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Abstract. In the digital age, data is a valuable commodity, and data
marketplaces offer lucrative opportunities for data owners to mone-
tize their private data. However, data privacy is a significant concern,
and differential privacy has become a popular solution to address this
issue. Private data trading systems (PDQS) facilitate the trade of pri-
vate data by determining which data owners to purchase data from,
the amount of privacy purchased, and providing specific aggregation
statistics while protecting the privacy of data owners. However, exist-
ing PDQS with separated procurement and query processes are prone
to over-perturbation of private data and lack trustworthiness. To ad-
dress this issue, this paper proposes a framework for PDQS with an
integrated procurement and query process to avoid excessive pertur-
bation of private data. We also present two instances of this frame-
work, one based on a greedy approach and another based on a neu-
ral network. Our experimental results show that both of our mecha-
nisms outperformed the separately conducted procurement and query
mechanism under the same budget regarding accuracy.

1 Introduction

In the modern digital era, data have become a highly valuable asset,
providing opportunities to gain insights, make informed decisions,
and drive innovation across various domains, leading to significant
economic benefits for individuals, businesses, and governments [26].
However, this abundance of data also raises a pressing concern: data
privacy leakage. With recent data breaches affecting millions of 533
Facebook users1, 150, 000 NHS patients2 and fitness tracking app
Strava users3, privacy preservation has become increasingly critical.
This creates an inherent conflict between preserving privacy for in-
dividuals and unlocking significant economic value for society. Data
marketplaces have emerged as a potential solution to this issue, as
they compensate data owners for their private data to offset the po-
tential privacy loss. By providing compensation, data owners may be
more willing to share their data, allowing it to be further utilised [37].

Imagine a scenario where a data analyst, also referred to as a data
consumer, wishes to obtain aggregation statistics from individual
data owners through a data marketplace. These data owners are will-
ing to share their private data on the data marketplace as long as they
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receive fair compensation. Each data owner has a specific compen-
sation amount in mind, known as their valuation, which they keep to
themselves. Additionally, the data owners require their privacy to be
safeguarded to a certain extent. To facilitate this transaction, a data
broker acts as an intermediary between the data owners and data con-
sumers on behalf of the data marketplace, procuring data from data
owners and analysing the collected data for data consumers.

A private data trading system (PDQS) [40] is a mechanism that
enables the trade of private data, determining how much to com-
pensate the data owners, generating specific aggregation statistics,
and ensuring the privacy protection of the data owners. Starting with
Ghosh and Roth’s work [20], a typical PDQS consists of two main
components: a procurement process determines the selection of data
owners from whom data will be purchased and the payment for the
selected data owners; a query process executes a query on the pro-
cured data, adds noise to the data, and outputs query results.

Differential privacy (DP) [15] is a privacy concept that can be em-
ployed to measure the degree of privacy loss for each data owner,
indicating the amount of privacy compromised during the data trad-
ing. A typical method to achieve DP is to execute the query on the
raw datasets and add noise to the true query answer. In this case,
the data broker, who executes the query, is deemed to be trustworthy
and has the full access to the raw data. However, in practice, the data
broker may not be trustworthy: once obtaining the raw data, the data
broker may resell the data to third parties for profit. Given that, a lo-
cal model of DP, known as local differential privacy (LDP) [14] is
proposed. In LDP model, each data owner adds noise to her private
data locally before sharing it to the data broker. Most of the existing
PDQS deploys the DP model [20, 13, 11, 39]. We instead extend the
PDQS design to the LDP model.

Existing works for implementing PDQS execute the procurement
and the query processes one after another [17]. Specifically, the
procurement process first selects a subset of data owners. Then to
achieve LDP, the query process runs a local randomiser [16] where a
smaller subset of data owners are selected randomly and submit their
true data while each of the others submit a random number. In this
way, the data owners who submit random numbers are paid with no
contribution to the query in the query process. In other words, the
budget is not put to good use and the query accuracy could be im-
proved. Therefore, a question arises: How to design a PDQS with an
integrated procurement and query process to address this issue?

A challenge arises when designing such an integrated procurement
and query process. The procurement process and the query process
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serve for different purposes and thus are expected to have different
properties: the procurement process is used to incentivise the data
owners to reveal their valuations for pricing purposes and it should
satisfy incentive compatibility (IC), individual rationality (IR) and
budget feasibility (BF) properties (see formal definitions in Sec. 3),
while the query process should satisfy LDP. Therefore, we need to
design proper rules of the integrated process that meets all of these
properties and thus can serve well for both procurement and query
processes.

To address the research question, we propose a new framework of
the PDQS, named Integrated PDQS. The core of this framework is
embedding the procurement process into the query process such that
data owner selection and data perturbation happen simultaneously.
To be specific, in the new framework, we first assign an allocation
probability that a data owner would be procured, then we use this
probability to obfuscate the data in the local randomiser. In this way,
all selected data owners, once being paid, contribute to the query
answer. See details in Sec. 4.

