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Abstract. Gradient clipping is a commonly used technique to sta-
bilize the training process of neural networks. A growing body of
studies has shown that gradient clipping is a promising technique
for dealing with the heavy-tailed behavior that emerged in stochastic
optimization as well. While gradient clipping is significant, its the-
oretical guarantees are scarce. Most theoretical guarantees only pro-
vide an in-expectation analysis and only focus on optimization per-
formance. In this paper, we provide high probability analysis in the
non-convex setting and derive the optimization bound and the gen-
eralization bound simultaneously for popular stochastic optimization
algorithms with gradient clipping, including stochastic gradient de-
scent and its variants of momentum and adaptive stepsizes. With the
gradient clipping, we study a heavy-tailed assumption that the gradi-
ents only have bounded α-th moments for some α ∈ (1, 2], which
is much weaker than the standard bounded second-moment assump-
tion. Overall, our study provides a relatively complete picture for the
theoretical guarantee of stochastic optimization algorithms with clip-
ping.

1 Introduction

Stochastic optimization has played a crucial role in modern machine
learning and data-driven optimization since many machine learning
problems can be transformed into a stochastic optimization problem
[5, 4]. The past decades have witnessed the prosperous development
of stochastic optimization algorithms. For example, stochastic gradi-
ent descent (SGD) [51] has shown great success in the training of a
large number of learning tasks [26, 24]. In practice, SGD works by
querying an oracle iteratively to obtain unbiased gradient estimates
built on one or several training examples in place of the exact gradi-
ent. Its simplicity in implementation and low memory requirements
per iteration make it easier to scale into the big data era [30, 3].

Driven by the empirical success of SGD, a great deal of work has
been done on design modifications to improve its performance in
various ways. One popular modification is to use the adaptive step-
sizes. [13, 40] propose the provably convergent adaptive gradient
(AdaGrad) and demonstrate that the sparsity of the gradient suggests
outperformance. Another popular modification of SGD is the mo-
mentum technique. Momentum uses a running average of the past
gradient values [47, 43], and intuitively, adding momentum acceler-
ates convergence by circumventing sharp curvatures and long ravines
of the sub-level sets of the objective function [49]. These stochastic
optimization algorithms have shown distinct advantages in different
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learning tasks [64, 61]. The superior empirical performance has at-
tracted many researchers to investigate their guarantees and under-
stand their theoretical properties.

Recently, a number of works have interestingly shown that
stochastic optimization algorithms easily exhibit a heavy-tailed be-
havior [61, 53, 45, 52, 7, 21]. For example, [61] provide empiri-
cal study and show that large natural language processing models,
e.g., Bert [56, 12], have heavy-tailed gradients. In this spirit, existing
guarantees of assuming bounded variance or light sub-Gaussian tail
seem to be inappropriate [61, 62, 9]. In particular, in practice the vari-
ance can be very large, possibly even infinite, but the α-th moment
is bounded for some α ∈ (1, 2] [9, 62]. For a more realistic analysis,
it is essential to investigate the theoretical guarantees of stochastic
optimization algorithms under this heavy-tailed condition. However,
the setup becomes complicated, which hinders the use of conven-
tional convergence analysis techniques that rely on the existence of
the second-order moment.

Gradient clipping is an effective tool for dealing with heavy-tailed
random variables [9, 62]. The intuition behind this is that the clipped
version of a heavy-tailed random variable will have much more
benign properties when the clipping parameters are well chosen.
Thus, gradient clipping is a promising technique for dealing with the
heavy-tailed behavior in stochastic optimization. Additionally, gra-
dient clipping can stabilize the gradient updates and thus stabilize
the training process of stochastic optimization [39]. It is believed to
effectively alleviate the gradient explosion problem without adding
additional cost to the original update [59]. As such, it has been a
common choice for many application domains of machine learning,
especially the language processing tasks [46, 58].

Theoretically, some recent works have studied the optimization
guarantee for stochastic optimization algorithms with gradient clip-
ping [19, 59, 39, 60, 62, 61, 9]. However, these optimization guaran-
tees are typically either provided for the convex optimization prob-
lems [19, 39] or derived in expectation [59, 39, 60, 62, 61]. Un-
fortunately, the expectation bound does not capture the behavior of
stochastic optimization algorithms within one or several runs, which
is relevant to the probabilistic property of stochastic optimization al-
gorithms. Also, in real-world applications such as neural networks,
since the training process can take hours or even days, algorithms
are usually run only once, so it is important to obtain high probabil-
ity guarantees [36, 23, 57, 9, 19].

Furthermore, to the best of our knowledge, existing learning guar-
antees of stochastic optimization algorithms with clipping are al-
most all derived from the optimization performance perspective. In
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machine learning, our primary interest would be the generalization
performance of the trained model on testing examples, which is
quite different from the empirical performance on training examples
[33, 44, 5]. To be specific, the optimization performance concerns
how the learning algorithm minimizes the empirical risk, while gen-
eralization performance concerns how the predictive models learned
from training samples behave on the testing samples. Thus, to in-
vestigate the learning guarantees of clipped stochastic optimization
algorithms, it is necessary to consider both the optimization and gen-
eralization guarantees.

