
FBC: Fusing Bi-Encoder and Cross-Encoder for
Long-Form Text Matching

Jianbo Liaoa;†, Mingyi Jiaa;†, Junwen Duana;* and Jianxin Wanga

aHunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering,
Central South University, China

{jbliao, jiamingyi, jwduan}@csu.edu.cn, jxwang@mail.csu.edu.cn

Abstract. Semantic text matching has a wide range of applica-
tions in natural language processing. Recently proposed models that
have achieved excellent results on short text matching tasks are not
well suited to long-form text matching problems due to input length
limitations and increased noise. On the other hand, long-form texts
contain a large amount of information at different granularities af-
ter encoding, which cannot be fully interacted and utilized by ex-
isting methods. To address above issues, we propose a novel long-
form text-matching framework which fuses Bi-Encoder and Cross-
Encoder (FBC). Specially, it first employs an entity-driven key sen-
tence extraction method to obtain the crucial content of the text and
filter out noise. Subsequently, it integrates Bi-Encoder and Cross-
Encoder to better capture semantic features and matching signals.
Extensive experiments on several publicly available datasets demon-
strate the effectiveness of our approach, compared with strong base-
lines. Furthermore, our model exhibits greater stability and accu-
racy in determining the matching relationship between documents
describing the same event, which outperforms previously established
approaches. 1

1 Introduction

Semantic text matching techniques can be applied to a wide vari-
ety of applications, including community question answering [35],
information retrieval [11], and dialogue [21]. Many deep text match-
ing models have been proposed and gain improvement. Main-
stream methods include representation based methods such as
DSSM [12] and CDSSM [30], interaction based models such as
DRMM [8], MVLSTM [32], K-NRM [37], Conv-KNRM [5], Match-
Pyramid [25], Match-SRNN [33], PACRR [13], and their combina-
tions like RE2 [39] and DUET [22].

Pre-trained language models (PLM) have recently been used to fa-
cilitate the development of text semantic matching due to their pow-
erful ability to learn representations [7, 19, 17], and have reached
state-of-the-art performance when it comes to general semantic
matching benchmarks [34]. However, PLM models are not well
suited to long-form text matching problems due to the excessive
length and increased noise. BERT, for example, can handle docu-
ments with a length of less than 512 tokens. Thus in practice, doc-
uments exceeding this length will be truncated, which may result in

∗ Corresponding Author. Email: jwduan@csu.edu.cn.
† These authors contributed equally to this work.
1 The code is released at https://github.com/CSU-NLP-Group/FBC

Doc1: …Although Ke Jie lost the first game against
alphaGo two days ago by only the smallest 1/4 point,
only chess players with a certain level can see that this
is actually a complete defeat without suspense.....

Doc2: …Chinese Go has gained unprecedented attention
in 2017. Yesterday, because of the 1st-round competition
with AlphaGo, Ke Jie once topped the microblog hot
search list... While the main audience are onlookers…

Not match(False)Match(True)

PLM modelHuman being

Figure 1: A mismatched example of long-form text matching. Al-
though humans can easily judge whether two paragraphs match, the
PLM will make wrong predictions, which may be because it retained
some noise (the sentences marked in red in the figure) or the loss of
critical information that contributes to model’s accurate prediction
(the sentences marked in blue) due to the limitation of input length.

the loss of crucial information. On the other hand, the significant
amount of noise present in long documents can greatly interfere with
the model’s ability to make accurate predictions. Take Figure 1 as an
example, though both texts describe the same news that "Ke Jie had a
Go match with the AlphaGo", the model outputs a wrong prediction.
The aforementioned phenomenon may be attributed to the truncation
of some crucial sentences in doc1 and doc2, or the retention of ir-
relevant sentences containing extraneous information. Additionally,
our analysis of existing long-form text matching methods suggests
that they are prone to error when identifying text pairs that describe
the same event due to inadequate semantic interactions among the
pairs.

On the other hand, the common paradigms for text matching are
generally divided into Bi-Encoder and Cross-Encoder (Figure.2). Bi-
Encoder encodes text A and B respectively, generating corresponding
embeddings u and v, which are then compared for similarity to deter-
mine the matching degree. But since the two texts are encoded sepa-
rately and lack interactions, the accuracy is not ideal. Cross-Encoder
encodes text pairs as a whole and uses the output directly for sim-
ilarity calculation, which has poor interpretability and impacts the
matching speed.

To address the above issues, we propose a novel framework that
fuse Bi-Encoder and Cross-Encoder for long-form text matching
(FBC). We further propose an entity-driven key sentence extraction
method, which extracts key sentences ranked by the entity score from
the lengthy document. Specifically, FBC first takes the titles and key

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230426

1473

https://github.com/CSU-NLP-Group/FBC

sentences of two documents as input, and outputs the encoded vec-
tors for each input. The encoded title vector pair and text vector pair
are input into two shared Bi-Encoder networks. Finally, we concate-
nate the global matching vector, i.e. the encoded vector of [CLS]
token, with the title matching vector and text matching vector from
the feature matching layer, and pass them to the classification layer
to get the final matching results.

The primary contributions of this paper are as follows: (i) We pro-
pose an entity-driven key sentence extraction method that effectively
utilizes the number and type of entities contained in the sentence, as
well as the position of the sentence within the text; (ii) based on (i),
we propose our framework that fuses Bi-Encoder and Cross-Encoder
to enhance the interaction between document pairs and capture more
matching signals, thereby improving the final matching performance;
(iii) Experimental results on several benchmark datasets demonstrate
the superiority of our framework over several strong baselines.

PLM Encoder

Text 1 [SEP] Text 2

Classifier

PLM Encoder

Text 1

Pooling

Computing Similarity

Output

PLM Encoder

Pooling

Output

(a) Bi-Encoder (b) Cross-Encoder

Text 2

Figure 2: The architecture of Bi-Encoder and Cross-Encoder.