Then we propose two PDQS instantiations that implement the
proposed framework. The first mechanism, greedy private query
mechanism (GPQM), selects data owners with lower valuation in a
greedy manner until the budget is exhausted. This mechanism al-
lows us to use any non-increasing function as the allocation proba-
bility, but requires manual selection of the function and its parame-
ters. Our second mechanism, neural-based private query mechanism
(NPQM), parameterises the allocation probability with a neural net-
work. The parameters are learned with the dual-ascent algorithm. We
theoretically proved that both GPQM and NPQM satisfy desirable
properties. See details in Sec. 5 and 6. We also empirically validate
the performance of the propose two PDQS instances. Experimen-
tal results show that both of our proposed methods outperform the
benchmarks, with NPQM performing better than GPQM.

The contributions of this paper are summarised as follows:

• We propose a new framework of PDQS that integrates the pro-
curement and query process.

• We design two PDQS instances to implement the propose frame-
work: GPQM is equipped with a non-decreasing function as the
allocation probability, and NPQM uses neural network to learn an
optimal allocation probability.

• We empirically show the strengths of the two proposed PDQSs.

2 Related works

In their seminal work, Ghosh and Roth [20] formalised the con-
cept of trading private data under differential privacy with their pro-
posed mechanism, FairQuery, which includes independent procure-
ment and query processes. In the procurement process, a subset of
data owners is selected based on their bids, and their private data is
reported to the system without perturbation. In the query process,
random noise is added to the query answer based on the collected
dataset to guarantee DP. This leads to FairQuery and its extensions
e.g. FairInnerProduct [13] heavily relying on a trusted data broker.

To tackle the distrust between data owners and the data broker,
Wang et al. [34] and Fallah et al. [17] proposed PDQSs by enabling
data owners to perturb their private data locally to ensure local DP.
However, they do not consider the budget constraints of the data con-
sumer. Additionally, they rely on separated procurement and query
processes, leading to excessive perturbation of private data.

There are other works that extended Ghosh and Roth’s work from
different perspectives, e.g., considering the correlations between data

owners’ values and valuations [33, 18, 24, 30, 9, 10], the cases that
data owners’ private data is not verifiable [19], the scenario where
different levels of data accuracy are provided by various data bro-
kers [12], the network effect on data owners’ participation [41, 22],
single-minded data owners [38], data owners getting benefits from
the statistic based on reported private data [11, 17]. There are also
studies working on the design of truthful mechanisms for trading data
without preserving data under differential privacy [7, 25], privacy-
aware mechanisms that preserve user bids [28, 29, 1, 23], pricing
mechanisms that charging users based on their perturbed private data
[8], and pricing strategies based on data quality [36].

To the best of our knowledge, there is no existing PDQS address-
ing our problem of trading private data under LDP while integrating
procurement and query processes and ensuring IC, IR and BF prop-
erties (formally defined in Sec. 3). Thus, we propose our framework
to solve this problem and two instantiations of the framework.

3 Problem formulation

Consider a data transaction with a data consumer and n data own-
ers. The data consumer aims to obtain some aggregation information
about the data owners, e.g., how many people are infected in the pop-
ulation, which can be denoted as a query f . The data consumer has a
budget, denoted by β ∈ R+, for the query.

Each data owner i has private data ti ∈ {0, 1}. The data owner is
willing to sell her private data to the data consumer, given reasonable
compensation and privacy protection. Let εi ∈ R+ be a privacy pa-
rameter. When her data is used in an εi-differential privacy manner,
she suffers a privacy cost ci := εiθi, where θi ∈ [θ, θ] is her valua-
tion to a unit of privacy. A data owner can be represented by a tuple
si := (ti, θi). We use �s := (s1, . . . , sn) to denote the data own-
ers, �t := (t1, . . . , tn) and �θ := (θ1, . . . , θn) to denote the private
data and the valuation vector of all n data owners, respectively. Also,
we use �θ−i := (θ1, . . . , θi−1, θi+1, . . . , θn) to denote the valuation
vector of all data owners but si. Data owners may misreport their
valuations to, for example, gain more compensation. Let bi ∈ [θ, θ]
denote the reported valuation of data owner si. Similarly, we have
vectors�b := (b1, . . . , bn) and�b−i := (b1, . . . , bi−1, bi+1, . . . , bn).

We are committed to developing a Private Data Query System
(PDQS) that takes the set of data owners and the data consumer’s
budget as inputs. The PDQS consists of four components: an alloca-
tion function that determines the selection probabilities of data own-
ers, a payment function that calculates the compensation for each
data owner, an LDP algorithm that ensures privacy by adding noise
locally, and a query function that implements the query f based on
the collected data. Through the collaboration of these components,
the PDQS efficiently processes queries while ensuring the privacy of
data owners.