Motivated by the problems we discussed above, this paper consid-
ers three popular stochastic optimization algorithms, i.e., stochastic
gradient descent (SGD), stochastic gradient descent with momen-
tum (SGDM), and stochastic gradient descent with adaptive step-
sizes (SGDAS), in the non-convex setting. We establish both the high
probability optimization bound and the high probability generaliza-
tion bound for their clipped version under the bounded α-th moment
assumption. The results cover SGD and the well-known momentum
technique and adaptive stepsizes and reveal the learning performance
of the clipped stochastic optimization algorithms from both the per-
spective of convergence and generalization. In Table 1, we provide
an intuitive display of the results this paper obtained.

This paper is organized as follows. We first review the related work
in Section 2 and then introduce the preliminaries relevant to our dis-
cussion in Section 3. Section 4 presents the main results, where we
derive a series of learning guarantees for stochastic optimization al-
gorithms with clipping. In Section 5, we conclude this paper. Some
Lemmas useful to our discussions and proofs are shown in Section 6,
and the complete proofs are provided in the Appendix1.

2 Related Work

High Probability Bounds. Most of the literature provides guaran-
tees in expectation for stochastic optimization algorithms [23]. The
high probability guarantees of SGD are mainly provided for the con-
vex setting [28, 25, 48, 19, 23, 10, 11, 20, 27, 32, 37, 31, 14, 2].
As a comparison, high probability studies on the non-convex set-
ting are scarce. Specifically, [16, 33, 38, 34] provide high proba-
bility bounds for non-convex SGD and [36, 64, 57, 29] for non-
convex adaptive SGD. Unsatisfied, all these works assume the light
sub-Gaussian tail or bounded variance. Very recently, motivated by
recent research on the heavy-tailed phenomena in stochastic opti-
mization, [9] give high probability bounds in the non-convex setting
by assuming the bounded α-th moment, a heavy-tailed assumption
allowing unbounded variance. We mention to readers here that in
some literature [38, 19, 34], the “heavy-tailedness” refers to non-sub-
Gaussianity. While in this paper, by stochastic gradient with heavy-
tailed distribution, we mean such a stochastic gradient allows un-
bounded variance. Overall, high probability bounds for stochastic
optimization algorithms under the heavy-tailed assumption allowing
unbounded variance are scarce.
Gradient Clipping. Gradient clipping is a commonly used technique
in the training process of neural networks [18, 41]. In [59, 19, 39,
60, 62, 61, 9, 34], the optimization guarantees of clipping are in-
vestigated. Specifically, [19] study convex SGD and consider the
smoothness and bounded variance conditions. [39] then study con-
vex SGD but the non-smooth case. [60] study non-convex SGD, us-
ing a relaxed smoothness condition and a stronger assumption than
the bounded variance. [59] then provide improved convergence anal-
ysis of [60] with joint consideration of clipped gradient and clipped
1 https://arxiv.org/abs/2307.13680.

momentum. [62, 61] study non-convex SGD under the bounded α-
th moment condition. Notably that the above works all focus on in-
expectation optimization guarantees. Under the bounded α-th mo-
ment condition, [9] combine the gradient clipping and normalized
gradient descent and derive the first high probability optimization
guarantees for SGDM. The work [34] then provide the first high
probability optimization guarantee for SGD with the sub-Weibull
gradient noise. Therefore, from the related work, one can see that
the high probability optimization analysis of non-convex stochastic
optimization algorithms with clipping has not been thoroughly stud-
ied and is far from being understood. Even worse, there is almost
no research on its generalization performance analysis. This paper
makes an effort in this direction.

3 Preliminaries

3.1 Notations

Let P be a probability measure defined on a sample space Z , many
learning problems of machine learning can be cast into the following
stochastic optimization problem with a hypothesis space indexed by
W ⊆ R

d:

min
w∈W

F (w) := Ez∼P [f(w; z)],

where the objective f : W × Z �→ R+ is possibly non-convex
and Ez∼P denotes the expectation with respect to (w.r.t.) the random
variable z drawn form P . In machine learning, F (w) is typically
referred to as population risk [6].

For the above stochastic optimization problem, people want to
learn a prediction model with a small population risk. However,
F (w) is typically not accessible since the underlying distribution P
is unknown. In practice, we often sample a set of i.i.d. training data
S = {z1, ..., zn} from P and minimize the following empirical risk:

FS(w) :=
1

n

n∑
i=1

f(w; zi).

Various stochastic optimization algorithms, e.g. SGD and its vari-
ants of momentum and adaptive stepsizes, have been proposed to
optimize the empirical risk FS(w) and have shown their distinct
advantages in different learning tasks [4, 16]. Perhaps SGD is the
most popular stochastic optimization algorithm due to its simplicity
in implementation, low computational complexity, and sound prac-
tical behavior. For this reason, we show the pseudocode of SGD in
Algorithm 1. SGD iteratively moves models along the reverse direc-
tion of an unbiased gradient estimate ∇f(wt; zjt), i.e.,

Ejt [∇f(wt; zjt)−∇FS(wt)] = 0,

and the simplicity has made SGD become one of the workhorses
behind many machine learning tasks [5, 4, 30, 33]. Its clipped version
and other variants will be presented in Section 4.

We then introduce some notations used in this paper. Let b =
supz∈Z ‖∇f(0; z)‖, where ∇f(·; z) denotes the gradient of f
w.r.t. the first argument and ‖ · ‖ denotes the Euclidean norm. Let
B(0, R) := {w ∈ R

d : ‖w − 0‖ ≤ R} denote a ball with center
0 ∈ R

d and radius R, denoted by BR. We also denote A 	 B if there
exists universal constants C1, C2 > 0 such that C1A ≤ B ≤ C2A.
Standard order of magnitude notation such as O(·) will be used.