2 Related Work

In this section, we first discuss common short-form text matching
models. Then as an extension, we will further summarize the more
effective long-form text matching models currently proposed and dis-
cuss their limitations.

2.1 Short-form Text Matching

Current mainstream text matching methods include representative
methods, interactive methods, and their combinations. These cate-
gories of methods have been widely applied to short-text matching.

Typical representation-based matching approaches include
DSSM [12], C-DSSM [30], ARC-I [9], RNN-LSTM [23] and MV-
LSTM [32], they usually encode text pairs into high-dimensional
semantic vectors using deep neural networks, and then judge whether
the two texts match by computing the similarity between their cor-
responding vectors. DSSM is the progenitor of representation-based
matching models, featuring a simple yet high-effect structure com-
posed of word-hash and multi-layer MLP and softmax. Subsequent
variants, such as C-DSSM, are optimized based on it. ARC-I model
utilizes a repetitive stacking of "CNN + k-pooling" to capture
semantic correlation between adjacent n-grams, and eventually
obtains sentence similarity from MLP.

Unlike representation-based approaches, the interactive approach
does not directly learn semantic representation vectors for text pairs,
but allows them to interact at the bottom layer, thus establishing
some fundamental matching signals. Representative examples of
such methods include ARC-II [10] and MatchPyramid [25] which

focuses on the associations between words and makes creative refer-
ence to the principles employed by CNNs in image processing, uti-
lizing a convolutional approach to manage interactions between two
sequences of texts.

As for the combination of the aforementioned two types, RE2 [39]
emphasizes three key features, namely previous alignment features,
original point-wise directional features, and context-aware alignment
between sequences, while simplifying most other components. This
setting renders it fast, powerful and applicable to a wide range of
correlative applications.

However, although the above methods perform well on short text
matching tasks, they cannot be directly transferred to long text
matching tasks since their patterns cannot process long-form text’s
massive information.

2.2 Long-form Text Matching

Early long-text matching tasks mostly employed term-based meth-
ods, such as TF-IDF which is based on bag-of-words models or LDA
which leverages topic overlap. These methods typically viewed texts
as combinations of multiple groups of words without considering the
order they appeared in the text. With the advent of deep learning,
researchers began employing deep learning methods to tackle long-
text matching tasks. SMASH RNN [15] was the first to propose a
hierarchical RNN model under a siamese architecture, integrating in-
formation from different granularities such as paragraphs, sentences,
and words. Then in 2019, the Concept Interaction Graph (CIG) [18]
employed graph-based methods to represent document information,
and utilized graph convolutional networks to convert the matching
task into a binary classification task.

The advent of powerful pre-trained models has changed the land-
scape of this field. Many transformer-based models, such as match-
BERT and sentenceBERT [28], have achieved very impressive per-
formances on long-text matching tasks. Considering the input length
limit of BERT models (512), SMITH [38] proposed a two-layer
transformers architecture to process sentence-level and word-level
features, thereby breaking this limit. CIG [18] mentioned before has
also incorporated the BERT architecture into their own model and
achieved superior performance than the standard BERT-finetuning
model on certain text-matching tasks. In 2021, Match-Ignition [24]
integrated the page-rank algorithm into the transformers model to ef-
fectively filter out noise of different granularities, and achieved the
current best performance on the CNSS and CNSE datasets.

It has been demonstrated in most previous works, especially those
transformer-based approaches, that long-form text provides an abun-
dance of information for matching. That is to say, learning an embed-
ding that embodies the context of an entire document can be quite
challenging. Current solutions for addressing these limitations in-
clude various pooling techniques [28] and contrastive learning meth-
ods [14]. These previous works provide strong evidence that our
framework can be effective for long-form text matching tasks, espe-
cially for improving the ability to identify a pair of texts that describe
the same event.

3 Our Framework

3.1 Problem Definition

Given the training set Strain = {di1, di2, yi}Ni=1, where di1 and di2
denote the long-form documents pair in i-th sample, and yi ∈ {0, 1}
denote the corresponding sample label indicating whether the two
texts in this sample match or not [4]. The target of this task is to train

J. Liao et al. / FBC: Fusing Bi-Encoder and Cross-Encoder for Long-Form Text Matching1474

a model f : f(di1, d
i
2) ⇒ {0, 1}, where 1 indicates that the pair of

documents is mutually matching, and 0 indicates the opposite.

3.2 Model Architecture

The high-level overview of our framework is shown in Figure. 3. In
this section, we will separately introduce the implementation of our
novel key sentences extracting method and the details of three com-
ponents of our FBC model, namely the Cross-Encoder, Bi-Encoder,
and the final classification layer.

Given the two input documents d1 and d2, we first extract their key
sentences c1 = [s11, s

2
1, ..., s

n
1] and c2 = [s12, s

2
2, ...s

m
2] respectively

through our key sentence extraction module. Then, we take the titles
t1, t2 and key sentences of the two documents as inputs to the Cross-
Encoder to obtain high-dimensional vector representations of the two
documents, i.e., hc1 , ht1 and hc2 , ht2 . After completing the prelim-
inary encoding, we feed the encoded vectors into the Bi-Encoder for
matching feature extraction vector hfc and hft . Finally, the output of
the Bi-Encoder will be concatenated with the vector representation of
the [CLS] token h[cls] from the Cross-Encoder and then fed into
the classification layer to get the final result.

3.2.1 Entity-driven Key Sentence Extraction

Compared with short texts, long texts contain a large amount of text
noise which often interferes with the matching signals between texts.
At the same time, pre-trained language models require the removal
of a large amount of text noise before long texts can be used as inputs
due to the limitations of algorithm complexity. Therefore, before in-
putting text into the model, we first need to extract several sentences
that contain key semantic information from long texts.