Next, we formally define these functions and outline the desired
properties they should possess.

Definition 1 An allocation function q : [θ, θ]n → [0, 1]n is a
mapping from the bids of all data owners to an allocation result
�q := (q1, . . . , qn), where qi is the probability that data owner si
is selected.

We also write qi(�b) as the allocation function of an individual data
owner si. When the context is clear, we write qi for short.

Definition 2 A payment function p : [θ, θ]n → R+
n is a mapping

from the bids of all data owners, represented by payment vector �p :=
(p1, . . . , pn), where pi is the compensation of data owner si.
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Note that when the data owners make their decisions on bidding,
they have no idea about whether they would be selected or not. We
assume that the data owners are rational and make decisions based
on the expected benefit.

Let Pi = piqi be the expected payment of si. The expected utility
of a data owner si is the difference between her expected compensa-
tion and the valuation of expected privacy loss, i.e., ui := Pi−εiθiqi.

The allocation function together with the payment function is ex-
pected to satisfy the following properties.

• Incentive compatibility (IC). Each data owner si, 1 ≤ i ≤ n
maximises her expected utility when reporting true valuation, i.e.,

ui(θi,�b−i) ≥ ui(bi,�b−i) ∀bi �= θi, ∀�b−i ∈ [θ, θ]n−1. (1)

• Individual rationality (IR). Each data owner si, 1 ≤ i ≤ n gets
non-negative expected utility when reporting true valuation, i.e.,

ui(θi,�b−i) ≥ 0 ∀�b−i ∈ [θ, θ]n−1. (2)

• Budget feasibility (BF). The total expected payment is within the
budget β specified by the data consumer, i.e.,

n∑
i=1

pi(�b)qi(�b) ≤ β. (3)

Intuitively, IC ensures the data owners are incentivised to report their
true valuations as doing so leads to the best utility while IR ensures
that the data owners are willing to participate in the system as it leads
to at least non-negative utility.

Definition 3 A query f : Rn → R is a mapping from private data
of n data owners to a real value.

Commonly used queries include count and median queries. Count
query counts the number of 1s in a binary dataset, i.e., f(�t) =∑n

i=1 ti, while median query returns the median number in a real-
valued dataset.

Considering the privacy concern, we use local differential privacy
(LDP) [14] as the privacy concept. In order to ensure LDP, a local
randomiser is commonly utilised, allowing data owners to obfuscate
their private data before sharing it for answering queries.

Let D denote the domain of private data and Ω be a probability
space. We define the local randomiser and LDP as follows.

Definition 4 A local randomiser L : D × Ω → D is a randomised
function mapping a private value ti to a random value t′i ∈ D.

Definition 5 ([14]) A local randomiser L is εi-local differentially
private, if for any pair of input ti, t′i ∈ D and for any possible output
o ∈ Range(L), we have

Pr[L(ti) = o] ≤ eεi Pr[L(t′i) = o],

where εi is a non-negative real number to measure data owner si’s
privacy loss.

For a given query f and PDQS M , we use (α, δ)-probably ap-
proximately correct ((α, δ)-PAC) to measure M ’s accuracy.

Definition 6 For α, δ ∈ [0, 1], a private data query system M
is (α, δ)-probably approximately correct ((α, δ)-PAC) if for any
dataset �t = (ti, . . . , tn),

Pr[|M(�t)− f(�t)| ≥ α] ≤ 1− δ,

where |M(�t)− f(�t)| is the difference between the query answer de-
rived by M and the true answer.

The goal of this research is to develop a PDQS that meets IC, IR,
BF, and εi-LDP properties, while also approximating query accuracy.

4 Proposed framework

We propose the framework Integrated PDQS, which combines the
procurement and query processes into an integrated system. Inte-
grated PDQS receives bids, private data, the budget, the query and
an allocation function as inputs, and provides a payment result and a
query answer as outputs. This framework can be instantiated to cre-
ate PDQSs that satisfy the desired properties, i.e., IC, IR, BF and
εi-LDP. The workflow of the framework is shown in Figure 1.

Unlike existing PDQSs that separate the procurement and query
processes, the Integrated PDQS assigns probabilities to each data
owner. These probabilities determine both the likelihood of being
selected by the system and the likelihood of reporting their true pri-
vate data. Consequently, the consumer’s budget is utilised more effi-
ciently, leading to higher query accuracy.4

Figure 1: Workflow of proposed Integrated PDQS framework

Algorithm 1 outlines the specific steps of the Integrated PDQS
framework. Initially, the framework calculates the allocation prob-
abilities and expected payments for each data owner (Lines 1-2 of
Alg. 1). Unlike existing approaches that select data owners before
the query process, the Integrated PDQS framework incorporates an
Integrated Local Randomiser (ILR) LI for each data owner (Lines
3-5 of Alg. 1). As shown in Alg. 2, LI is employed to select a data
owner based on her probability qi. If a data owner is chosen, her true
private data is reported, and her compensation is calculated as Pi/qi.
On the other hand, if a data owner is not selected, a random value is
reported, and no compensation is provided. Subsequently, the frame-
work performs the query on the noisy dataset obtained from the data
owners (Line 6 of Alg. 1).