S. Li and Y. Liu / High Probability Analysis for Non-Convex Stochastic Optimization with Clipping 1407



Algorithm 1 SGD
Input: initial point w1 = 0, step sizes {ηt}t, dataset S =
{z1, ..., zn}.

1: for t = 1, ..., T do

2: draw jt from the uniform distribution over the set {j : j ∈
[n]}

3: update wt+1 = wt − ηt∇f(wt; zjt).
4: end for

3.2 Assumptions

We first present the assumption of smoothness.

Assumption 1. Let the constant L > 0. A differentiable function
g : W �→ R is L-smooth if

‖∇g(w)−∇g(w′)‖ ≤ L‖w −w′‖, ∀w,w′ ∈ W.

Remark 2. This assumption is necessary to have the convergence
of the gradients to zero [36]. It is standard in the optimization and
generalization literature, e.g. [14, 22, 50, 15, 9, 26], to mention but a
few. In this paper, for the optimization guarantees, we just need the
empirical risk FS to be smooth, i.e., for any w,w′ ∈ W , there holds
‖∇FS(w)−∇FS(w

′)‖ ≤ L‖w−w′‖. While for the generalization
guarantees, we need the function f to be smooth, i.e., for any sample
z ∈ Z and w,w′ ∈ W , there holds ‖∇f(w; z) − ∇f(w′; z)‖ ≤
L‖w −w′‖.

With the smoothness assumption, we have the useful “descent
lemma” [42]:

g(w)− g(w′) ≤ 〈w −w′,∇g(w′)〉+ L

2
‖w −w′‖2.

We then show our assumption on the stochastic gradient.

Assumption 3. There exists positive real numbers α ∈ (1, 2] and
G > 0 such that for all wt,

Ejt [‖∇f(wt; zjt)‖α] ≤ Gα.

Remark 4. It is possible that the variance of ∇f(wt; zjt) is un-
bounded while simultaneously satisfying Assumption 3 for α < 2,
e.g. the Pareto or α-stable Levy random variables, please refer to
Section 2.1 in [62] for details. This assumption is thus much weaker
than the standard bounded second moment assumption. It is shown
that the unbounded variance strongly corrupts the optimization pro-
cess and that previous convergence proofs for SGD fail [62]. Thus,
it is essential to investigate the theoretical guarantees of stochastic
optimization algorithms under this heavy-tailed condition. This pa-
per uses gradient clipping to establish high probability guarantees for
many popular stochastic optimization algorithms under this assump-
tion.

4 Main Results

In this section, we present the main results of this paper. We first
consider SGD with gradient clipping in Section 4.1, and then SGDM
with joint consideration of gradient clipping and momentum clipping
in Section 4.2. Further, we study AdaGrad with gradient clipping in
Section 4.3.1 and study a more general template of adaptive algo-
rithms in Section 4.3.2.

In the general nonconvex case, since obtaining the global mini-
mum is NP-hard in general, we cannot guarantee that the algorithm
can find a global minimizer. Therefore, we are interested in finding
the ε-stationary point of first-order gradient for both the optimization
guarantees and the generalization guarantees [16, 31, 36, 38, 61, 9].

Algorithm 2 SGD with Clipping
Input: initial point w1 = 0, step sizes {ηt}t, dataset S =
{z1, ..., zn}, and clipping parameter τ > 0.

1: for t = 1, ..., T do

2: draw jt from the uniform distribution over the set {j : j ∈
[n]}

3: obtain ∇f̄(wt; zjt) =
∇f(wt;zjt )

‖∇f(wt;zjt )‖
min{τ, ‖∇f(wt; zjt)‖}

4: update wt+1 = wt − ηt∇f̄(wt; zjt).
5: end for

4.1 SGD with Clipping

The pseudocode of SGD with clipping is shown in Algorithm 2.
In each iterate, SGD moves models along the reverse direction of a
clipped gradient ∇f̄(wt; zjt), which is a biased estimate. We first
present the optimization guarantee and then the generalization guar-
antee for clipped SGD.

Theorem 5. Suppose the empirical risk FS satisfies Assumption 1
and suppose Assumption 3 holds. Let wt be the iterate produced by
Algorithm 2. Set ηt = η = p 1

T
α

3α−2
and τ = qT

1
3α−2 for some

positive constants p, q such that q ≤ T
2α−2

α(3α−2) and η ≤ 1/(12L).
Then for any δ ∈ (0, 1), with probability 1− δ, we have

1

T

T∑
t=1

‖∇FS(wt)‖2 = O
(

1

T
2α−2
3α−2

log
1

δ

)
.

