
Neural Architecture Search for Explainable Networks
Yaoman Lia;* and Irwin Kinga;**

aThe Chinese University of Hong Kong
ORCiD ID: Yaoman Li https://orcid.org/0000-0003-1191-2227, Irwin King https://orcid.org/0000-0001-8106-6447

Abstract. One of the main challenges in machine learning is pro-
viding understandable explanations for complex models. Despite
outperforming humans in many tasks, machine learning models are
often treated as black boxes that are difficult to interpret. Post-hoc ex-
planation methods have been developed to create interpretable surro-
gate models that explain the behavior of black-box models. However,
these methods have been shown to perpetuate bad practices and lack
stability. Recently, inherent explainable approaches have been pro-
posed to provide built-in explainability to models. However, most
of these methods sacrifice performance. This paper proposes the
Neural Architecture Search for Explainable Networks (NASXNet)
approach to address the trade-off between performance and inter-
pretability. Our method applies architecture search to generate high-
performance and explainable neural networks for image classifica-
tion tasks. We conduct experiments on four datasets: CUB-200-2011,
Stanford Cars, CIFAR 10, and CIFAR 100. The results demonstrate
that our models provide a high-level interpretation of prediction re-
sults, achieving state-of-the-art performance that is on par with non-
explainable models. This paper contributes by solving the trade-off
problem between performance and interpretability. It is the first to
apply neural architecture search to develop explainable deep learn-
ing models, generating state-of-the-art explainable models that out-
perform existing approaches. Additionally, a new training process is
proposed that enables faster convergence during model training.

1 Introduction

Deep learning has been successful in many applications, significantly
impacting human lives. However, most deep learning models are
black boxes that lack transparency and do not explain their results in
a human-understandable way. This lack of accountability and trans-
parency has the potential to cause reliability issues and severe con-
sequences [31]. Therefore, explaining the deep learning model has
become increasingly important.

Prior work in image processing problems has focused primarily on
improving accuracy. Since the groundbreaking success of AlexNet
[16] in the 2012 ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [32], increasingly complex deep learning models
have been proposed. For instance, the VGG-16 [36], a powerful con-
volutional neural network (CNN), comprises more than 130 million
parameters, while ResNet-152 [9] consists of 60 million parameters.

Designing a good deep learning model requires substantial time
and resources during the trial-and-error process due to the complex-
ity involved. To automate the architecture engineering process, Neu-

∗ Email: ymli@cse.cuhk.edu.hk.
∗∗ Email: king@cse.cuhk.edu.hk.

ral Architecture Search (NAS) methods [10] have been proposed.
Recent NAS methods have achieved state-of-the-art results and out-
performed handcrafted deep learning models in many tasks, such as
image classification [44, 24, 40], image segmentation [21], and lan-
guage modeling [11, 13]. However, deep learning models still lack
transparency and interpretability, limiting their application in many
critical decision-making tasks. The European Union’s General Data
Protection Regulation requires the "right to an explanation" for al-
gorithms in individual decision-making, underscoring the urgency of
transparency and interpretability in machine learning [8].

To better understand how deep learning models make predictions,
post-hoc methods have been proposed. These methods aim to fit
an explanation to the black-box models. Examples of deep learning
post-hoc methods include deconvolution [42], activation maximiza-
tion [35], and saliency visualization [34, 38]. However, these meth-
ods cannot explain the reasoning process and why the model makes
such predictions. Since the explanations are not based on real reason-
ing processes, they can sometimes be unreliable and misleading.

To address these problems in post-hoc methods, built-in proto-
types methods have been proposed [4, 27, 5, 33]. This method mim-
ics how humans identify objects. For example, when we describe
why an image looks like a clay-colored sparrow, we compare the
bird’s wing and head with some prototypical clay-colored sparrow
images. Adding the prototype layers to models can provide built-in
interpretability about the reasoning process. However, this method
can sacrifice performance in many image classification tasks, mak-
ing it difficult to achieve state-of-the-art results.

This work proposes the Neural Architecture Search for Ex-
plainable Networks (NASXNet) architecture, which generates high-
performance and explainable models for image classification tasks.
The motivation is to obtain high-performance and interpretable mod-
els, addressing two research problems.

Problem 1: How to improve the performance of explainable mod-
els? Some methods create built-in explainable models by adding
prototype layers to existing neural networks. They do not redesign
the prototype’s backbone or feature extraction neural networks. In
most cases, the decrease in performance is because the backbone
network cannot effectively extract proper features for the prototype
layer. Thus, this work proposes applying a NAS method to search for
new convolutional neural networks (CNNs) to perform the feature
extraction for the prototype layers.