In the framework, the procurement process is embedded in the
query process through the use of ILR. In contrast to the traditional
local randomiser, ILR not only determines the reported private data
but also determines the compensation for each data owner. This de-
sign ensures that only the data owners who disclose their true data
are selected and receive payment.

Algorithm 1 The Integrated PDQS framework

Input: Data owners �s, budget β, query f , allocation function q
Output: Payment vector (p1, . . . , pn), query answer z
1: Generate the allocation vector (q1, . . . , qn)
2: Generate the payment vector (P1, . . . , Pn)
3: for each data owner si do
4: Get a random value and the payment t′i, pi = LI(ti, qi, Pi)
5: end for
6: Compute the query answer z = f(t′1, . . . , t

′
n)

7: Return (p1, . . . , pn), z

Applying the ILR with probability qi for data owner si ensures
ln 1+qi

1−qi
-local differential privacy, as shown in the following lemma.

4 Note that the randomised approach, under the premise of privacy protection,
achieves the goal of compensating only those owners who report true data,
which deterministic procurement mechanisms cannot accomplish.
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Algorithm 2 Ingerated Local Randomiser LI

Input: Private data ti, probability qi, expected payment Pi

Output: Perturbed data entry t̂i
1: With probability qi, set t̂i = ti, pi = Pi/qi; with probability 1− qi, set

t̂i to be a random value t′i ∈ D, pi = 0

2: Return t̂i, pi

Lemma 1 The Integrated Local Randomiser LI with probability qi
is εi-local differential privacy, where εi = ln 1+qi

1−qi
.

Proof. Given two data entries ti, t′i, and ti �= t′i, for r ∈ {0, 1}:
when r = ti,

Pr[LI(ti) = r]

Pr[LI(t′i) = r]
=

qi +
1
2
(1− qi)

1
2
(1− qi)

=
1 + qi
1− qi

≤ eεi ;

when r = t′i,

Pr[LI(ti) = r]

Pr[LI(t′i) = r]
=

1
2
(1− qi)

qi +
1
2
(1− qi)

=
1− qi
1 + qi

≤ eεi .

�
Note that when qi approaches 1, the privacy guarantee εi =

ln 1+qi
1−qi

is meaningless as it is infinity. Hence, from now on, we re-
quire the allocation probability qi ∈ [0, 1).

Our goal is to design PDQSs that implement the Integrated PDQS
framework, and satisfy IC, IR, BF and εi-LDP while approximating
query accuracy. Any PDQS that instantiates the proposed framework
employs ILR, so εi-LDP is guaranteed.

For query accuracy, we introduced the accuracy notion of (α, δ)-
PAC in Section 3. To achieve high accuracy, we adopt the principle
of Purchased Privacy Expectation Maximisation (PPEM) proposed in
[38]. The PPEM principle highlights that acquiring a certain amount
of expected privacy is a necessary condition for attaining a particular
level of PAC accuracy. Thus, we may maximise the total expected
purchased privacy to approximate the query accuracy. According to
Lemma 1, the PDQS that adopts the proposed framework purchases
the privacy of ln 1+qi

1−qi
with a probability qi from data owner si. As a

result, the total expected purchased privacy in the PDQS is given by∑n
i=1 qi ln

1+qi
1−qi

.
Then, we characterise IC and IR properties. We define

wi(bi, b−i) := qi(bi, b−i) ln
1+qi(bi,b−i)

1−qi(bi,b−i)
as the expected privacy

loss of data owner si, when she bids bi and others bid b−i. For
brevity, we refer to wi(bi, b−i) as wi when the context is clear. Ap-
plying Archer and Tardos’s theorem [4] and considering wi as the
amount of load assigned to each data owner, we can derive the fol-
lowing theorem:

Theorem 2 ([4]) A PDQS M satisfies IC and IR if and only if

1. the expected privacy loss wi(bi, b−i) does not increase with re-
spect to the bid bi,

2. the expected privacy loss wi(bi, b−i) satisfies
∫ θ

0
wi(x, b−i)dx <

∞ for all i, b−i, and
3. the expected payment is in the form of Pi = biwi(bi, b−i) +∫ θ

bi
wi(x, b−i)dx.

Therefore we construct the optimisation problem that maximises
the total expected purchased privacy while satisfying the IC, IR and
BF constraints.