Remark 6. Theorem 5 suggests that if the empirical risk is smooth
and the stochastic gradient follows from the heavy-tailed assump-
tion, the optimization guarantee of clipped SGD has a convergence
rate of the order O(log( 1

δ
)/T

2α−2
3α−2 ). When α = 2, it implies

O(log( 1
δ
)/T

1
2 ). We now compare Theorem 5 with the related work

of clipping. Theorem 3.1 in [19] provides a high probability con-
vergence bound for clipped SGD under the smoothness, convexity,
and bounded variance conditions. Theorem 8 in [60] provides an
in-expectation analysis for non-convex clipped SGD under a relaxed
smoothness condition and a stronger assumption than the bounded
variance, i.e., ‖∇f(wt; zjt) − ∇FS(wt)‖ ≤ G holds for any wt

and zjt almost surely. The most relevant result to Theorem 5 is
Theorem 2 in [62]. Theorem 5 provides a high-probability result for
non-convex clipped SGD, matching the in-expectation convergence
rate of Theorem 2 in [62] up to logarithmic factors. It has been
shown in [9] and Theorem 6 of [61] that this rate is optimal. The
benefit of the high probability bound is that it holds for any training
data S drawn from P and over the randomness of the algorithm. To
our best knowledge, Theorem 5 provides the first high probability
optimization bound for clipped SGD under an unbounded variance
assumption. We sketch the proof technique of Theorem 5. The
proof begins with the “descent lemma” and some decompositions,
resulting in Eq. (1) in the Appendix. Unlike the in-expectation
analysis, the high probability analysis requires to construct some
martingale difference sequences, e.g.

∑T
t=1 Lη

2(‖∇f̄(wt; zjt) −
Ejt∇f̄(wt; zjt)‖2 − Ejt‖∇f̄(wt; zjt) − Ejt∇f̄(wt; zjt)‖2)
and −∑T

t=1 η〈∇f̄(wt; zjt) − Ejt∇f̄(wt; zjt),∇FS(wt)〉.
Some concentration inequalities on martingales should be used
to bound these terms. The key point lies in that the Auzan-
Hoeffding inequality for martingales with bounded increments
fails to give the optimal rate of Theorem 5, especially when
dealing with

∑T
t=1 Lη

2(‖∇f̄(wt; zjt) − Ejt∇f̄(wt; zjt)‖2 −
Ejt‖∇f̄(wt; zjt) − Ejt∇f̄(wt; zjt)‖2). For the purpose of
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the optimal rate, one must consider the conditional variance
and use the Bernstein-type concentration inequality (Lemma
19). Notably that for clipped SGD, its conditional variance
should be carefully controlled. Other terms like the bias∑T

t=1 Lη
2‖Ejt∇f̄(wt; zjt) − ∇FS(wt)‖2 and the variance∑T

t=1 Lη
2
Ejt‖∇f̄(wt; zjt) − Ejt∇f̄(wt; zjt)‖2 of the clipped

stochastic gradient can be bounded by its boundedness and the
heavy-tailed assumption. After getting the bound in Eq. (8) in the
Appendix, carefully selecting the stepsize η and clipping parameter
τ obtains the optimal rate of Theorem 5.

Theorem 7. Suppose the function f satisfies Assumption 1 and sup-
pose Assumption 3 holds. Let wt be the iterate produced by Algo-
rithm 2. Set ηt = η = p 1

T
α

3α−2
and τ = qT

1
3α−2 for some positive

constants p, q such that q ≤ T
2α−2

α(3α−2) and η ≤ 1/(12L). Select

T 	 (n
d
)
3α−2
4α−4 . Then for any δ ∈ (0, 1), with probability 1 − δ, we

have

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d

n

) 1
2
log

1

δ

)
.

Remark 8. Theorem 7 shows that if the function f is smooth and
the stochastic gradient follows from the heavy-tailed assumption, the
generalization guarantee of clipped SGD has a convergence rate of
the order O(( d

n
)
1
2 log 1

δ
) when the iterate number T 	 (n

d
)
3α−2
4α−4 .

Lemma 4.3 in [22] provides an in-expectation analysis for clipped
SGD by the lens of algorithmic stability [6]. For the generaliza-
tion analysis of clipped stochastic optimization algorithms, we have
not found other related results in the literature. The proof of Theo-
rem 7 begins with a decomposition, resulting in Eq. (14) in the Ap-
pendix, where

∑T
t=1 ‖∇FS(wt)‖2 corresponds to Theorem 5 and

T‖∇F (wT ) − ∇FS(wT )‖2 can be bounded by the uniform con-
vergence of gradients (Lemma 21). In using Lemma 21, we need to
quantify the value of RT , which reveals the space complexity in-
duced by the iterate update of SGD. In this spirit, we need to give
the bound of SGD’s iterate max1≤t≤T ‖wt‖, see Eq. (11) in the
Appendix. We show that this term can be bounded by the bias of
the clipped stochastic gradient, the empirical risk, and the Pinelis-
Bernstein inequality for martingales difference sequences (Lemma
20). Again, the conditional variance should be carefully controlled
to guarantee the convergence rate of Theorem 7 when using Lemma
20. One can see that 1

T

∑T
t=1 ‖∇FS(wt)‖2 is decreasing along the

training process, while ‖∇F (wT ) − ∇FS(wT )‖2 is increasing,
which suggests the space complexity is keeping grow along the train-
ing process. Thus, Theorem 7 reveals that an implicit regularization
can be achieved by tuning the number of passes to balance the opti-
mization and generalization error for the clipped stochastic gradient
descent.

4.2 SGDM with Clipping

The pseudocode of SGDM with clipping is shown in Algorithm 3.
Algorithm 3 incorporates the momentum update, mt = γmt−1 +
(1− γ)∇f̄(wt; zjt), to SGD. We first give the optimization guaran-
tee and then the generalization guarantee for clipped SGDM.