Problem 2: How to maintain interpretability and reduce training
complexity? By adding the NAS method, the model needs to learn
both the neural architecture and prototypes at the same time, making
it difficult to train. This work proposes dividing the training process
into three stages and a self-adjustment for the number of prototypes

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230423

1447

Figure 1: NASXNet prediction example for CUB-200-2011. The model would do self-adjust during training. When making predictions, each
patch of the image would calculate the similarity scores with the prototypes which are auto-generated during the training. The similarity scores
would pass to the linear layer to calculate the final prediction result. The sample shows the parches and prototypes of the top 4 similarity
scores.

for each class, allowing the model to automatically learn the proto-
type distribution.

By addressing these problems, the proposed NASXNet can obtain
state-of-the-art performance and a high level of interpretability. The
contributions of this paper are threefold:

• To the best of the authors’ knowledge, this is the first applica-
tion of neural architecture to search for explainable deep learning
models.

• The method can generate a state-of-the-art explainable model that
outperforms existing approaches.

• A novel training process for the explainable model is proposed to
enable faster convergence during training.

In the following sections, the related work of neural architecture
search and prototypical network is introduced. Next, the architec-
ture and training method are presented. The experiments and re-
sults are analyzed. Finally, the limitations and future improvement
of NASXNet are discussed.

2 Related Work

We first do a brief review on current NAS works in image classifica-
tion and then introduce current explanation methods, which can be
divided into two categories, one is the post-hoc explanation [17, 25],
another is the inherent explanation [20, 12, 5].

Neural Architecture Search. NAS achieves promising results in
various deep learning tasks [7, 26]. It automates the architecture en-
gineering process of neural networks. The NAS problem can be for-
mally defined as follows. Given a search space A, the target of our
algorithm is to search the optimal neural network architecture α ∈ A

which minimizes the validation loss Lval. It can be written as:

minα Lval(w
∗(α), α),

s.t. w∗(α) = argminw Ltrain(w,α),
(1)

where w∗ denotes the optimal parameters learned for the architecture
in the training set. This is a bilevel optimization problem.

Direct computation of the gradient of Lval is almost impossible
due to the high dimensionality of the model parameters w. Thus
we calculate the validation loss by following approximation scheme
[23]:

∇αLval(w
∗(α), α) ≈

∇αLval(w − ξ∇wLtrain(w,α), α).
(2)

Prior works mostly belongs to reinforcement learning category
[2, 44, 45] and evolutionary algorithm category [37, 22, 29]. Due
to the expensive cost of these methods, various works have been pro-
posed to reduce the search costs [6, 28, 41]. DARTS [23, 43] is a dif-
ferentiable architecture search method which relax the discrete neu-
ral architecture search problem to a continuous one and solve it by
gradient descent, i.e., for each operation o(·) in the operation set O,
we can relax the choice of a particular operation to a softmax:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o)∑

o′∈O exp(α
(i,j)

o′)
o(x), (3)

where α(i,j) is the operation of mixing weights for a pair of nodes
(i, j). DARTS allows us to search for high-performance neural net-
works much faster than discrete search methods. Though NAS can
generate state-of-the-art deep learning models which outperform
handcrafted models, these generated models are still black boxes.

Post-hoc Explanation. Post-hoc explanations of black-box mod-
els are widely used for complex models such as deep neural net-
works. Many methods have been proposed [25, 30] recently. The

Y. Li and I. King / Neural Architecture Search for Explainable Networks1448

Figure 2: NASXNet Architecture. It consists of a Feature Extraction Network and Classification Layers. Classification layers contain two paths,
one is the auxiliary (traditional) classification path, another is the prototype classification path. In the first stage of training, we only use the
auxiliary classification path. In the second stage of training, the both auxiliary classification path and prototype classification path would be
activated. In the third stage of training, we only use the prototype classification path to do the final model fine-tuning.

basic idea of post-hoc approaches is to build a surrogate model to
explain the behavior of the original one. Based on the scope of
approximation, they can be divided into local and global explana-
tions methods. For instance, some local explanation methods com-
pute saliency maps to capture feature importance for an individual
prediction by computing gradient with respect to the input [35, 38],
some global methods provide an explainable model to summarize the
whole black box [19, 3]. However, recent works on post-hoc expla-
nations show that black-box explanations can be unstable and unre-
liable [1, 18, 31].

Inherent Explanation. Since post-hoc approaches cannot explain
the original model precisely [31], build-in interpretability is impor-
tant. Recent works of [4, 27] define a new form of interpretability for
image processing and sequence learning. The basic idea is inspired
by the way humans describe their thinking in classification tasks.

ProtoPNet [4] compares image parts to learned prototypes and
based on the similarity to classify the class of the new example. The
model first extracts several parts of an image and then calculates each
part’s similarity scores to the prototypes. Thus, the model can inter-
pret how they classify the image based on the classes of the proto-
types.