As the privacy loss εi = ln 1+qi
1−qi

of data owner si when she is se-
lected with probability qi increases with respect to qi in the domain

of [0, 1), we can observe that Condition 1 of Theorem 2 is satisfied
if the allocation function q is non-increasing. Therefore, in the sub-
sequent discussion, we impose the requirement of a non-increasing
allocation function to fulfil Condition 1.

max

n∑
i=1

qi ln
1 + qi
1− qi

s.t. qi(b
′
i, b−i) ≤ qi(bi, b−i), ∀b′i > bi

n∑
i=1

[biwi +

∫ θ

bi

wi(x, b−i)dx] ≤ β

0 ≤ qi < 1, ∀i ∈ [0, n]

(4)

Now the problem is to find the proper allocation function q to solve
(4). In the following sections, we propose two instances of the pro-
posed framework to solve the problem.

5 Greedy Private Query Mechanism (GPQM)

The core of designing an instance to implement the Integrated PDQS
framework is the design of an allocation function q that addresses 4.
A straightforward idea is to deploy a non-increasing function as the
allocation function such that a data owner with a high valuation has
a low chance to be selected, and then, according to the distribution,
greedily choose data owners until the budget is used up. Such non-
increasing allocation function can be a linear function e.g. qi = 1−
bi, a logarithmic function e.g. qi = − log(bi), or an exponential
function e.g. qi = e−bi . We refer to the greedy instance as greedy
private query mechanism (GPQM).

To be specific, given a non-increasing allocation function, GPQM
first determines the allocation probability qi. Also, for each data
owner si whose expected privacy loss is wi = qi ln

1+qi
1−qi

, set her

expected payment as Pi = biwi +
∫ θ

bi
wi(x, b−i)dx. Then GPQM

sorts the data owners by their allocation probabilities in descending
order. Following the order, each data owner runs the ILR LI until the
budget is used up. GPQM finally returns the payment vector and the
query answer. See Algorithm 3.

Algorithm 3 Greedy Private Query Mechanism (GPQM)

Input: Data owners�s, budget β, query f , non-increasing allocation function
q

Output: Payment vector (p1, . . . , pn), query answer z
1: Generate the allocation vector (q1, . . . , qn) = q(�b)
2: Compute the expected payment vector (P1, . . . , Pn), where Pi =

biwi +
∫ θ
bi

wi(x, b−i)dx

3: Sort the data owners in descending order with respect to qi
4: Initialise k = 1
5: while

∑k
i=1 Pi ≤ β do

6: Get a random value and the payment t′i, pi = LI(ti, qi, Pi)
7: Increment k = k + 1
8: end while
9: Set pi = 0, if i > k

10: Compute the query answer z = f(t′1, . . . , t
′
n)

11: Return (p1, . . . , pn), z

Lemma 3 Greedy private query mechanism (GPQM) is IC and IR.

Proof. We prove the lemma by Archer and Tardos’ theorem [4]. As
GPQM employs a non-increasing allocation function, i.e., the alloca-
tion qi does not increase with respect to the bid bi, and the expected
payment Pi is in the form specified in Line 2 of Alg. 3, Conditions 1
and 3 are met.
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Now we show that Condition 2 is also met. We rewrite the integral
as

∫ θ

0
qi(x) ln (1 + qi(x))− qi(x) ln (1− qi(x))dx, where qi(x) is

short of qi(x, b−i). The former part is finite, so we focus on the latter
part. We have

∫ θ

0

−q(x) ln (1− q(x))dx ≤
∫ θ

0

− ln (1− q(x))dx

≤ −x ln (1− q) ≤ −θ ln (1− q),

where q is the maximum value of q(x) in its domain. As the range of
q is [0, 1), we have q = 1− τ , where τ is a very small positive real.
We then have − ln (1− q) ≤ − ln τ , which is finite.

�

Theorem 4 The greedy private query mechanism (GPQM) is IC, IR,
BF and LDP.

The mechanism is BF by construction. As the ILR LI is applied
to perturb the private data, the mechanism satisfies LDP.

6 The neural-based private query mechanism
(NPQM)

We introduce another instance that implements the proposed frame-
work. Unlike GPQM, this instance addresses (4) by learning the allo-
cation function that approximates the total purchased privacy while
satisfying the given constraints. To achieve this, we apply QMIX [32]
and neural-network techniques to design and parameterise the al-
location function, and learn its parameters using dual ascent algo-
rithm [6]. We refer to this instance as neural-based private query
mechanism (NPQM).

6.1 Allocation function design and parametrisation

The allocation function in NPQM is designed as qi(�b) =
σ(|w2|(−|w1|bi + c) + d), where σ denotes the sigmoid function,
i.e., σ(x) = ex

ex+1
, and w1, w2, c, d are parameters.