Theorem 9. Suppose the empirical risk FS satisfies Assumption 1
and suppose Assumption 3 holds. Let wt be the iterate produced by
Algorithm 3. Set τ1 = pG

(1−γ)1/α
, 1 − γ = s

T
α

3α−2
, ηt = η =

q

T
α

3α−2
, and τ2 = r

T
α−1
3α−2

for some positive constants p, s, q, r such

Algorithm 3 SGDM with Clipping
Input: initial point w1 = 0, m0 = 0, step sizes {ηt}t, dataset
S = {z1, ..., zn}, momentum parameter γ, and clipping parameters
τ1, τ2 > 0.

1: for t = 1, ..., T do

2: draw jt from the uniform distribution over the set {j : j ∈
[n]}

3: obtain ∇f̄(wt; zjt) =
∇f(wt;zjt )

‖∇f(wt;zjt )‖
min{τ1, ‖∇f(wt; zjt)‖}

4: update mt = γmt−1 + (1− γ)∇f̄(wt; zjt)
5: obtain m̄t =

mt
‖mt‖ min{τ2, ‖mt‖}

6: update wt+1 = wt − ηtm̄t.
7: end for

that 1 − γ ≤ 1. Then for any δ ∈ (0, 1), with probability 1 − δ, we
have

1

T

T∑
t=1

‖∇FS(wt)‖ = O
(

1

T
α−1
3α−2

log
T

δ

)
.

Remark 10. Theorem 9 shows that the optimization guarantee
of SGDM with gradient clipping and momentum clipping has a
convergence rate of the order O(log T

δ
/T

α−1
3α−2 ). Note that ac-

cording to Jensen’s inequality, the bound in Theorem 5 implies
that 1

T

∑T
t=1 ‖∇FS(wt)‖ = (( 1

T

∑T
t=1 ‖∇FS(wt)‖)2)1/2 ≤

( 1
T

∑T
t=1 ‖∇FS(wt)‖2)1/2 ≤ O(log 1

δ
/T

α−1
3α−2 ). Thus, Theorem

9 presents a similar order bound to Theorem 5. An improve-
ment of Theorem 9 is that its stepsize η does not depend on the
smoothness parameter L, i.e., completely oblivious to the knowl-
edge of smoothness. We now compare Theorem 9 with the re-
lated work of clipping. As we discussed in Section 2, [59] also
study SGDM with both gradient clipping and momentum clip-
ping. Their updates are mt+1 = γmt + (1 − γ)∇f(wt; zjt)
and then wt+1 = wt − [vmin(η, τ

‖mt+1‖ )mt+1 + (1 −
v)min(η, τ

‖∇f(wt;zjt )‖
)∇f(wt; zjt)], where v ∈ [0, 1] is an inter-

polation parameter. Theorem 3.2 in [59] provides an expected opti-
mization bound under a relaxed smoothness and a stronger assump-
tion than the bounded variance, i.e., ‖∇f(wt; zjt)−∇FS(wt)‖ ≤
G holds for any wt and zjt almost surely, where the latter assump-
tion is restrictive, hindering the scope of application of their re-
sults. Another related work is [9]. Theorem 2 in [9] gives a high-
probability bound under the same conditions to Theorem 9 by com-
bining the gradient clipping, momentum, and normalized momen-
tum. Their updates are mt = γmt−1 + (1 − γ)∇f̄(wt; zjt) and
then wt+1 = wt − ηt

mt
‖mt‖ . In Algorithm 3, we study the clipped

version of momentum. Algorithm 3 is more similar to the frame-
work proposed in [59], where both the gradient clipping and mo-
mentum clipping are all considered. The proof techniques between
ours and [59, 9] are different. We now compare Theorem 9 with
[9] considering the two works all focus on high probability bound.
Due to ‖ mt

‖mt‖‖ = 1, [9] show that FS(wt+1) − FS(wt) ≤
−η〈 mt

‖mt‖ ,∇FS(wt)〉 + L
2
η2 = −η〈 mt

‖mt‖ ,∇FS(wt) − mt〉 −
η‖mt‖+L

2
η2 ≤ η‖ mt

‖mt‖‖‖∇FS(wt)−mt‖−η‖mt−∇FS(wt)+

∇FS(wt)‖ + L
2
η2 ≤ 2η‖∇FS(wt) − mt‖ − η‖∇FS(wt)‖ +

L
2
η2, which implies ‖∇FS(wt)‖ ≤ 2‖∇FS(wt) − mt‖ + L

2
η −

(FS(wt+1)−FS(wt))

η
. [9] then use Freedman’s inequality to bound the

term ‖∇FS(wt) − mt‖. However, the clipped momentum doesn’t
have the property ‖ mt

‖mt‖‖ = 1. In the proof of Theorem 9, we need
to consider two cases, i.e., ‖mt‖ ≥ τ2 and ‖mt‖ < τ2. In the former
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case, we need to prove that ‖∇FS(wt)‖ ≤ 3
FS(wt)−FS(wt+1)

ητ2
+

4‖mt − ∇FS(wt)‖ + 3L
2
ητ2, and in the latter case, we need to

prove that ‖∇FS(wt)‖2 ≤ 2(FS(wt)−FS(wt+1))

η
+ ‖∇FS(wt) −

mt‖2 + Lητ2
2 . We then use the Pinelis-Bernstein inequality for

martingales difference sequences (Lemma 20) to bound the terms
‖∇FS(wt)−mt‖ and ‖∇FS(wt)−mt‖2. Additionally, in practice,
a more common application of the normalized momentum should be
wt+1 = wt−ηt

mt
‖mt‖+β

with β > 0. However, this pattern of iterate
update violates the property ‖ mt

‖mt‖‖ = 1, which plays an essential
role in the proof in [9]. It is unclear whether the proof techniques
of [9] can guarantee the convergence for this more commonly used
pattern of iterate update. The clear motivations of our study on mo-
mentum clipping include that the clipping doesn’t have such an issue
and is more common in practice, that Appendix C in [59] suggests
that there are some practical issues that make normalized momen-
tum less favorable than traditional clipping methods, and that [59]
only provide in-expectation analysis. Considering the above analy-
sis, we believe that Theorem 9 is an important result for stochastic
optimization with clipping.