The ProtoPNet consists of three components, the convolutional
network f , the prototype layer gP , and the fully connected layer
h. The convolutional network uses convolutional layers from pre-
trained models such as ResNet-34, VGG-16, VGG-19, DenseNet-
121. Given an input image x, the convolutional network extracts use-
ful features z = f(x), whose shape is H ×W ×D. The prototype
layer learns m prototypes P = {pj}mj=1. Each prototype represents
a prototypical part of an image in one class. Its shape is H1×W1×D,
where H1 < H , W1 < W . Given an extracted feature z, the pro-
totype layer would calculate the square L2 distance between each
prototype pj with all patches in z. Then the distance would convert

to the similarity between z and prototype pj . The similarity score
represents how similar the image is to the prototype. The number of
prototypes mk for each class k ∈ 1, ...,K is pre-determined. Lastly,
the fully connected layer would calculate the output logits based on
the similarity scores.

Though ProtoPNet can provide a new level of build-in inter-
pretability for image classification, it cannot achieve state-of-the-
art results in many tasks. Our NASXNet method would solve this
problem by searching for a new convolutional network for prototype
feature extraction and allowing self-adjustment of the prototypes’
distribution. It can achieve better performance without losing inter-
pretability.

3 Method

In this section, we first introduce our architecture and key compo-
nents. Then we show our training algorithm and loss function. Fi-
nally, we describe the method and implementation details of each
component.

3.1 Overall Architecture

Our NASXNet architecture can be divided into two parts, feature
extraction and classification. Feature extraction is a neural network
generated by our NAS method. The classification part contains two
paths, one is the auxiliary (traditional) classification path, another is
the prototype classification path. The whole architecture is shown in
Figure 2.

The feature extraction network extracts image patch features to
compare with prototypes. The auxiliary classification path is only
used in our training process’s first and second stages. It helps the

Y. Li and I. King / Neural Architecture Search for Explainable Networks 1449

NAS algorithm to adapt to the classification task and generate high-
quality architecture more efficiently. The prototype layer contains m
prototypes, which are automatically learned from training data. For
each instance, we calculate the similarity scores to the prototypes and
based on the scores to classify the instance. This path would be used
in the second and third stages of the training process.

After the architecture search, we would report the best-performing
architecture. Thus we could obtain our final feature extraction net-
work. Then we retrain and evaluate the final explainable network.
Since we do not need to do NAS in the generated explainable net-
work, this final model only needs to apply the second and third stage
training.

3.2 Training Process

Our training process consists of three stages: (1) Architecture search
adaptation. (2) Joint training of the auxiliary classification and proto-
type classification paths. (3) Fine-tuning the final model. We would
first apply the three-stage training process to obtain the feature ex-
traction neural network. Then we fix the feature extraction network
with the best architecture generated by NAS and retrain the final
model. When retraining the final model, it does not need the adapta-
tion stage.

NAS Adaptation. At the beginning of the training process, we
need to warm up the architecture search. In this stage, the prototype
layers are not used. We only train the feature extraction network and
auxiliary layer. This stage would help our architecture search algo-
rithm converge faster and generate reasonable architectures.

Joint training. After the NAS adaptation stage, we would add the
prototype layers to the training process. We joint train feature extrac-
tion network and two classification paths in this stage. The output
of the final prediction is the weighted sum of the auxiliary layer and
prototype layer output. This joint training stage would allow the pro-
totype layer to make the classification based on the prototype sim-
ilarity scores and let the architecture search algorithm start to learn
architecture that is helpful to prototype feature extraction.

Fine-tuning. The final fine-tuning stage only trains the feature ex-
traction network and prototype layers. The auxiliary classification
path is removed. In this stage, our prediction only relies on the pro-
totype similarity scores. This allows the algorithm to fine-tune the
feature extraction network architecture and prototypes.

3.3 Loss Function

In the NAS adaptation stage, our goal is to learn an initial feature
extraction network. The training loss is

Ltrain =
1

n

n∑
i=1

CrsEnt(h1 ◦ f(xi),yi), (4)

where CrsEnt represents cross entropy loss, h1 is the auxiliary clas-
sification layer, f is feature extraction network, xi is the i-th input
image, yi is i-th label. The validation loss optimization is based on
Equation (1).

In the joint training stage, we would combine the prototype clas-
sification path with auxiliary classification path. Thus the loss would

be

Ltrain =
1

n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi),yi)

+ λ1
1

n

n∑
i=1

CrsEnt(h1 ◦ f(xi),yi)

+ λ2Sep,

(5)

where gp is the prototype layer, h is the linear layer, Sep is defined
by

Sep = − 1

n

n∑
i=1

min
j:j �=i

‖pi − pj‖22. (6)

The separation cost (Sep) encourages the model to obtain more vari-
ous prototypes.