Entity information is an important textual matching signal, and
specifically, the entity type and quantity in a sentence largely deter-
mine its relevance. Inspired by this, we propose an entity-driven key
sentence extraction algorithm. For each text, we first segment the text
into sentences based on punctuation marks, and then use the Spacy
library [31] to extract entity information from each sentence. Spacy
has trained a general named entity recognition(NER) model us-
ing a pre-trained language model, which defines a wide range of en-
tity types. In this paper, we select certain entity types from the model,
as shown in Table 1.

Entity Types in spacy Examples
PERSON Alice

GPE Beijing
DATE April 3rd, 2016
TIME 5 hours
ORG Microsoft

WORK_OF_ART Mona Lisa
FAC Eiffel Tower

EVENT World Cup
NORP Republican Party

PRODUCT Bread
QUANTITY 55KG

Table 1: Description of the entity types in Spacy.

Then we calculate the keyness score of each sentence based on the
distribution of entities in the sentence. Since entity information is an
important matching signal in the text, the importance of a sentence
can be determined by the number of entities it contains, as described
in Eq. 1. However, using only the number of entities in a sentence
has limitations. When the entities in a sentence are highly repetitive,

it indicates that the matching signal in the sentence is relatively sin-
gular, and from a global perspective, the sentence may not be a key
sentence. Therefore, we also use the number of entity types as a scor-
ing criterion, as shown in Eq. 2.

entitynum(si) =
num(si)

num(d)
(1)

entitytype(si) =
type(si)

type(d)
(2)

where num(si) and num(d) denotes the number of entities in sen-
tence si and in document d, while type(si) and type(d) denotes
the number of entity types in si and d respectively.

In addition to entity information, the position of a sentence in
the text is also a crucial factor in determining its importance [40].
Generally, sentences located at the beginning and end of an article
have stronger summarization and contain more matching signals than
those distributed in the middle of the article. Therefore, we also in-
corporate the position of a sentence in the text for calculating its key-
ness score. Eq. 3 describes the calculation of the sentence position
score.

position(si) =
max(i, n− i+ 1)

n
(3)

where i is the position of sentence si in document d, and n is the total
number of sentences of d. We obtain the final score of the sentence
si by weighing and summing the above three score items, as shown
in Eq. 4.

keyscore (si) =α× entitynum (si) + β × entitytype (si)

+ γ × position (si)
(4)

The weights α, β and γ are hyper parameters controlling the
weight of each scoring module. In this work, we set them to 0.6, 0.3
and 0.1, respectively, which can achieve the optimal matching effect.

3.2.2 Cross-Encoder for Text Pair Representation

In this section we describe the implementation of the Cross-Encoder
module for text pair representation. We use the pretrained-model
BERT [7] as backbone of our Cross-Encoder module.

Formally, a pair of documents d1, d2 can be represented as their
titles T1, T2, their key words K1,K2 and their several key sentences
C1, C2 extracted in the previous step. We then join the above text
segments via special tokens to form a input instance X = [CLS] T1

[SEP] K1 [SEP] C1 [SEP] T2 [SEP] K2 [SEP] C2 [SEP] with
the format required by BERT model.

We then encode the input X using the Cross-Encoder module of
our model to obtain a set of vector representations corresponding to
all the text segments mentioned above, which includes hT1, hT2 for
the titles of two documents, hC1, hC2 for key sentences, as well as
the contextualized vector representation h[CLS].

{hi}i=[CLS],T1,T2,C1,C2 = BERT-Encoder(X; θbe) (5)

where θbe denotes the parameters of the BERT encoder. Note that
the encoded vector of [CLS] token h[CLS] will be further used as a
global matching signal in the final classification procedure.

J. Liao et al. / FBC: Fusing Bi-Encoder and Cross-Encoder for Long-Form Text Matching 1475

Title 1:
Keywords 1 :
Content 1:

doc 1

doc 2

Title 2:
Keywords 2:
Content 2:

Ke Jie performed perfect in Human-AI Go ...

Ke jie; AlphaGo; Go game

...Although Ke Jie lost the first game versus
AlphaGo two days ago by only the smallest 1/4 point...

Go game; AI GO player; Weibo hot list

Human-AI Game: How much did Ke Jie lose?...

...because of the 1st-round competition with

AlphaGo,Ke Jie once topped the Weibo hotsearch list...

B
E

R
T

 E
ncoder

[CLS]

Title 1

Content 1

Keywords 1

Title 2

Content 2

Keywords 2

Pooling
Pooling

C
onC

at

Pooling
Pooling

C
onC

at

C
onC

at

FFN

(b) Feature Extraction and Matching(a) EncodingInput Document Pair (c) Classifying

Vector Subtraction

Element-wise multiplication

Golden Label

The output of two forward
passes with the same input

[SEP]

[SEP]

[SEP]

[SEP]

[SEP]

[SEP]

[CLS]

Title 1

Keywords 1

Content 1

Title 2

Keywords 2

Content 2

Title 1

Title 2

Content 1

Content 2

Figure 3: The overall architecture of our framework.

3.2.3 Bi-Encoder for Matching Feature Extraction

In this section, we describe the implementation of the Bi-Encoder
module for feature extraction. Since several previous works has
demonstrated the effectiveness of siamese net in matching tasks [15,
28], we decide to choose siamese net as our Bi-Encoder, to inter-
act the features of the input vector pairs and obtain better matching
features.

Specifically, given the encoded vector pairs of titles hT1 and hT2

and key sentences of the two documents hC1 and hC2 , we respec-
tively input the title-vector-pair and content-vector-pair into two
same-structured siamese nets to extract and fuse the features of the ti-
tles and contents. The siamese net also has two components, denoted
as the pooling layer and the fusion layer.