The parameters w1, w2, c, d are generated by separate neural net-
works. Specifically, we use three separate three-layer neural net-
works to generate w1, w2, and d, respectively. The neural network
is composed of three functions, which are:

• A linear function l(1) : [θ, θ]n → R
h takes the bids as input. It

has the form l(1)(�b) = A(1)�b + k(1) where A(1) and k(1) are
coefficients of the linear function, and h is a constant denoting the
number of neural employed in Layer 2;

• A function l(2) : Rh → R
h takes the result from Layer 1. In detail,

l(2)(x) = x if x ≥ 0; l(2)(x) = 0 otherwise. This is known as a
ReLU function;

• A linear function l(3) : Rh → R takes the the result from Layer 2.
It has the form l(3)(�b) = A(3)�b + k(3) where A(3) and k(3) are
coefficients of the linear function.

The parameters w1, w2, d are computed by l(3)(l(2)(l(1)(�b))),
which forms a function from [θ, θ]n to R. Notice that although three
parameters w1, w2, and d are calculated by the same form of func-
tion, they have different values since the coefficients in l(3) and l(1)

are different, e.g. A(1) for w1 and w2 can be different.
The parameter c is directly computed by a single linear function

l(c) : [θ, θ]n → R with the form l(c)(�b) = A(c)�b + k(c). Let μ =
(w1, w2, c, d) denote all learnable parameters in the parameterised
model, then we denote the parameterised allocation function as qμ.

This type of function and neural network design has been previ-
ously utilised in QMIX [32], a well-known deep multi-agent rein-
forcement learning algorithm, which ensures the monotonicity be-
tween the global and the local value function. The details of QMIX
is described in Appendix B of the full paper.

The optimal values of the coefficients in each layer will be
trained and approximated by the Stochastic Gradient Descent (SGD)
method. The performance of the neural network thus can be guaran-
teed by the proper settings of coefficients in each layer.

6.2 Learning the parameters of the allocation function

We employ dual ascent techniques [6] to learn the parameter μ spec-
ified above and approximate the optimal solution to (4). We begin
with rewriting (4) with μ as the following.

max
μ

n∑
i=1

qμi ln
1 + qμi
1− qμi

(5)

s.t. qμi (b
′
i, b−i) ≤ qμi (bi, b−i), ∀b′i > bi (6)

n∑
i=1

(
biq

μ
i ln

1 + qμi
1− qμi

+

∫ θ

bi

qμ(x) ln
1 + qμ(x)

1− qμ(x)
dx

)
− β ≤ 0

(7)

0 ≤ qμi < 1, ∀i ∈ [0, n] (8)

Recall that n is the number of data owners, and qi is the prob-
ability that data owner si is selected by the system. The objective
function aims to maximise the total expected privacy purchased by
the system, where ln

1+q
μ
i

1−q
μ
i

is the privacy loss εi of data owner si, if
she is selected Constraint (6) ensures that, for any data owner si, the
allocation function is non-increasing with respect to her bid bi, given
other data owners’ bids are fixed. Constraint (7) ensures that the total
expected payment does not exceed the given budget. Constraint (8)
ensures that the probability of a data owner being selected is less than
1, thereby providing privacy protection for each data owner.

Constraint (6) is satisfied since the parameterised model is en-
forced to be a monotonic function. Constraint (8) is also satisfied
as we used the Sigmoid function, and the output is constrained be-
tween 0 and 1. Thus, we omit these two constraints in the following
formulations.

Next, we discuss how to update the parameters of the parame-
terised allocation function qμ to satisfy the BF constraint (as shown
in (7)) and approximate the total purchased privacy (as shown in (5))
by the dual ascent algorithm [6].

We establish the dual problem of the primal problem
(5). Let φ(μ) =

∑n
i=1 q

μ
i ln

1+q
μ
i

1−q
μ
i

denote the objec-
tive function of the primal problem, representing the to-
tal expected purchased privacy of the system. Let g(μ) =∑n

i=1

(
biq

μ
i ln

1+q
μ
i

1−q
μ
i
+

∫ θ

bi
qμ(x) ln 1+qμ(x)

1−qμ(x)
dx

)
− β denote the

difference between the total expected payment and the budget. The
standard form of the primal problem is

min
μ

− φ(μ) (9)

s.t. g(μ) ≤ 0 (10)

The Lagrangian is L(μ, λ) = −φ(μ) + λg(μ) , where λ ≥ 0
is the Lagrangian multiplier. The dual function of the optimisation
problem defined by (9), (10) is ψ(μ, λ) = inf L(μ, λ) which denotes
the infimum of the Lagrangian. Then we can build the dual problem:
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max ψ(μ, λ)

s.t. λ ≥ 0
(11)

It aims to obtain the greatest lower bound on the solution to the pri-
mal problem. With the dual problem, solving the optimisation prob-
lem becomes easier.

We then apply dual ascent techniques to approach the dual prob-
lem, updating the Lagrangian multiplier λ by maximising ψ(μ, λ)
and updating μ by minimising L(μ, λ) interchangeably by their gra-
dients, as the following:

λ = λ+ α∇λL(μ, λ),

μ = argmin
μ

L(μ, λ),

where α is the learning rate.