In the fine-tuning stage, the auxiliary path is removed, we only
need to consider the prototype classification output, so the loss is:

Ltrain =
1

n

n∑
i=1

CrsEnt(h ◦ gp ◦ f(xi),yi) + λ2Sep. (7)

These losses could help our model to focus on different parts at each
stage. Such that the training could converge faster.

3.4 Architecture Search

To generate feature extraction networks efficiently, we apply a differ-
entiable NAS method to search for the neural architecture. We opti-
mize the cell structures which are stacked to define full network ar-
chitecture. Following the same setting of DARTS, we search for two
types of cells, i.e., normal cell and reduction cell. Each cell contains
two input nodes, one output node and a set of intermediate nodes.
Each node in the cell represents a feature map x(j). The operation
for each node can be chose by computing the a mixture of candi-

date operations, i.e., x(j) =
∑

i<j

∑
o∈O

exp(αi,j
o)

∑
o′∈O exp(α

i,j

o′)
o(x(i)),

where x(i) are the predecessor nodes, O denotes the set of candi-
date operations, e.g., 3 × 3 convolution, 3 × 3 max pooling, skip
connection, etc. Then we can optimize both the weight of the neu-
ral network and architecture parameters alternatively by gradient de-
scent. Finally the operations are selected based on the weighting fac-

tor exp(αi,j
o)

∑
o′∈O exp(α

i,j

o′)
.

However, DARTS can be unstable and fail in some cases. Thus, we
apply the adaptive DARTS algorithm in work [43], i.e., whenever the
dominant eigenvalue in DARTS starts increasing rapidly, we increase
the regularization strength.

3.5 Learning Prototypes

At the beginning of the training, we first randomly initialize each
prototype. Then we divide the prototypes pi into K groups G =
{Gj}Kj=1. Each group belongs to one class. We initialize the weight
matrix W of last linear layer h as follows:

wi,j =

{
1 if pi ∈ Gj

−0.5 if pi �∈ Gj

. (8)

For every t epochs of training, we project the nearest latent patch
of images into the prototype pj , such that pj can be viewed as a

Y. Li and I. King / Neural Architecture Search for Explainable Networks1450

Table 1: Classification results comparison. We apply the non-explainable methods as backbones in ProtoPNet. Though a better backbone can
help increase the ProtoPNet performance, the backbones are not designed for prototype extraction. There is still a significant performance
gap between non-explainable methods and explainable methods. Our NASXNet could re-design the backbone specifically for the prototype
network. Thus it could achieve higher performance with a smaller model size.

Model Type #Params
Accuracy (%)

CIFAR-10 CIFAR-100 CUB-200-2011 Stanford Cars

VGG-19 Non-Explainable 144M 93.56 ± 0.25 70.48 ± 0.23 75.14 ± 0.37 85.90 ± 0.32
ResNet-101 Non-Explainable 44.5M 93.75 ± 0.22 74.41 ± 0.31 81.50 ± 0.29 90.21 ± 0.30

EfficientNet-B6 Non-Explainable 43M 98.03 ± 0.22 87.21 ± 0.31 83.32 ± 0.29 93.13 ± 0.30

ProtoPNet + VGG-19 Explainable 138M 92.99 ± 0.15 69.80 ± 0.11 78.03 ± 0.22 86.10 ± 0.25
ProtoPNet + ResNet-101 Explainable 45M 93.88 ± 0.24 68.87 ± 0.18 77.32 ± 0.33 86.85 ± 0.37

ProtoPNet + EfficientNet-B6 Explainable 44M 95.88 ± 0.31 74.93 ± 0.13 79.25 ± 0.43 88.98 ± 0.22
NASXNet Explainable 30M 97.13 ± 0.23 75.10 ± 0.23 82.42 ± 0.35 91.24 ± 0.26

Figure 3: NASXNet prediction example for Stanford Cars. The left
part is the input image and top four activation maps. The right part is
the corresponding activation maps and images of the prototypes with
the highest similarity score.

prototype of the class that image belongs to. Mathematically, we per-
form following update for each prototype pj :

pj ← argminz∈Zi
‖z− pj‖2,

where Zi = {z : z ∈ patches(f(xi))}.
(9)

Unlike ProtoPNet, we allow a global update of the prototype pro-
jection, thus the model can automatically adjust the number of proto-
types for each class. We can easily prove that the projection operation
of prototypes has a limited effect on the accuracy of the models.