The pooling layer aggregates sequential token representations into
fix-length vectors for the further fusion operation. In this paper mean-
pooling is adopted as the pooling layer (Eq. (6)) , since other methods
like CNN and RNN are slower and do not lead to better performance.

ht1 , ht2 = Mean-Pooling(hT1 , hT2)

hc1 , hc2 = Mean-Pooling(hC1 , hC2)
(6)

Given the ht and hc output from the pooling layer, the fusion layer
then calculates the element-wise multiplication and the subtraction of
these vector-pairs, and concatenates the results using Eq. 7 - 9:

hft = Fusion(ht1 , ht2) (7)

hfc = Fusion(hc1 , hc2) (8)

Fusion(h1, h2) = [h1;h2; |h1 − h2| ;h1 ◦ h2] (9)

where Fusion(·, ·) denotes the fusion layer, "◦" denotes the
element-wise multiplication (i.e., Hadamard product) of two vectors,
and ";" denotes the concatenation of two vectors. Here, subtracting
two vectors is intended to highlight the difference between them,
while taking the Hadamard product of two vectors for illustrating
their similarity. The final feature vector hft and hfc will be propa-
gated to the classification layer.

3.2.4 Classification Layer

Finally, the output of the previous module will be propagated into
the classification layer along with the global matching vector of

[CLS](mentioned in section 3.2.2) to make the final prediction:

P (ŷ | d1, d2) = σ(Wh+ b) (10)

h = [h[CLS];hft ;hfc] (11)

where W , b are learnable parameters, σ(·) denotes the sigmoid func-
tion, and P (ŷ | d1, d2) represents the probability distribution of
matching degree predicted by the classification layer from the input
long-form document pair d1, d2 at the beginning.

3.3 Regularized Dropout (R-Drop)

Since we adopt dropout function in the Bi-Encoder and the final clas-
sification layer which may cause inconsistencies between training
and prediction. In order to address this defect, we apply a special
loss function called Regularized dropout(R-Drop) [36] to enhance
the model’s robustness towards dropout. It can either be regarded as
a regularization term, or can also be considered as a special form of
data augmentation.

Layer B

Layer A

input(x) input(x)

Layer B

Layer A

DNN

units dropped units

Figure 4: A example of R-drop application.

Specifically, we make each data sample repeatedly pass through
the same model twice, and due to the randomness of Dropout,
we can approximately assume that the sample has passed two
slightly different models and gets two different outputs as
P

(1)
θ (yi | xi) , P

(2)
θ (yi | xi). So the first part of our loss function is

a sum of normal cross-entropy losses corresponding to each output:

L1 = − logP
(1)
θ (yi | xi)− logP

(2)
θ (yi | xi) (12)

J. Liao et al. / FBC: Fusing Bi-Encoder and Cross-Encoder for Long-Form Text Matching1476

In addition, to make the two outputs as consistent as possible, we
add KL divergence to the loss function as a constraint term:

L2 =
1

2

[
KL

(
P

(1)
θ (yi | xi) || P (2)

θ (yi | xi)
)
+

+KL
(
P

(2)
θ (yi | xi) || P (1)

θ (yi | xi)
)] (13)

The final loss function is the weighted sum of the above two parts:

L = L1 + αL2 (14)

where α is a hyperparameter for the strength of the regularization.

4 Experiments

4.1 Experimental Setup

Datasets. we employed multiple publicly available datasets which
were categorized according to their languages into two groups:

• Chinese Datasets: we use two Chinese datasets, i.e. Chinese
News Same Event dataset (CNSE) and the Chinese News Same
Story dataset (CNSS) created by [18]. The detailed statistics of
the two public datasets used in our experiments can be found in
Table 2-I. Their samples are derived from news articles of Chi-
nese major internet websites, covering multiple domains.

• English Datasets: For the English datasets, we use four datasets,
namely AAN [27], OC [2], S2ORC [20], and PAN [26]. Among
them, AAN, OC, and S2ORC are designed for citation recom-
mendation tasks, while PAN is designed for plagiarism detection
tasks. Detailed information about these datasets can be found in
Table 2-II.

Category Dataset AvgWPerD AvgSPerD Train Dev Test

I CNSE 982.7 20.1 17,438 5,813 5,812
CNSS 996.6 20.4 20,102 6,701 6,700

II

AAN 122.7 4.9 106,592 13,324 13,324
OC 190.4 7.0 240,000 30,000 30,000

S2ORC 263.7 9.3 152,000 19,000 19,000
PAN 1569.7 47.4 17,968 2,908 2,906

Table 2: Description of evaluation datasets, AvgWPerD denotes aver-
age number of words per document and AvgSPerD denotes the aver-
age number of sentences per document.

Implementation Details. We implemented all the models using py-
torch. And we choose the fine-tuned BERT model [7] bert-base-
chinese and bert-base-uncased as the encoder of our model. We use
Adam [16] as our optimizer for the training, and an exponentially
decaying learning rate with a linear warmup. We set the batch size to
8. The learning rate are set as 1e-5.
Evaluation metrics. As the text matching task can be viewed as a bi-
nary classification task, following previous work [18, 24], we adopt
accuracy and F1 scores as evaluation metrics. We train our model for
a total of 10 epochs and save the model with the best performance on
the validation set, and finally evaluate on the test dataset.

4.2 Baseline Models

Follow the previous work [18, 24], we compare with the follow-
ing baselines: term-based methods, traditional deep learning meth-
ods and transformers-based models. We implement two of the most
important baseline methods, CIG [18] and Match-Ignition [24] under
same data split, and the experimental results are consistent with those
reported in their papers. Therefore, for all the baselines we directly
adopt the results from [18, 24].

