-
ing data, in which normal data accounts for the majority. Therefore,
the model tends to be better at solving normal jigsaws. However,
in the early stage of training, the ability of the model to solve puz-
zles is still weak, and this bias has not been established yet. There-
fore, due to the model not having a tendency towards normality at
the initial stage, we apply the proposed SLM after a few warm-up
epochs, which ensures that the model has a preliminary bias towards
normality. During the warm-up epochs, the losses will bypass SLM
and directly update the network parameters through the shortcuts, as
shown in Figure 2. We will discuss how to set the number of warm-up
epochs in section of ablation study.

3.4 Inference

During inference, we first construct a series of STCs. Different from
training, we directly feed the original STCs into two branches to pre-
dict the orders without spatial and temporal shuffling. Then, for each
tested STC, we obtain the spatial confidence matrix and temporal
confidence matrix. Since the original order of the STC is not shuffled,
we take the minimum values of the diagonal term of two matrices as
predicted spatial and temporal scores of the STC, respectively. Due
to the irregularity of anomalies and their absences for training, their

predicted scores are low. Finally, we take the minimum of the STC
scores in a frame as the frame-level score. After normalization, the
final score of a frame is defined as:

Score = ScoreS + ω · ScoreT . (7)

where ScoreS and ScoreT are the frame-level appearance score and
motion score, respectively. ω is the balance parameter.

4 Experiments and Analysis

4.1 Datasets and Evaluation Metric

We conduct experiments on three benchmark datasets including the
UCSD Ped2 dataset [24], the CUHK Avenue dataset [21], and the
ShanghaiTech dataset [17]. These datasets are originally proposed
for semi-supervised VAD. For performing UVAD and a fair compar-
ison, following the latest UVAD works [37, 39], we reorganize the
datasets by mixing normal and anomalous videos in both training set
and testing set.

Datasets. The UCSD Ped2 dataset contains 16 normal and 12
anomalous videos with 12 irregular events, including riding a bike
and driving a vehicle. After the reorganization, its training set con-
tains 9 normal and 7 anomalous videos, while its testing set consists
of 7 normal and 5 anomalous videos. The CUHK Avenue dataset
consists of 16 normal and 21 anomalous videos with 47 abnormal
events, such as running and throwing stuff. After the reorganiza-
tion, its training set consists of 8 normal and 12 anomalous videos,
while the remaining ones as the testing set. Compared to two datasets
above, the ShanghaiTech dataset is multi-view and more challenging.
It contains 330 normal and 107 anomalous videos with 130 anoma-
lies on 13 scenes. Its training set contains 175 normal and 63 anoma-
lous videos, while the remaining ones as its testing set.

Evaluation Metric. Following most of the existing works [19,
27, 38], we calculate the frame-level Area Under Curve (AUC) of
receiver operation characteristic for evaluating our methods. The
higher the AUC is, the better the performance is.

4.2 Implementation Details

We adopt the same implementation of YOLOv3 in [9] to filter out
the detected objects with low confidences. We set the size of STC
to T × 64 × 64 × 3, where T is the length of the STC. We set
T = 9 on the ShanghaiTech dataset, while T = 7 on the UCSD
Ped2 and CUHK Avenue datasets. For the mini-patches in the STC,
we set n = 3 for all three datasets. We empirically set ω to be 0.1
for the UCSD Ped2 dataset, 10 for the CUHK Avenue dataset, and
1 for the ShanghaiTech dataset. The depth of each prediction branch
in this enhanced framework is 8. The selection factors (λS , λT ) are
set to be (0.9, 0.9) for the UCSD Ped2 and CUHK Avenue datasets,
while (0.9, 0.7) for the ShanghaiTech dataset. The whole network
is optimized by the Adam optimizer with the initial learning rate of
1e−4, and it is decayed by using a cosine annealing method. On these
three datasets, the number of training epochs is set to 100, while 5
epochs are used for warm-up. The batch size in training is 64.
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Table 1. Comparisons of results on three benchmark datasets. bold and
underline indicate the best and second-best results for UVAD.

Methods
Datasets

Ped2 Avenue SHTech

Classic semi-supervised VAD

AnoPCN [36] 96.8 86.2 73.6
Attention [41] 96.0 86.0 –
PDE-AE [1] 95.4 – 72.5
AM-Corr. [25] 96.2 86.9 –
AnomalyNet [40] 94.9 86.1 –
Object-Centric [13] 97.8 90.4 84.9
BMAN [16] 96.6 90.0 76.2
Clustering-AE [4] 96.5 86.0 73.3
r-GAN [22] 96.2 85.8 77.9
DeepOC [35] 96.9 86.6 –
Multipath-Pred. [33] 96.3 88.3 76.6
Mem-Guided [27] 97.0 88.5 70.5
CAC [34] – 87.0 79.3
Scene-Aware [29] – 89.6 74.7
VEC [38] 97.3 90.2 74.8
BAF [10] 98.7 92.3 82.7
AMMCN [2] 96.6 86.6 73.7
SSMTL [9] 97.5 91.5 82.4
MPN [23] 96.9 89.5 73.8
HF2 [19] 99.3 91.1 76.2
CT-D2GAN [8] 97.2 85.9 77.7
STJP [31] 99.0 92.2 84.3
Bi-Pred [5] 98.3 90.3 78.1