Theorem 1. Let pk
l be the nearest latent patch of class k, bk

l be the
value of the l-th prototype for class k before projection, ak

l be the
value after the projection with the nearest patch in the same class, al

be the value after the projection with the global nearest patch. If we
project the global nearest patch to the prototypes, then the change of
top-2 classes Δtop2 ≤ 2Δmax

Proof. Suppose after project prototypes to their nearest patch of the
same class pk

l , the output logit for every incorrect classes can in-
crease at most by Δmax = m′ log((1 + δ)(2 − δ)), and the output

Figure 4: Training process comparison on CIFAR-10. In NASXNet,
epoch 1 to epoch 5 is the NAS adaptation stage, epoch 6 to 45 is the
joint training stage, epoch 46 to 50 is the fine-tuning stage. For di-
rect training, there is no adaptation stage and auxiliary joint training
stage.

logit for the correct class can decreased at most by Δmax. The proof
can be referred to the Theorem 2.1 in [4].

Then since al is the projection with global nearest path, we have
‖al − bk

l ‖2 ≤ ‖ak
l − bk

l ‖2. Thus if we project the global nearest
patch to the prototypes, the change of top-2 classes Δtop2 ≤ 2Δmax.
It means if the output logits between the top-2 classes are at least
2Δmax apart, the projection would not change the prediction result.

Intuitively speaking, the global update of the prototype projection
would have less effect on the model’s accuracy. Moreover, if the pro-
totype projection does not change the prototypes by much, the pre-
diction results would not change. We would periodically project the
image patches to the prototypes during the training. The correspond-
ing image patches and images would be saved to visualize and inter-
pret the prediction results.

4 Experiments

In this section, we evaluate NASXNet for image classification tasks.
First, we analyze performance on four popular image classification

Y. Li and I. King / Neural Architecture Search for Explainable Networks 1451

c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2skip_connect

3
skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

dil_conv_3x3

c_{k}

(a) Normal Cell in DARTS

c_{k-2}

0

max_pool_3x3
2

max_pool_3x3

c_{k-1}

max_pool_3x3

1

max_pool_3x3

3

max_pool_3x3

skip_connect

skip_connect

skip_connect c_{k}

(b) Reduction Cell in DARTS

c_{k-2}

0

sep_conv_3x3
1sep_conv_5x5

c_{k-1} sep_conv_3x3

dil_conv_3x3

2sep_conv_3x3 c_{k}
sep_conv_5x5 3

dil_conv_3x3

sep_conv_3x3

(c) Normal Cell in NASXNet

c_{k-2} 0sep_conv_5x5

1

sep_conv_5x5

c_{k-1}
sep_conv_5x5

sep_conv_5x5

2
sep_conv_5x5

c_{k}sep_conv_3x3
3sep_conv_3x3

dil_conv_5x5

(d) Reduction Cell in NASXNet

Figure 5: Generated architecture comparison in CIFAR-10. The first line cell structures are the architectures generated with traditional classifi-
cation layers. The structures in the second line are generated by our NASXNet which contains explainable prototype layers.

datasets, i.e., CIFAR-10, CIFAR-100, CUB-200-2011 and Stanford
Cars datasets [15, 39, 14]. Then we visualize prediction results and
conduct interpretability analysis on the CUB-200-2011. Last, we
show the generated feature extraction network architecture of our ap-
proach.

4.1 Setup & Visualization

In our experiments, we used the NVIDIA TITAN RTX 24G GPU and
followed the same settings as in [4], where we set the prototype shape
as H1 = W1 = 1, the input image would be transformed to make
sure the dimensions of the embedding are aligned. Additionally, we
used the following values for our loss function: λ1 = 0.8 and λ2 =
0.001.

During the prototype projection phase, we obtain the proto-image
for each prototype pj . To get the patch of the proto-image that cor-
responds to pj , we analyze the pixels of the image that were most
activated when passing through NASXNet. This helps us visualize
pj as the minimal rectangular patch of the proto-image x that en-
closes 95% of the activation values in the map.

To visualize the activation maps of patches for the input image,
we analyze the similarity scores between the input patches and pro-
totypes. This allows us to see how the model classifies the image.
By analyzing the similarity scores between the input patches and
prototypes, we can gain insights into how the model is making its
predictions.

4.2 Performance Analysis

In our study, we compared the performance of NASXNet with
several black-box models, including VGG-10, ResNet-101, and
EfficientNet-B6, as well as the explainable model ProtoPNet with
different backbones. The feature extraction network is stacked with
the best cell structures searched from CIFAR-10. We presented the
accuracy results on four datasets in Table 1.

From the results, we observed that ProtoPNet’s performance in
some datasets could be improved by using a higher-performance

backbone. However, we also found a significant performance gap
compared to the corresponding non-explainable method. Therefore,
we proposed NASXNet that generates smaller and higher-performing
explainable models by designing a new architecture specifically for
the prototype feature extraction. The accuracy has a significant im-
provement by using our NASXNet framework.

In addition, we analyzed how the three-stage training process
works in NASXNet. We removed the NAS adaptation and joint train-
ing stages and directly trained the NAS and prototype layer. In Fig-
ure 4, we can see that without adaptation and joint training, the model
cannot converge and cannot search for a proper neural architecture
for the prototype layer. The three-stage training process, which we
proposed, enables faster convergence during training and helps the
model to automatically learn the prototype distribution.