CNSE Dataset CNSS Dataset
Model Acc F1 Acc F1

I
BM25 [29] 69.63 66.60 67.77 70.40
LDA [3] 63.81 62.44 67.77 70.40
SimNet [18] 71.05 69.26 70.78 74.50

II
ARC-I [9] 53.84 48.68 50.10 66.58
DSSM [12] 58.08 64.68 61.09 70.58
C-DSSM [30] 60.17 48.57 52.96 56.75

III

ARC-II [10] 54.37 36.77 52.00 53.83
MatchPyramid [25] 66.36 54.01 54.01 62.52
BERT-Finetuning [7] 81.30 79.20 86.64 87.08
Match-Ignition [24] 86.32 84.55 91.28 91.39

IV

DUET [22] 55.63 51.94 52.33 60.67
RE2 [39] 80.59 78.27 84.84 85.28
CIG-Siam-GCN [18] 74.58 73.69 78.91 80.72
CIG-S&Siam-GCN [18] 84.64 82.75 89.77 90.07
CIG-S&Siam-GCN-Sg [18] 84.21 82.46 90.03 90.29

V FBC (ours) 86.96 85.35 93.39 93.60

Table 3: Experimental results on CNSE and CNSS datasets.

• Term-based Methods: This part of baselines include BM25 [29],
LDA [3] and SimNet [18]. Both BM25 (best match 25) and Sim-
Net are based on the bag-of-words model, using text similarity to
determine whether two texts match.

• Representation-based Methods: In the representation-based
models, we selected DSSM [12], C-DSSM [30], and ARC-I [9]
as baselines. They all convert text into representation vectors to
achieve text matching, and the difference mainly lies in the neural
network used to encode text.

• Interaction-based Methods: For the interaction-based models,
we selected ARC-II [10], MatchPyramid [25], BERT [7], and
Match-Ignition [24] as baselines. Match-Ignition plugs PageRank
algorithm into Transformers model to filter out noise at differ-
ent granularities, achieving the state-of-the-art performance on the
CNSE and CNSS datasets.

• Hybrid Methods: This category of models combine both
representation-based and interaction-based methods. Among
them, CIG [18] proposes a novel approach that abstracts text
pairs into a graph structure by introducing "concept" nodes, ex-
tracts concept-level matching vectors using a siamese network ar-
chitecture based on representation learning, and then fully inter-
acts these matching vectors using graph convolutional neural net-
works.

In addition to the aforementioned methods, we also introduced sev-
eral hierarchical approaches, such as GRU-HAN [41] and BERT-
HAN [41]; as well as two methods using pre-trained models specif-
ically designed for long texts, i.e., Longformer [1] and Trans-
formerXL [6], as baselines for comparison on four English datasets.

4.3 Results and Analysis

In this section, we first show the performance of our approch and a
series of baselines on the datasets we use. Furthermore, We will care-
fully analyze the factors that affects the performance of our model on
CNSE and CNSS datasets, due to the limited prior work on these two
Chinese datasets, this paper focuses on studying them in depth.

4.3.1 Model performance

The main experimental results of FBC along with baseline models
are presented in Table 3 and Table 4, our model achieves the best

J. Liao et al. / FBC: Fusing Bi-Encoder and Cross-Encoder for Long-Form Text Matching 1477

AAN Dataset OC Dataset S2ORC Dataset PAN Dataset
Model Acc F1 Acc F1 Acc F1 Acc F1

I BM25 [29] 67.60 68.00 80.32 80.38 76.47 76.53 61.59 62.47

II RE2 [39] 87.81 88.04 94.53 94.57 95.27 95.34 61.97 58.30
BERT-Finetune [7] 88.10 88.02 94.87 94.87 96.32 96.29 59.11 69.66

III

GRU-HAN [41] 68.01 67.23 84.46 82.26 82.36 83.28 75.70 75.88
GRU-HAN-CDA [41] 75.08 75.18 89.79 89.92 91.59 91.61 75.77 76.71

BERT-HAN [41] 73.36 73.51 86.31 86.81 90.67 90.76 87.57 87.36
BERT-HAN-CDA [41] 82.03 82.08 90.60 90.81 91.92 92.07 86.23 86.19

IV TransformerXL-Finetune [6] 83.85 83.24 91.61 91.79 92.50 92.39 58.25 69.07
Longformer-Finetune [1] 88.06 88.41 94.76 94.74 96.31 96.29 56.61 69.74

V Match-Ignition [24] 89.62 89.64 95.70 95.71 96.97 96.97 89.37 89.42
VI FBC(ours) 90.71 90.77 95.75 95.72 97.06 97.05 90.02 89.61

Table 4: Experimental results on four English datasets, i.e., AAN, OC, S2ORC and PAN dataset.

performance on all the six datasets over all baseline methods. We list
the observations as follows:

We first compared our model with BERT-Finetune [7], as PLM-
based models greatly improve the quality of text encoding compared
to traditional term-based methods and early representation methods.
From Table 3-III and Table 4-II, it struggles with long-form text tasks
(e.g. PAN) while our model demonstrates significant superiority over
it.

Next, we compared our model with models based on hierarchi-
cal attention mechanisms like GRU-HAN [41] and BERT-HAN [41],
and those PLM models specifically tuned for long-form texts like
Longformer [1] and transformerXL [6]. Our model outperformed
these methods on all four English datasets as shown in Table 4-III
and IV, indicating that our designed key sentence extraction module
effectively filtered out a large amount of noise.

We finally compare our model with Match-Ignition [24], which in-
troduces text noise filtering mechanisms of different granularities to
tackle the noise problem. The comparison between FBC and Match-
Ignition demonstrates the superiority of our model. FBC employs an
entity-driven key sentence extraction method, which also effectively
addresses the noise issue in long text matching. On the other hand,
it integrates two encoding methods, Cross-Encoder and Bi-Encoder,
allowing for more comprehensive document interactions and captur-
ing more matching signals, thus improving the final matching perfor-
mance.

4.3.2 Analysis on Key Sentence Extraction

The quality of key sentence extraction can significantly impact model
performance, thus we investigated the effectiveness of different key
phrase extraction methods. The results are shown in Table 5.