Algorithm 4 Dual Ascent

Input: Training set�b′, budget β, learning rate α, number of episodes T
Output: Allocation function qμ

1: Set t = 0, and initialise λ, qμ. Set BF = False
2: while t ≤ T do

3: Generate allocation vector (q1, · · · , qn) = qμ(�b′)
4: Compute Lagrangian L(λ, μ)
5: Let μ′ = argminμ L(λ, μ)
6: if BF constraint (7) is satisfied then
7: Set μ = μ′, BF = True
8: end if
9: λ = λ+ α∇λL(μ, λ), t = t+ 1

10: end while
11: Return qμ if BF , NO ANSWER otherwise

To be specific, the dual ascent, as shown in Algorithm 4, takes the
training set, budget, learning rate and the number of episodes as in-
put, where the training set is generated from the same distribution
and has the same size as the real bids of data owners. The algorithm
initialises t, λ and qμ (Line 1 of Alg. 4). Then for each episode,
the algorithm passes the training set to the allocation function qμ

and generates the allocation vectors used to compute the Lagrangian
(Line 3 of Alg. 4). The algorithm updates the parameters of qμ us-
ing the SGD method to find μ′ that minimises the Lagrangian, which
can be treated as the loss function in training qμ (Line 4 of Alg. 4).
Then it updates μ only if the allocation vector generated by qμ

′
and

the corresponding payment vector satisfy the BF constraint (Line 5
of Alg. 4), which ensures that the trained allocation function and the
corresponding payment vector always satisfy the BF constraint. The
algorithm updates λ using the gradient of the (updated) Lagrangian
(Line 6 of Alg. 4). Then it increments t (Line 7 of Alg. 4) and contin-
ues the training until finishing all the episodes. Finally, the algorithm
outputs a trained allocation function qμ.

After training the neural-based allocation function qμ, NPQM fol-
lows the proposed framework step by step (Line 1-7 of Alg. 1),
generating the allocation vector (q1, · · · , qn) = qμ(�b) and comput-
ing the expected payments (P1, · · · , Pn), where Pi = biwi(bi) +∫ θ

bi
wi(x)dx, wi(bi) = qi(bi) ln

1+qi(bi)
1−qi(bi)

. The ILR LI , illustrated in
Alg. 2, is applied to each data owner si, computing the perturbed pri-
vate data t′i and the compensation pi. Finally, the query is answered
based on the collected dataset {t′1, · · · , t′n} and the payment vector
and query answer are returned. The details are illustrated in Alg. 5.

Lemma 5 NPQM that employs qμ as the allocation function is IC
and IR.

Theorem 6 The neural-based private query mechanism (NPQM) is
IC, IR, BF and εi-LDP.

Algorithm 5 Neural-based Private Query Mechanism (NPQM)

Input: Data owners �s, budget β, query f , allocation function q, training set
�b′, learning rate α, number of episodes T

Output: Payment vector (p1, . . . , pn), query answer z
1: Train the allocation function q = DualAscent(�b′, β, α, T )

2: Generate the allocation vector (q1, . . . , qn) = q(�b)
3: Generate the payment vector (P1, . . . , Pn), where Pi = biwi(bi) +

∫ θ
bi

wi(x)dx

4: for each data owner si do
5: Get a random value and the payment t′i, pi = LI(ti, qi, Pi)
6: end for
7: Compute the query answer z = f(t′1, . . . , t

′
n)

8: Return (p1, . . . , pn), z

Please see the full paper for the proof of Lemma 5 and Theorem 6.

7 Experiments

7.1 Experiment setup

In experiments, we aim to evaluate the accuracy of GPQM and
NPQM when applied to various query types and datasets. The ex-
periment setup is summarised in Table 1.

Table 1: Experiment Setups

Query f Count, median
Dataset D Obesity, Maternal, Exam, Students, Salaries, Customers
Budget β {0.1n, · · · , 0.9n}

Bids�b Drawn from U(0, 1)
Mechanism GPQM (linear, log, exp), NPQM, FQ mechanisms

Datasets: We use six real-world datasets, Obesity [31], Ma-
ternal Health Risk (Maternal) [2], Exam [21], Students’ Dropout
and Academic Success (Students) [27], Data Science Salaries 2023
(Salaries) [5] and Customer Personality Analysis (Customers) [3], as
the private data of data owners. See more details in the full paper.

Bids �b: The bids of data owners are generated from the uniform
distribution U(0, 1). In words, the range of bids (θ, θ) = (0, 1).

Budget: The budget of consumer is set to be 0.1θn to 0.9θn.
Queries: We analyse count and median queries. For count queries,

we utilise the obesity level from Obesity, the risk level from Mater-
nal, the test preparation status from Exam, the scholarship holder
from Students, the remote working ratio from Salaries, and the com-
plaint of Customers. Specifically, we count the number of overweight
individuals, high-risk pregnant females, students who prepared for
the exams, students who hold a scholarship, people who work re-
motely, and customers who made complaints.