Theorem 11. Suppose the function f satisfies Assumption 1 and sup-
pose Assumption 3 holds. Let wt be the iterate produced by Algo-
rithm 3. Set τ1 = pG

(1−γ)1/α
, 1 − γ = s

T
α

3α−2
, ηt = η = q

T
α

3α−2
,

and τ2 = r

T
α−1
3α−2

for some positive constants p, s, q, r such that

1 − γ ≤ 1. Select T 	 (n
d
)
3α−2
4α−4 . Then for any δ ∈ (0, 1), with

probability 1− δ, we have

1

T

T∑
t=1

‖∇F (wt)‖ = O
(( d

n

) 1
4
log

n

dδ

)
.

Remark 12. According to Jensen’s inequality, Theorem 11 shows a
generalization bound of a similar order to Theorem 7. For the gen-
eralization analysis of clipped SGDM and even SGDM, we have not
found related results in the literature. The analysis pattern of Theo-
rem 11 follows Remark 8. Thus, Theorem 11 also reveals that an im-
plicit regularization can be achieved by tuning the number of passes
to balance the optimization and generalization error for the clipped
stochastic gradient descent with momentum.

4.3 SGDAS with Clipping

After the momentum technique, this section studies SGD with the
adaptive stepsizes. We first consider AdaGrad and then a more gen-
eral form of adaptive accelerated algorithms, including AdaGrad and
adaptive RSAG as specific examples.

4.3.1 AdaGrad

The pseudocode of AdaGrad with clipping is shown in Algorithm
4. Compared to the original AdaGrad [13, 40], in each iterate, Algo-
rithm 4 uses a clipped gradient estimate ∇f̄(wt; zjt). We first give
the optimization guarantee and then the generalization guarantee.

Theorem 13. Suppose the empirical risk FS satisfies Assumption 1
and suppose Assumption 3 holds. Assume that FS(w) ≤ M for all
w for some M . Let wt be the iterate produced by Algorithm 4. Set

τ = pT
1

3α−2 for some positive constants p such that p ≤ T
2α−2

α(3α−2) .
Then for any δ ∈ (0, 1), with probability 1− δ, we have

1

T

T∑
t=1

‖∇FS(wt)‖2 = O
(

1

T
2α−2
3α−2

log
1

δ

)
.

Algorithm 4 AdaGrad with Clipping
Input: initial point w1 = 0, step sizes {ηt}t, dataset S =
{z1, ..., zn}, G0 > 0, and τ > 0.

1: for t = 1, ..., T do

2: draw jt from the uniform distribution over the set {j : j ∈
[n]}

3: obtain ∇f̄(wt; zjt) =
∇f(wt;zjt )

‖∇f(wt;zjt )‖
min{τ, ‖∇f(wt; zjt)‖}

4: obtain ηt =
1√

G2
0+

∑t
k=1

‖∇f̄(wt;zjt )‖2

5: update wt+1 = wt − ηt∇f̄(wt; zjt).
6: end for

Remark 14. Theorem 13 shows that if FS is smooth and bounded
and the stochastic gradient follows from the heavy-tailed assump-
tion, the optimization guarantee of clipped AdaGrad has a con-
vergence rate of the order O(log 1

δ
/T

2α−2
3α−2 ). Theorem 13 requires

FS to be bounded additionally. This assumption also appears in
Theorem 4 of [8] and Theorem 6 of [55] when they prove the
convergence rate for adaptive algorithms. To our best knowledge,
Theorem 13 provides the first optimization bound for AdaGrad
with clipping. The proof technique of clipped AdaGrad is different
from the clipped SGD and SGDM. With the “descent lemma” and
some decompositions, we instead prove that

∑T
t=1 ‖∇FS(wt)‖2 ≤

(2M +L)
√

G2
0 +

∑T
t=1 ‖∇f̄(wt; zjt)‖2 −

∑T
t=1〈∇f̄(wt; zjt)−

∇FS(wt),∇FS(wt)〉 for clipped AdaGrad. Then, we need to bound
the terms

∑T
t=1 ‖∇f̄(wt; zjt)‖2 and −∑T

t=1〈∇f̄(wt; zjt) −
∇FS(wt),∇FS(wt)〉 with the term

∑T
t=1 ‖∇FS(wt)‖2, see Eqs.