CNSE Dataset CNSS Dataset
Model Acc F1 Acc F1

TextRank + Match-Ignition [24] 86.32 84.55 91.28 91.39
TF-IDF + Match-Ignition [24] 85.56 83.58 91.86 92.05
Entity + Match-Ignition [24] 86.46 84.86 91.52 91.55

TextRank + FBC 86.20 84.34 92.00 93.08
TF-IDF + FBC 86.14 84.45 92.43 92.66

Entity + FBC (ours) 86.96 85.35 93.39 93.60

Table 5: Results of different key sentences extracting methods with
Match-Ignition and our model on CNSE and CNSS datasets.

Table 5 shows that the entity-driven algorithm outperforms TF-
IDF and TextRank algorithms in both models, providing strong ev-
idence for the superiority of the entity-driven key sentence extrac-

tion algorithm. This also suggests that entity information in sentences
plays a greater role in determining sentence relevance compared to
word frequency information. Furthermore, under same key sentence
extraction method, FBC performs better than Match-Ignition, which
indirectly reflects the superiority of our model.

4.3.3 Analysis on pooling layer in Bi-Encoder

In this paper we employ a pooling layer in our Bi-Encoder to sepa-
rately capture title matching features and text content matching fea-
tures. We conduct three sets of experiments using Mean-Pooling,
convolutional neural network (CNN + max-pooling), and recurrent
neural network (Bi-LSTM), in order to verify the impact of different
pooling methods on model matching performance. The experimental
results are shown in Table 6.

CNSE Dataset CNSS Dataset
Types of pooling layer Acc F1 Acc F1

Mean-Pooling 86.96 85.35 93.39 93.60

CNN-Pooling 86.01 84.51 91.74 92.03
RNN-Pooling 85.32 83.64 91.36 91.57

Table 6: Results of different pooling layer on CNSE and CNSS
datasets.

It can be observed that the simple mean pooling achieves the
best results. This implies that the text features obtained after Cross-
Encoder are already sufficient to express the semantic information of
the text, and that simple mean pooling can be used to construct lo-
cal semantic features effectively. Although classical network models
such as CNN and RNN can also encode local text semantics well,
the greater difference between the feature vectors of the encoded text
and the global vectors obtained through Cross-Encoder limits the im-
provement in matching performance of the model.

4.3.4 Model Stability Analysis

Due to the sparsity of matching signals between long documents,
current methods for matching long texts are more prone to errors
when predicting the matching relationship between two documents
describing the same event. Therefore, this subsection mainly ana-
lyzes the prediction performance of our FBC model on document
pairs describing the same event and different events, compared to
Match-Ignition. Experimental results are shown in Table 7, where
Acc_pos represents the prediction accuracy of the model on docu-
ment pairs describing the same event and Acc_neg represents the
opposite.

J. Liao et al. / FBC: Fusing Bi-Encoder and Cross-Encoder for Long-Form Text Matching1478

CNSE Dataset CNSS Dataset
Model Acc_pos Acc_neg Acc_pos Acc_neg

Match-Ignition [24] 79.91 90.23 91.19 92.59
FBC(ours) 85.36 88.17 93.16 92.89

Table 7: Model Stability Analysis of Match-Ignition and FBC (ours)
on CNSE and CNSS datasets.

From Table 7, the prediction accuracy of Match-Ignition declines
sharply when facing document pairs describing the same event, es-
pecially on the CNSE dataset. This phenomenon may be caused by
various factors, such as annotation errors in the dataset, consider-
able variation in document structure, or overly long extraction length
of key sentences by the model. On the contrary, our FBC model’s
accuracy for predicting documents describing the same event does
not decrease significantly. This indicates that compared with Match-
Ignition, the FBC model not only has better performance but also has
better stability.

4.3.5 Ablation study

To demonstrate the effect of each module, we present an ablation
study by removing each module from the framework. We conducted
two groups of experiments. In the first group, we mainly validated
the role of Key sentence extraction module, Bi-Encoder and Cross-
Encoder, and the experimental results are shown in Table 8-II, where:

• “w/o-KSE": remove the Key Sentence Extraction module and di-
rectly input the original text into the model for training and pre-
diction.

• “w/o-Bi-Encoder": remove the Bi-Encoder layer, and the global
matching vector obtained from the Cross-Encoder layer will be
used directly to obtain the matching result through the classifier.

• “w/o-Cross-Encoder": remove the Cross-Encoder layer, and the
Bi-Encoder will be directly used to construct the matching vector
based on the title and text content.

As shown in the model architecture presented in Figure 3, the clas-
sification layer of the FBC model takes three matching vectors as
inputs, namely, the global matching vector obtained from the Cross-
Encoder layer and the title-text content matching vectors obtained
through vector Hadamard product and vector difference in the Bi-
Encoder matching layer. Additionally, to enhance the robustness of
the model, the R-Drop function is employed in the loss function. So
in the second group, we designed the following experiments to verify
the effectiveness of these four modules, and the experimental results
are shown in Table 8-III, where:

• “w/o-rdrop": remove the r-drop regularization and use cross en-
tropy loss function.

• “w/o-cls": drop the global feature vector [CLS] and only use the
two feature vectors output from the Bi-Encoder for classification.

• “w/o-mul": remove the Hadamard product operation and only
keep the subtraction operation.

• “w/o-sub": contrary to “w/o-mul", remove the subtraction opera-
tion and only keep the Hadamard product operation in the fusion
layer of Bi-encoder.