4.3 Interpretability Analysis

In our proposed method, we set the number of prototypes as 10×K,
where K is the number of classes in the dataset. This means that the
average number of prototypes per class is 10. The prototype layer
generates similarity scores for each prediction result with the pro-
totypes, allowing us to obtain highly activated prototypes based on
these scores. By visualizing the activation map in the prototypes and
the original image, we can easily understand how the deep learning
model classifies the instance.

For instance, Figure 1 shows a prediction example in CUB-200-
2011, while Figure 3 shows a visualization example in Stanford Cars.
We select the four prototypes with the highest score for a prediction
and visualize them as training image patches.

However, we have noticed that there are many duplicated proto-
types in ProtoPNet, e.g., the first and second prototypes in the exam-
ple shown in Figure 6. This is because the cluster cost in ProtoPNet
tends to select similar prototypes in the same class. To avoid this
problem, we have added a new separation cost between any two pro-
totypes.

This new separation cost is a novel element we have introduced in
our method. It allows for more flexible adjustment in the number of

Y. Li and I. King / Neural Architecture Search for Explainable Networks1452

(a) Top four prototypes in ProtoPNet

(b) Top four prototypes in NASXNet

Figure 6: Prototypes for the same class that generated by ProtoPNet
and NASXNet. ProtoPNet would generate many duplicated proto-
types. Our new loss function in NASXNet could reduce the dupli-
cated prototypes, thus including more various prototypes in the pro-
totype set.

prototypes between different classes, guiding the model to search for
more diverse prototypes. By avoiding duplicated prototypes, we can
expect a more accurate and robust performance from our models.

Our approach to prototype selection is a critical aspect of our
method, as it allows us to gain insights into how the deep learning
model makes its predictions. By visualizing the activation maps of
patches for the input image, we can analyze the similarity scores be-
tween the input patches and prototypes, gaining valuable insights into
how the model classifies the image.

4.4 Generated Architectures

The results presented in Table 1 demonstrate the effectiveness of our
method, which generates smaller models with better performance.
Our approach optimizes the feature extraction network architecture
by jointly training the NAS with the prototype layers, resulting in a
more suitable prototype feature extraction. In comparison to the best-
performing architectures of DARTS, the architectures generated by
our NASXNet are different from the original ones. This indicates that
the architecture has been adjusted to fit the prototype classification.

To provide a more in-depth understanding of our approach, we
show the normal cell and reduction cell structures of the best model
in CIFAR-10 in Figure 5. These structures were carefully designed
to enhance the performance of our approach, and we believe that
the newly designed architecture would also contribute to the field of
prototype classification.

5 Conclusion

Interpretability is a critical factor in many areas and applications that
employ deep learning models. ProtoPNet has proposed adding pro-
totype layers to interpret image classification predictions. However,
there remains a significant performance gap between explainable
models and state-of-the-art models, with built-in explainable mod-
els often suffering from low-performance issues. This is where our
NASXNet comes in, providing a way to obtain an explainable and
high-performing deep learning model.

To achieve this, we propose a new loss function and search for a
feature extraction network that can properly utilize prototypes. Our
method also proposes a new training architecture to obtain efficient
and high-performance explainable models. These contributions are

significant in that our proposed NASXNet can provide both inher-
ent interpretability and state-of-the-art results. Thus, we show that
there might not necessarily be a trade-off between performance and
interpretability.

However, we do acknowledge that while prototype layers provide
a level of interpretability, the inference process of the feature extrac-
tion network is still difficult to understand. As such, in future re-
search, we may focus on interpreting the feature extraction network
to gain a better understanding of how it works and obtain a fully ex-
plainable deep neural network. In summary, our work demonstrates
the importance of interpretability in deep learning models and pro-
vides a promising path towards achieving both interpretability and
high-performance in deep learning applications.

Acknowledge

The work described here was partially supported by grants from
the National Key Research and Development Program of China
(No. 2018AAA0100204) and from the Research Grants Council
of the Hong Kong Special Administrative Region, China (CUHK
14222922, RGC GRF, No. 2151185).

References

[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow,
Moritz Hardt, and Been Kim, ‘Sanity checks for saliency maps’, in
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, eds., Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett, pp. 9525–9536, (2018).

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar, ‘De-
signing neural network architectures using reinforcement learning’, in
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, (2017).

[3] Osbert Bastani, Carolyn Kim, and Hamsa Bastani, ‘Interpretability via
model extraction’, CoRR, abs/1706.09773, (2017).

[4] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan Su, ‘This looks like that: Deep learning for interpretable im-
age recognition’, in NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, eds., Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, pp.
8928–8939, (2019).