(21), (22) and (24) in the Appendix for details. To guarantee the op-
timal rate of Theorem 13, in bounding the two terms, we need to
use the Bernstein-type concentration inequality (Lemma 19) since
the Auzan-Hoeffding inequality for martingales with bounded incre-
ments leads to the sub-optimal rates. During this process, the con-
ditional variance must be carefully considered. Finally, solving the
quadratic inequality of

∑T
t=1 ‖∇FS(wt)‖2, we get the optimization

bound of Theorem 13. We now compare Theorem 13 with the results
of clipped SGD and clipped SGDM (Theorem 5 and Theorem 9). An
improvement of Theorem 13 is that compared to clipped SGD, the
stepsize ηt of clipped AdaGrad does not depend on the smoothness
parameter L and the parameter α of Assumption 3 and compared to
clipped SGDM, the stepsize ηt of clipped AdaGrad does not depend
on the parameter α of Assumption 3.

Theorem 15. Suppose the function f satisfies Assumption 1 and
suppose Assumption 3 holds. Assume that FS(w) ≤ M for all w
for some M . Let wt be the iterate produced by Algorithm 4. Set

τ = pT
1

3α−2 for some positive constants p such that p ≤ T
2α−2

α(3α−2) .
Select T 	 (n

d
)
3α−2
4α−4 . Then for any δ ∈ (0, 1), with probability 1−δ,

we have

1

T

T∑
t=1

‖∇F (wt)‖2 = O
(( d

n

) 2α−2
5α−4

log(
1

δ
) log

(
1 + (

n

d
)

3α
5α−4

))
.

Remark 16. Theorem 15 shows that the generalization guar-
antee of clipped AdaGrad has a convergence rate of the order
O(( d

n
)
2α−2
5α−4 log(1/δ) log(1 + (n

d
)

3α
5α−4 )) when the iterate num-

ber T 	 (n
d
)
3α−2
4α−4 . When α = 2, Theorem 15 implies

O(( d
n
)
1
3 log(1/δ) log(1 + n

d
)). For the generalization analysis of

clipped AdaGrad and even AdaGrad, we have not found related re-
sults in the literature. The analysis pattern of Theorem 15 follows
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Algorithm 5 Adaptive Accelerated Algorithms with Clipping
Input: initial point w1 = w̃1, αt ∈ (0, 1], step sizes {ηt}t and
{βt}t, dataset S = {z1, ..., zn}, G0 > 0, and τ > 0.

1: for t = 1, ..., T do

2: draw jt from the uniform distribution over the set {j : j ∈
[n]}

3: obtain w̄t = αtwt + (1− αt)w̃t

4: obtain ∇f̄(w̄t; zjt) =
∇f(w̄t;zjt )

‖∇f(w̄t;zjt )‖
min{τ, ‖∇f(w̄t; zjt)‖}

5: update wt+1 = wt − ηt∇f̄(w̄t; zjt)
6: update w̃t+1 = w̄t − βt∇f̄(w̄t; zjt).
7: end for

Remark 8 and also reveals the implicit regularization effect. Inves-
tigating whether the generalization bound of clipped AdaGrad can
achieve the similar order to SGD or SGDM is an interesting open
problem.

4.3.2 Adaptive Accelerated Algorithms

We then study a general form of adaptive accelerated algorithm,
Algorithm 5, which corresponds to a clipped version of Algorithm
2 in [29]. We introduce some adaptive algorithms covered by Al-
gorithm 5. Define λt = 1√

G2
0+

∑t
k=1

‖∇f̄(w̄t;zjt )‖2
. When ηt =

βt = λt, Algorithm 5 becomes the clipped AdaGrad. When ηt = λt

and βt = (1 + αt)ηt, where αt = 2
t+1

, Algorithm 5 becomes
the clipped RSAG [17]. Note that for Algorithm 5, we are inter-
ested in the iterate w̄t. Assumption 3 should be assumed on w̄, i.e.,
Ejt [‖∇f(w̄t; zjt)‖α] ≤ Gα. We present the optimization guarantee
below.

Theorem 17. Suppose the empirical risk FS satisfies Assumption 1
and suppose Assumption 3 holds. Assume that FS(w) ≤ M for all
w for some M . Let w̄t be the iterate produced by Algorithm 5. Set

τ = pT
1

3α−2 for some positive constants p such that p ≤ T
2α−2

α(3α−2) .
Then for any δ ∈ (0, 1), with probability 1− δ, we have

1

T

T∑
t=1

‖∇FS(w̄t)‖2 = O
(

1

T
2α−2
3α−2

log
1

δ

)
.

Remark 18. Algorithm 5 corresponds to a specific reformulation
of Nesterov’s acceleration [17]. This reformulation was referred to
as linear coupling in [1], which is a combination of mirror descent,
SGD, and averaging. Theorem 17 shows a similar O(log 1

δ
/T

2α−2
3α−2 )

rate to Theorem 13. When α = 2, it implies O(log( 1
δ
)/T

1
2 ).

In the related work, [29] provide a convergence rate of the order
O(log(1/δ)/

√
T ) for Algorithm 5 without clipping by assuming

the smoothness, Lipschitz continuity of FS , bounded variance, and
‖∇f(wt; zjt)‖ ≤ G holding for all wt and zjt almost surely. By
comparison, Theorem 17 gives the guarantee for a heavy-tailed as-
sumption allowing unbounded variance, and the overall conditions
are weaker than [29].

4.4 Summary of Results

We provide the results obtained in this paper and the high probability
results of related work in the non-convex setting with gradient clip-
ping in Table 1. Here, we provide some descriptions of Table 1. S
means the smoothness, S-S means second-order smoothness, and α

means Assumption 3. We say a function g is ρ-second-order smooth-
ness if for every w1,w2 ∈ W and y ∈ R

d, there holds

‖(∇2g(w1)−∇2g(w2))y‖2 ≤ ρ‖w1 −w2‖‖y‖.