As shown in Table 8-II, removing key sentence extraction led to a
decrease in model performance on both datasets. This demonstrates
that our key phrase extraction module is beneficial in addressing the
input length limitations of PLMs, while also being capable of fil-
tering out noise and extracting crucial information from long-form

CNSE Dataset CNSS Dataset
Model Acc F1 Acc F1

I Full-Model 86.96 85.35 93.39 93.60

II
w/o-KSE 85.39 84.10 92.58 92.13

w/o-Bi-Encoder 84.76 83.26 92.26 92.01
w/o-Cross-Encoder 78.92 77.00 77.38 78.63

III

w/o-rdrop 85.82 84.02 92.45 92.63
w/o-cls 85.30 83.41 92.91 93.07
w/o-mul 85.17 84.34 92.20 92.32
w/o-sub 85.10 84.65 91.65 91.70

Table 8: Ablation study results on the CNSE and CNSS datasets.

texts. Besides, it can be observed that the removal of the Cross-
Encoder layer results in a sharp decrease in model performance, with
accuracy and F1 score both dropping below 80%. While the removal
of the Bi-Encoder matching layer only makes a slight model per-
formance decrease. This is mainly because the Cross-Encoder layer
provides a more comprehensive interaction between texts compared
to the Bi-Encoder, allowing for more fine-grained matching signals
between texts, and thus having a greater impact on the matching re-
sults. In our FBC model, the Bi-Encoder primarily serves to enrich
the matching signals and can be considered as a model optimization
layer, thus having a smaller impact on the matching results.

From Table 8-III, it can be concluded that using R-Drop loss func-
tion can improve model performance. Besides, the global matching
vector ([CLS]) generated by the encoding layer and the title-text
content matching vectors obtained through vector Hadamard prod-
uct (mul) and vector subtraction (sub) in the matching layer all con-
tribute to the model performance to varying degrees. This indicates
that these three matching vectors contain matching information at
different levels, and concatenating them leads to a feature vector with
more matching signals. This result is also intuitive, as the global fea-
tures generated by the encoding layer are based on the interactions
between words and contain word-level matching information, while
the feature vectors generated by the matching layer using the title and
text content are based on local matching signals and contain coarser-
grained matching information.

5 Conclusion

We presented a novel framework in this paper for long-form text
matching that incorporates both Bi-Encoder and Cross-Encoder, en-
abling more semantic interactions between the documents to com-
pare. Furthermore, we present an entity-driven key sentence extrac-
tion method to improve the efficacy of text matching. We have con-
ducted extensive experiments with several benchmark datasets to as-
sess the effectiveness of this method. The results of our experiments
indicate that our method achieves the best performance and is more
robust on match document pairs that describe the same event.

Acknowledgements

We thank the anoymous reviewers for their helpful comments. This
work was supported in part by the National Key Research and De-
velopment Program of China (No.2021YFF1201200), the Natural
Science Foundation of China (No.62006251) and the Natural Sci-
ence Foundation of Hunan Province (No.2021JJ40783), the Science
and Technology Major Project of Changsha (No.kh2202004). This
work was carried out in part using computing resources at the High-
Performance Computing Center of Central South University.

J. Liao et al. / FBC: Fusing Bi-Encoder and Cross-Encoder for Long-Form Text Matching 1479

References

[1] Iz Beltagy, Matthew E. Peters, and Arman Cohan, ‘Longformer:
The long-document transformer’, arXiv: Computation and Language,
(2020).

[2] Chandra Bhagavatula, Sergey Feldman, Russell Power, and Waleed
Ammar, ‘Content-based citation recommendation’, north american
chapter of the association for computational linguistics, (2018).

[3] David M Blei, Andrew Y Ng, and Michael I Jordan, ‘Latent dirichlet
allocation’, Journal of machine Learning research, 3(Jan), 993–1022,
(2003).

[4] Yaokai Cheng, Ruoyu Chen, Xiaoguang Yuan, Yuting Yang, Shan
Jiang, and Bo Yang, ‘Overview of long-form document matching: Sur-
vey of existing models and their challenges’, in Journal of Physics:
Conference Series, volume 2171, p. 012059. IOP Publishing, (2022).

[5] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu, ‘Convo-
lutional neural networks for soft-matching n-grams in ad-hoc search’,
in Proceedings of the eleventh ACM international conference on web
search and data mining, pp. 126–134, (2018).

[6] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V.
Le, and Ruslan Salakhutdinov, ‘Transformer-xl: Attentive language
models beyond a fixed-length context’, arXiv: Learning, (2019).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘Bert: Pre-training of deep bidirectional transformers for language un-
derstanding’, arXiv preprint arXiv:1810.04805, (2018).

[8] J. Guo, Y. Fan, Q. Ai, and W. B. Croft, ‘A deep relevance matching
model for ad-hoc retrieval’, in Acm International, pp. 55–64, (2016).

[9] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen, ‘Convolu-
tional neural network architectures for matching natural language sen-
tences’, Advances in neural information processing systems, 27, (2014).

[10] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen, ‘Convolu-
tional neural network architectures for matching natural language sen-
tences’, Advances in neural information processing systems, 27, (2014).

[11] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and
Larry Heck, ‘Learning deep structured semantic models for web search
using clickthrough data’, in Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pp. 2333–2338,
(2013).

[12] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and
Larry Heck, ‘Learning deep structured semantic models for web search
using clickthrough data’, in Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pp. 2333–2338,
(2013).

[13] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard De Melo, ‘Pacrr:
A position-aware neural ir model for relevance matching’, arXiv
preprint arXiv:1704.03940, (2017).

[14] Akshita Jha, Vineeth Rakesh, Jaideep Chandrashekar, Adithya
Samavedhi, and Chandan K Reddy, ‘Supervised contrastive learning
for interpretable long-form document matching’, ACM Transactions on
Knowledge Discovery from Data (TKDD), (2022).

[15] Jyun-Yu Jiang, Mingyang Zhang, Cheng Li, Michael Bendersky, Na-
dav Golbandi, and Marc Najork, ‘Semantic text matching for long-form
documents’, in The world wide web conference, pp. 795–806, (2019).