For median queries, we use the age of Obesity and Maternal, and
the reading test score of Exam, the admission test score of Students,
the salary in US dollars of Salaries, and in-store shopping of Cus-
tomers. Specifically, we query the median age of individuals in Obe-
sity and Maternal, the median score in the reading test, the median
salary in US dollars, and the median number of in-store shopping.

Mechanims: We evaluate five mechanisms: three implementations
of GPQM, NPQM, and FairQuery (FQ) [20]. For GPQM, we con-
sider linear, logarithmic, and exponential allocation functions, de-
noted by q(�b) = 1−�b, q(�b) = − log(klq(�b)), and q(�b) = e−keq(�b),
where the coefficients kl, ke are randomly selected from the uniform
distribution U(0, 10) for each query. The implementation details of
NPQM are shown in Appendix D of our full paper.

We make modifications to the FQ mechanism [20] to ensure LDP
for count and median queries, and we consider this modified version
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as our benchmark (see Appendix A of our full paper).In the modified
FQ, the procurement process remains unchanged such that the data
owners are sorted in descending order based on the value of bi, and
the mechanism determines the last data owner k who can be selected
within the given budget. Additionally, we introduce modifications to
the query process by incorporating a widely used local randomiser
randomised response [35] that allows data owners to report their true
data with a probability of qi and report a random value otherwise.

Experiments: For each experiment, we generate bids of data own-
ers �b randomly from the uniform distribution U(0, 1). We conduct
m = 100 queries for each mechanism and budget. For count queries,
the performance of mechanisms is measured under average rela-
tive absolute error (RAE), i.e., 1

m

∑m
i=1

|z−zg |
zg

, where z denotes the
query answer generated by mechanisms and zg denotes the ground
truth. For median queries, the performance is measured under aver-
age absolute error (AE), i.e., 1

m
|z − zg|.

Implementation details: NPQM is implemented in Python 3.9
on NVIDIA GeForce RTX 3090 Ti GPU. All mechanisms are imple-
mented in Python 3.9 on Apple M1 Pro CPU. The code is available
on https://anonymous.4open.science/r/IntegratedPDQS

7.2 Results and discussion

Figure 2: Relative absolute error of count queries on the Obesity (top-left),
Maternal (top-right), Exam (middle-left), Students (middle-right), Salaries
(bottom-left) and Customers (bottom-right) datasets

We evaluate and compare the performance of the five mechanisms.
Fig 2-3 display the RAE and confidence intervals of the mechanisms
for count queries on the six datasets, respectively. The AE and confi-
dence intervals for median queries are detailed in the full paper.

In most experiments, our approach outperforms the benchmark.
NPQM achieves the best accuracy on both count and median queries,
with the lowest RAE / AE and the estimated query answer closest
to the ground truth. GPQM with a linear allocation function also
performs well. GPQM with exponential and logarithmic allocation
functions outperforms the benchmark in most experiments when the
budget is below 0.5n, but this advantage becomes less noticeable
when the budget exceeds 0.5n.

Figure 3: Confidence interval of the estimated answer of count queries on
the Obesity (top-left), Maternal (top-right), Exam (middle-left), Students
(middle-right), Salaries (bottom-left) and Customers (bottom-right) datasets

As expected, the performance of NPQM and GPQM with linear al-
location improves as the budget increases. The advantages of NPQM
and GPQM with linear allocation become more significant compared
to other mechanisms as the budget increases, indicating that these
mechanisms can approximate the ground truth with a sufficient bud-
get. On the other hand, for GPQM with exponential and logarithmic
allocation and FQ, their accuracy does not improve further as the
budget reaches 0.5n.

The experimental results demonstrate that NPQM consistently
performs better and provides accurate estimates for various query
types and datasets. NPQM also performs well when bids follow a
normal distribution, and even when the training and test sets come
from different distributions (see Appendix E of our full paper). De-
spite the potential budget overruns from using expected payment as
a training constraint, NPQM remains an accurate solution, as such
occurrences are rare and can be resolved through system re-runs. Be-
sides, we observe that GPQM’s performance relies on the choice of
the allocation function. As for our benchmark, it suffers from limi-
tations as it needs to allocate a portion of the budget to data owners
who cannot truthfully report their private data, resulting in compro-
mised accuracy even with a sufficient budget.

8 Conclusion

We introduce an integrated PDQS framework, which combines the
procurement and query processes, and effectively utilises the con-
sumer’s budget to approximate query accuracy under LDP. We pro-
pose two implementations of the novel framework, GPQM and
NPQM, which address queries while considering IC, IR, and BF
constraints. The experimental results demonstrate that our mecha-
nisms outperform existing approaches that separate the procurement
and query processes in query accuracy. Potential future work can
be extending the Integrated PDQS framework to handle sequential
data and multi-dimensional private data with varying privacy require-
ments for different dimensions.
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