One can derive the convergence bound and generalization bound for
Algorithm 2 with the second-order smoothness by incorporating our
proof technique and the technique of [9]. We leave it to the interested
readers. The difference between ours and [9] has been discussed in
Remark 10.

Moreover, the comparison between our results and the results of
related work (in-expectation analysis and high probability analysis)
has been discussed in previous Remarks. We won’t repeat it here and
only provide an intuitive display of the related results here. One can
see from Table 1 that we have provided a series of high probabil-
ity convergence bounds and high probability generalization bounds
for non-convex stochastic optimization with clipping that the related
work does not involve.

5 Conclusions

This paper provides a high probability analysis for non-convex
stochastic optimization with clipping. We establish learning guaran-
tees for clipped SGD and its variants of momentum and adaptive
stepsizes under a heavy-tailed assumption of the stochastic gradi-
ents. Our analysis involves joint consideration of optimization and
generalization performance, which systematically demonstrates the
learning guarantees of non-convex stochastic optimization with gra-
dient clipping from the two perspectives, and covers many popu-
lar stochastic optimization algorithms. We believe our theoretical
findings can provide deep insights into the theoretical properties of
stochastic optimization with clipping.

6 Auxiliary Lemmas

The following Lemma 19 and Lemma 20 provide concentration in-
equalities for martingales.

Lemma 19 ([63]). Let z1, ..., zn be a sequence of randoms variables
such that zk may depend the previous variables z1, ..., zk−1 for all
k = 1, ..., n. Consider a sequence of functionals ξk(z1, ..., zk), k =
1, ..., n. Let σ2

n =
∑n

k=1 Ezk [(ξk − Ezk [ξk])
2] be the conditional

variance. Assume |ξk − Ezk [ξk]| ≤ b for each k. Let ρ ∈ (0, 1] and
δ ∈ (0, 1). With probability at least 1− δ we have

n∑
k=1

ξk −
n∑

k=1

Ezk [ξk] ≤
ρσ2

n

b
+

b log 1
δ

ρ
.

Lemma 20 ([54]). Let {ξk}k∈N be a martingale difference se-
quence in R

d. Suppose that almost surely ‖ξk‖ ≤ D and∑t
k=1 E[‖ξk‖2|ξ1, ..., ξk−1] ≤ σ2

t . Then, for any 0 < δ < 1, the
following inequality holds with probability at least 1− δ

max
1≤j≤t

∥∥∥∥∥
j∑

k=1

ξk

∥∥∥∥∥ ≤ 2

(
D

3
+ σt

)
log

2

δ
.

The following Lemma 21 states the uniform convergence of the
gradient, which will be used to derive the generalization bound of
this paper.
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Table 1. Summary of Results.

REF. ALGORITHM ASSUMPTION MEASURE GUARANTEE

[9] SGDM S, α 1
T

∑T
t=1 ‖∇FS(wt)‖ O

(
log(T/δ)

T
α−1
3α−2

)

S, α, S-S 1
T

∑T
t=1 ‖∇FS(wt)‖ O

(
log(T/δ)

T
2α−2
5α−3

)

OURS

SGD S, α 1
T

∑T
t=1 ‖∇FS(wt)‖2 O

(
1

T
2α−2
3α−2

log 1
δ

)

S, α 1
T

∑T
t=1 ‖∇F (wt)‖2 O

((
d
n

) 1
2 log 1

δ

)

SGDM S, α 1
T

∑T
t=1 ‖∇FS(wt)‖ O

(
1

T
α−1
3α−2

log T
δ

)

S, α 1
T

∑T
t=1 ‖∇F (wt)‖ O

((
d
n

) 1
4 log n

dδ

)

ADAGRAD
S, α 1

T

∑T
t=1 ‖∇FS(wt)‖2 O

(
1

T
2α−2
3α−2

log 1
δ

)

S, α 1
T

∑T
t=1 ‖∇F (wt)‖2 O

((
d
n

) 2α−2
5α−4

log 1
δ
log(1 + (n

d
)

3α
5α−4 )

)
ALGORITHM 5 S, α 1

T

∑T
t=1 ‖∇FS(w̄t)‖2 O

(
1

T
2α−2
3α−2

log 1
δ

)

Lemma 21 ([33]). Let δ ∈ (0, 1), R > 0, and S = {z1, ..., zn} be
a set of i.i.d. samples. Suppose the function f satisfies Assumption 1.
Then with probability at least 1− δ we have

sup
w∈BR

‖∇F (w)−∇FS(w)‖

≤ (LR+ b)√
n

(
2 + 2

√
48e

√
2(log 2 + d log(3e)) +

√
2 log(

1

δ
)
)
,

where e is the base of the natural logarithm.

The following Lemma 22 is from online learning and is often used
in the study of adaptive algorithms [29, 57, 35, 36].

Lemma 22. Let a1, ..., an be a sequence of non-negative real num-
bers. Then, it holds that√√√√ n∑

i=1

ai ≤
n∑

i=1

ai√∑i
k=1 ak

≤ 2

√√√√ n∑
i=1

ai,

and
n∑

i=1

ai∑i
k=1 ak

≤ 1 + log
(
1 +

n∑
i=1

ai

)
.
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