[5] Jon Donnelly, Alina Jade Barnett, and Chaofan Chen, ‘Deformable pro-
topnet: An interpretable image classifier using deformable prototypes’,
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10265–10275, (2022).

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, ‘Efficient
multi-objective neural architecture search via lamarckian evolution’, in
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
(2019).

[7] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter, ‘Neural archi-
tecture search: A survey’, J. Mach. Learn. Res., 20, 55:1–55:21, (2019).

[8] Bryce Goodman and Seth Flaxman, ‘European union regulations on al-
gorithmic decision-making and a “right to explanation”’, AI Magazine,
38(3), 50–57, (Oct. 2017).

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, in 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pp. 770–778. IEEE Computer Society, (2016).

[10] Xin He, Kaiyong Zhao, and Xiaowen Chu, ‘Automl: A survey of the
state-of-the-art’, Knowl. Based Syst., 212, 106622, (2021).

[11] Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang, and Jingbo Zhu,
‘Improved differentiable architecture search for language modeling and
named entity recognition’, in EMNLP-IJCNLP, eds., Kentaro Inui, Jing
Jiang, Vincent Ng, and Xiaojun Wan, pp. 3583–3588. Association for
Computational Linguistics, (2019).

[12] Carolyn Kim and Osbert Bastani, ‘Learning interpretable models with
causal guarantees’, CoRR, abs/1901.08576, (2019).

[13] Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gá-
bor Bartók, and Jesse Berent, ‘Task-aware performance prediction for

Y. Li and I. King / Neural Architecture Search for Explainable Networks 1453

efficient architecture search’, in ECAI 2020 - 24th European Confer-
ence on Artificial Intelligence, 29 August-8 September 2020, Santiago
de Compostela, Spain, August 29 - September 8, 2020 - Including 10th
Conference on Prestigious Applications of Artificial Intelligence (PAIS
2020), eds., Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina,
Michela Milano, Senén Barro, Alberto Bugarín, and Jérôme Lang, vol-
ume 325 of Frontiers in Artificial Intelligence and Applications, pp.
1238–1245. IOS Press, (2020).

[14] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei, ‘3d object
representations for fine-grained categorization’, in 4th International
IEEE Workshop on 3D Representation and Recognition (3dRR-13),
Sydney, Australia, (2013).

[15] Alex Krizhevsky, Geoffrey Hinton, et al., ‘Learning multiple layers of
features from tiny images’, (2009).

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, ‘Imagenet
classification with deep convolutional neural networks’, in Advances in
neural information processing systems, eds., Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, pp. 1106–1114, (2012).

[17] Himabindu Lakkaraju, Nino Arsov, and Osbert Bastani, ‘Robust and
stable black box explanations’, in International conference on machine
learning, volume 119 of Proceedings of Machine Learning Research,
pp. 5628–5638. PMLR, (2020).

[18] Himabindu Lakkaraju and Osbert Bastani, ‘"how do I fool you?": Ma-
nipulating user trust via misleading black box explanations’, in AIES
’20: AAAI/ACM Conference on AI, Ethics, and Society, New York, NY,
USA, February 7-8, 2020, eds., Annette N. Markham, Julia Powles,
Toby Walsh, and Anne L. Washington, pp. 79–85. ACM, (2020).

[19] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Jure Leskovec,
‘Faithful and customizable explanations of black box models’, in Pro-
ceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,
AIES 2019, Honolulu, HI, USA, January 27-28, 2019, eds., Vincent
Conitzer, Gillian K. Hadfield, and Shannon Vallor, pp. 131–138. ACM,
(2019).

[20] Benjamin Letham, Cynthia Rudin, Tyler H McCormick, David Madi-
gan, et al., ‘Interpretable classifiers using rules and bayesian analysis:
Building a better stroke prediction model’, Annals of Applied Statistics,
9(3), 1350–1371, (2015).

[21] Yaoman Li and Irwin King, ‘Architecture search for image inpainting’,
in ISNN 2019, Moscow, Russia, July 10-12, 2019, Proceedings, Part I,
eds., Huchuan Lu, Huajin Tang, and Zhanshan Wang, volume 11554 of
Lecture Notes in Computer Science, pp. 106–115. Springer, (2019).

[22] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando,
and Koray Kavukcuoglu, ‘Hierarchical representations for efficient ar-
chitecture search’, in ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, (2018).

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang, ‘DARTS: differen-
tiable architecture search’, in ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, (2019).

[24] Zhichao Lu, Gautam Sreekumar, Erik D. Goodman, Wolfgang Banzhaf,
Kalyanmoy Deb, and Vishnu Naresh Boddeti, ‘Neural architecture
transfer’, IEEE Trans. Pattern Anal. Mach. Intell., 43(9), 2971–2989,
(2021).