UVAD

DF [6] 63.0 78.3 –
UM [30] 82.2 80.6 –
CTS [18] 87.5 84.4 –
OR [26] 83.2 – –
GCL [39] – – 78.9
LBR-SPR [37] 97.2 90.7 72.6

ESM (Ours) 97.8 94.4 78.3
ESSL (Ours) 98.6 94.9 80.9

Table 2. Ablation analysis of RAB and SLM on the Ped2 dataset. The
“single” and “dual” represent the networks are single-branch or dual-branch,

respectively.

Model RAB SLM Dual-branch AUC (%)

WBNet (baseline) � � � 97.4
ESM (single) � � � 97.7
ESM (dual) � � � 97.8
ESSL (single) � � � 98.3
ESSL (dual) � � � 98.6

Table 3. Ablation studies on selection factors on the ShanghaiTech dataset.

Selection λS 1.0 0.9 0.8 0.9 0.7
factor λT 1.0 0.9 0.8 0.7 0.7

AUC (%) 78.3 78.7 79.4 80.9 78.7

Table 4. Ablation studies on warm-up epochs on the Ped2 dataset.

warm-up epochs 0 5 10 20 30

AUC (%) 97.4 98.6 98.9 97.5 97.8

Figure 6. Example results of ESSL. The green shadow presents the
ground-truth corresponding to anomalies, and the last one is a failure case of

our method as marked in a red dashed circle.

4.3 Comparison with SOTA Methods

Comparison with UVAD Methods. As seen in Table 1, from the
comparison with SOTA methods for UVAD, we can observe that the
proposed ESSL achieves the best results on all three datasets. Espe-
cially, ESSL is the first one that exceeds 80% and reaches 80.9% in
AUC on the ShanghaiTech dataset. Compared with LBR-SPR, which
is also an object-centric method, it achieves the significant improve-
ment on the performance by 1.4% on the UCSD Ped2 dataset, 4.2%
on the CUHK Avenue dataset and 8.3% on the ShanghaiTech dataset.
Even the ESM without the SLM, it surpasses LBR-SPR [37] by 0.6%
on the UCSD Ped2 dataset and 3.7% on the CUHK Avenue dataset,
due to the strong ability of ESM for capturing normal features. On
the other hand, we notice an obtained AUC of 78.3%, which is 0.6%
lower than the GCL method [39] on the ShanghaiTech dataset. Al-
though the ShanghaiTech dataset is large and challenging, some ab-
normal features are learned due to the powerful learning ability of
ESM, which leads to a lower performance. It just proves that the
ESM can effectively capture deep features. Therefore, in order to
reduce the negative influence of anomalies, we introduce the SLM.
After applying the SLM, the performance of our model are improved
with varying degrees on all three datasets as shown in Table 1. We
gives three example results of ESSL in Figure 6, where the green
shadow denotes the ground-truth corresponding to anomalies. The
last one is a failure case. As the red dashed circle marked, the bicy-
cle is partially blocked by pedestrians, thus it is not detected by the
object detector.

Comparison with classic VAD Methods. Although our method
belongs to UVAD, we also list the performance of classic semi-
supervised VAD methods in Table 1. Comparing to the SOTA semi-
supervised VAD works, ESSL boosts the best one named BAF [10]
by 1.9% on the Avenue dataset, while only 0.7% lower on the Ped2
dataset. Take into account the different partition of the datasets,
although such a simple comparison cannot prove that our UVAD
method is better than the classic semi-supervised VAD methods,
UVAD is more challenging and advantaged. Thus, it can say that
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our method is competitive with classic semi-supervised VAD meth-
ods. Figure 1 demonstrates the superior performance of our ESSL in
UVAD, even approaching classic semi-supervised VAD method.

4.4 Ablation Study and Analysis

Effectiveness of RAB and SLM. To verify the effectiveness of
our constructed ESM, we perform ablation studies on the Ped2
dataset. we use the common Wide-Branch Network (WBNet) [31]
as the baseline. We replace the convolutional block in the WBNet
with the designed RAB to construct a single-branch ESM, in which
the appearance features and motion features are extracted by a shared
backbone network. It can be seen from Table 2 that the performance
of single-branch ESM improves by 0.3% compared to the baseline,
which proves the effectiveness of the designed RAB. After applying
the SLM, single-branch ESSL obtains the AUC of 98.3%, which is
0.6% higher than the single-branch ESM.