[16] Diederik P Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, arXiv preprint arXiv:1412.6980, (2014).

[17] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gim-
pel, Piyush Sharma, and Radu Soricut, ‘Albert: A lite bert for
self-supervised learning of language representations’, arXiv preprint
arXiv:1909.11942, (2019).

[18] Bang Liu, Di Niu, Haojie Wei, Jinghong Lin, Yancheng He, Kunfeng
Lai, and Yu Xu, ‘Matching article pairs with graphical decomposition
and convolutions’, meeting of the association for computational lin-
guistics, (2018).

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov, ‘Roberta: A robustly optimized bert pretraining approach’, arXiv
preprint arXiv:1907.11692, (2019).

[20] Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S
Weld, ‘S2orc: The semantic scholar open research corpus’, arXiv
preprint arXiv:1911.02782, (2019).

[21] Zhengdong Lu and Hang Li, ‘A deep architecture for matching short
texts’, Advances in neural information processing systems, 26, (2013).

[22] Bhaskar Mitra, Fernando Diaz, and Nick Craswell, ‘Learning to match
using local and distributed representations of text for web search’, in

Proceedings of the 26th international conference on world wide web,
pp. 1291–1299, (2017).

[23] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He,
Jianshu Chen, Xinying Song, and Rabab Ward, ‘Deep sentence embed-
ding using long short-term memory networks: Analysis and application
to information retrieval’, IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 24(4), 694–707, (2016).

[24] Liang Pang, Yanyan Lan, and Xueqi Cheng, ‘Match-ignition: Plugging
pagerank into transformer for long-form text matching’, conference on
information and knowledge management, (2021).

[25] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and
Xueqi Cheng, ‘Text matching as image recognition’, in Proceedings of
the AAAI Conference on Artificial Intelligence, volume 30, (2016).

[26] Martin Potthast, Matthias Hagen, Tim Gollub, Martin Tippmann, Jo-
hannes Kiesel, Paolo Rosso, Efstathios Stamatatos, and Benno Stein,
‘Overview of the 5th international competition on plagiarism detec-
tion’, in CLEF Conference on Multilingual and Multimodal Informa-
tion Access Evaluation, pp. 301–331. CELCT, (2013).

[27] Dragomir R. Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and
Amjad Abu-Jbara, ‘The acl anthology network corpus’, ELRA, 47, 919–
944, (2009).

[28] Nils Reimers and Iryna Gurevych, ‘Sentence-bert: Sentence embed-
dings using siamese bert-networks’, arXiv preprint arXiv:1908.10084,
(2019).

[29] Stephen Robertson, Hugo Zaragoza, et al., ‘The probabilistic relevance
framework: Bm25 and beyond’, Foundations and Trends® in Informa-
tion Retrieval, 3(4), 333–389, (2009).

[30] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mes-
nil, ‘Learning semantic representations using convolutional neural net-
works for web search’, in Proceedings of the 23rd international confer-
ence on world wide web, pp. 373–374, (2014).

[31] Bhargav Srinivasa-Desikan, Natural Language Processing and Com-
putational Linguistics: A practical guide to text analysis with Python,
Gensim, spaCy, and Keras, Packt Publishing Ltd, 2018.

[32] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and
Xueqi Cheng, ‘A deep architecture for semantic matching with mul-
tiple positional sentence representations’, in Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30, (2016).

[33] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and
Xueqi Cheng, ‘Match-srnn: Modeling the recursive matching structure
with spatial rnn’, arXiv preprint arXiv:1604.04378, (2016).

[34] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman, ‘Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding’, arXiv preprint
arXiv:1804.07461, (2018).

[35] Zhiguo Wang, Wael Hamza, and Radu Florian, ‘Bilateral multi-
perspective matching for natural language sentences’, arXiv preprint
arXiv:1702.03814, (2017).

[36] Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min
Zhang, Tie-Yan Liu, et al., ‘R-drop: Regularized dropout for neural
networks’, Advances in Neural Information Processing Systems, 34,
10890–10905, (2021).

[37] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell
Power, ‘End-to-end neural ad-hoc ranking with kernel pooling’, in Pro-
ceedings of the 40th International ACM SIGIR conference on research
and development in information retrieval, pp. 55–64, (2017).

[38] Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky, and Marc
Najork, ‘Beyond 512 tokens: Siamese multi-depth transformer-based
hierarchical encoder for long-form document matching’, conference on
information and knowledge management, (2020).

[39] Runqi Yang, Jianhai Zhang, Xing Gao, Feng Ji, and Haiqing Chen,
‘Simple and effective text matching with richer alignment features’,
arXiv preprint arXiv:1908.00300, (2019).

[40] Shunxiang Zhang, Zhaoya Hu, Guangli Zhu, Ming Jin, and Kuan-Ching
Li, ‘Sentiment classification model for chinese micro-blog comments
based on key sentences extraction’, Soft Computing, 25(1), 463–476,
(2021).

[41] Xuhui Zhou, Nikolaos Pappas, and Noah A. Smith, ‘Multilevel text
alignment with cross-document attention’, empirical methods in nat-
ural language processing, (2020).

J. Liao et al. / FBC: Fusing Bi-Encoder and Cross-Encoder for Long-Form Text Matching1480

	Introduction
	Related Work
	Short-form Text Matching
	Long-form Text Matching

	Our Framework
	Problem Definition
	Model Architecture
	Entity-driven Key Sentence Extraction
	Cross-Encoder for Text Pair Representation
	Bi-Encoder for Matching Feature Extraction
	Classification Layer

	Regularized Dropout (R-Drop)

	Experiments
	Experimental Setup
	Baseline Models
	Results and Analysis
	Model performance
	Analysis on Key Sentence Extraction
	Analysis on pooling layer in Bi-Encoder
	Model Stability Analysis
	Ablation study

	Conclusion