[25] Scott M. Lundberg and Su-In Lee, ‘A unified approach to interpret-
ing model predictions’, in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, eds., Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, pp. 4765–4774,
(2017).

[26] Yao Ma, Shilin Zhao, Weixiao Wang, Yaoman Li, and Irwin King,
‘Multimodality in meta-learning: A comprehensive survey’, Knowl.
Based Syst., 250, 108976, (2022).

[27] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren, ‘Interpretable and
steerable sequence learning via prototypes’, in Proceedings of the 25th
ACM SIGKDD, eds., Ankur Teredesai, Vipin Kumar, Ying Li, Rómer
Rosales, Evimaria Terzi, and George Karypis, pp. 903–913. ACM,
(2019).

[28] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean,
‘Efficient neural architecture search via parameter sharing’, in Inter-
national conference on machine learning, eds., Jennifer G. Dy and
Andreas Krause, volume 80 of Proceedings of Machine Learning Re-
search, pp. 4092–4101. PMLR, (2018).

[29] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le, ‘Reg-

ularized evolution for image classifier architecture search’, in Proceed-
ings of the aaai conference on artificial intelligence, pp. 4780–4789.
AAAI Press, (2019).

[30] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin, ‘"why should
I trust you?": Explaining the predictions of any classifier’, in Proceed-
ings of the 22th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, eds., Balaji Krishnapuram, Mohak Shah,
Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Ras-
togi, pp. 1135–1144. ACM, (2016).

[31] Cynthia Rudin, ‘Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead’, Nature
Machine Intelligence, 1(5), 206–215, (2019).

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li, ‘Imagenet
large scale visual recognition challenge’, Int. J. Comput. Vis., 115(3),
211–252, (2015).

[33] Mikolaj Sacha, Dawid Rymarczyk, Lukasz Struski, Jacek Tabor, and
Bartosz Zielinski, ‘Protoseg: Interpretable semantic segmentation with
prototypical parts’, in IEEE/CVF Winter Conference on Applications of
Computer Vision, WACV 2023, Waikoloa, HI, USA, January 2-7, 2023,
pp. 1481–1492. IEEE, (2023).

[34] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra, ‘Grad-cam: Visual
explanations from deep networks via gradient-based localization’, in
ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 618–626. IEEE
Computer Society, (2017).

[35] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, ‘Deep in-
side convolutional networks: Visualising image classification models
and saliency maps’, in ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Workshop Track Proceedings, eds., Yoshua Bengio and Yann Le-
Cun, (2014).

[36] Karen Simonyan and Andrew Zisserman, ‘Very deep convolutional net-
works for large-scale image recognition’, in ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, (2015).

[37] Kenneth O Stanley and Risto Miikkulainen, ‘Evolving neural networks
through augmenting topologies’, Evolutionary computation, 10(2), 99–
127, (2002).

[38] Mukund Sundararajan, Ankur Taly, and Qiqi Yan, ‘Axiomatic attribu-
tion for deep networks’, in International conference on machine learn-
ing, eds., Doina Precup and Yee Whye Teh, volume 70 of Proceedings
of Machine Learning Research, pp. 3319–3328. PMLR, (2017).

[39] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, ‘The
Caltech-UCSD Birds-200-2011 Dataset’, Technical Report CNS-TR-
2011-001, California Institute of Technology, (2011).

[40] Wenna Wang, Xiuwei Zhang, Hengfei Cui, Hanlin Yin, and Yannnig
Zhang, ‘FP-DARTS: fast parallel differentiable neural architecture
search for image classification’, Pattern Recognit., 136, 109193,
(2023).

[41] Yihang Yin, Siyu Huang, and Xiang Zhang, ‘BM-NAS: bilevel multi-
modal neural architecture search’, in Thirty-Sixth AAAI Conference on
Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 - March 1, 2022, pp. 8901–8909.
AAAI Press, (2022).

[42] Matthew D. Zeiler and Rob Fergus, ‘Visualizing and understanding
convolutional networks’, in Computer Vision - ECCV 2014 - 13th Eu-
ropean Conference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part I, eds., David J. Fleet, Tomás Pajdla, Bernt Schiele, and
Tinne Tuytelaars, volume 8689 of Lecture Notes in Computer Science,
pp. 818–833. Springer, (2014).

[43] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi,
Thomas Brox, and Frank Hutter, ‘Understanding and robustifying dif-
ferentiable architecture search’, in ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, (2020).

[44] Barret Zoph and Quoc V. Le, ‘Neural architecture search with rein-
forcement learning’, in ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, (2017).

[45] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le,
‘Learning transferable architectures for scalable image recognition’, in
2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 8697–
8710. IEEE Computer Society, (2018).

Y. Li and I. King / Neural Architecture Search for Explainable Networks1454