Effectiveness of Dual-branch. Considering that the backbone
network struggles to capture two different features, we build the dual-
branch framework to solve the spatial jigsaw puzzles and tempo-
ral jigsaw puzzles, separately. To further verify the effectiveness of
the dual-branch framework, we perform ablation studies on single-
branch and dual-branch frameworks. It can be seen from Table 2
that ESSL and ESM with dual-branch architectures are better than
those with single-branch architectures. Combining the above three
improvements, the final dual-branch ESSL achieves the best AUC of
98.6% that is 1.2% higher than the baseline.

Selection Factors in SLM. To address the problem that appear-
ance anomalies and motion anomalies are in different numbers, we
choose a separate selection factor for each branch. To further ex-
plore the best pairwise of selection factors (λS , λT ), we conduct
multiple ablation studies on the ShanghaiTech dataset. The results of
ESSL with different selection factors are shown in Table 3. We both
set λS and λT to start from 1.0 to conduct our experiments, which
means that no training samples are dropped. Causally, the setting of
(1.0, 1.0) shows a lowest performance 78.3%. The decrease of the
selection factors means that fewer samples are selected for training.
As (λS , λT ) gradually decreases from (1.0, 1.0) to (0.8, 0.8), the
AUC increases steadily to 79.4%. It reflects the effectiveness of the
proposed SLM, which continuously eliminates abnormal samples in
the training process and enforces the model focuses on learning nor-
mal features. However, as (λS , λT ) decreases to (0.7, 0.7), the AUC
drops to 78.7%. It is easy to explain that too small selection fac-
tor discards too much training data even including normal samples.
Considering the rarity of abnormal events, we do not further decrease
the selection factors for the experiments. While the combination of
(0.9, 0.7) achieves the best performance 80.9%, we choose this pair-
wise for the ShanghaiTech dataset.

Take advantage of the proposed SLM, we achieve a jump in per-
formance from 78.3% to 80.9%, while the core of SLM is only two
selection factors. Hence, the SLM is a simple yet effective and plug-
and-play method. It is not only effective in UVAD tasks, but also can
be simple drop-in various unsupervised learning tasks in other fields
to improve the performance under limited computational cost.

When to adopt SLM. As analyzed earlier, the application of SLM
requires the establishment of a preliminary tendency towards model
normality. Therefore, we conduct ablation studies on the Ped2 dataset

Table 5. Sensitivity analysis of the hyperparameter ω on the Ped2 dataset.

ω 0.1 0.3 0.5 0.7 0.9

AUC (%) 98.6 98.3 98.5 98.5 98.3

to explore the appropriate application period of SLM. As shown in
Table 4, when we apply SLM at the beginning of training, the model
has not yet established the normality advantage, which results in poor
performance 97.4%. When applying SLM after 5 or 10 enpochs, the
AUC increases to 98.6% and 98.9%. However, when applying SLM
after 20 or 30 epochs, the effectiveness of the model decreases be-
cause the model is already approaching convergence that makes it
difficult to correct the training direction of the model by using SLM.
Therefore, the intervention of SLM should be conducted as early as
possible when the model has preliminary detection abilities but has
not yet been fitted. And we recommend that SLM should be started
during the first 5% to 10% epochs of the total training process. In
this paper, for a fair comparison with the previous method [37], the
number of warm-up epochs in all other experiments is set to 5.

Sensitivity Analysis. We also conduct ablation studies on the Ped2
dataset to explore the effect of hyperparameter ω on the performance.
We adjust the variation of ω from 0.1 to 0.9. From Table 5, it can be
seen that AUC remains stable above 98% and the change is gentle
with a maximum amplitude not exceeding 0.3%. Therefore, it shows
that the performance of the model is stable and not sensitive to ω.

Computational cost analysis. We conduct all experiments on an
NVIDIA RTX 3070 Ti GPU and an Intel Core (TM) i7-12700K @
3.60GHz. Compared to the previous works [19], our method is more
lightweight and efficient with 9.53M #Params and 3.66G FLOPs.
When there are an average of 5 objects in per frame, the model runs
at a speed of 20 FPS, where the time of object detection and inference
for per frame are approximately 20ms and 30ms, respectively.

Limitations. Our method is based on object-centricity, thus it is
limited by the performance of object detector. In future work, we
shall consider how to reduce the impact of inefficient object detec-
tion.

5 Conclusion

In this paper, in order to address the problems that previous models
for UVAD were coarse-grained for the removal of suspicious anoma-
lies and lacked effective normal information, we presented an ESSL
framework to capture deep normal features. Our framework achieved
impressive efficiency on three benchmark datasets, due to the effec-
tiveness of ESM and SLM. The dual-branch framework performed
jigsaw puzzles in both spatial–temporal domains to capture effective
normal information by embedding multiple attention module, while
the SLM aimed to achieve the fine-grained removal of suspicious
anomalies by strengthening the network to focus on capturing nor-
mal features and neglecting anomalies automatically. The proposed
SLM are plug-and-play and can be easily embedded into other net-
works or frameworks for UVAD, even the SLM can further expand
to other unsupervised learning tasks.
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