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Abstract. Lexical simplification (LS) methods based on pretrained
language models have made remarkable progress, generating poten-
tial substitutes for a complex word through analysis of its contextual
surroundings. However, these methods require separate pretrained
models for different languages and disregard the preservation of sen-
tence meaning. In this paper, we propose a novel multilingual LS
method via paraphrase generation, as paraphrases provide diversity
in word selection while preserving the sentence’s meaning. We re-
gard paraphrasing as a zero-shot translation task within multilingual
neural machine translation that supports hundreds of languages. Af-
ter feeding the input sentence into the encoder of paraphrase mod-
eling, we generate the substitutes based on a novel decoding strat-
egy that concentrates solely on the lexical variations of the com-
plex word. Experimental results demonstrate that our approach sur-
passes BERT-based methods and zero-shot GPT3-based method sig-
nificantly on English, Spanish, and Portuguese.

1 Introduction

Lexical Simplification (LS) [22] aims to replace complex words in
sentence with simple alternatives while keeping the original sentence
meaning, which is a key task to facilitate reading comprehension
for different target readerships such as non-native speaker[21], peo-
ple with cognitive disabilities[30]. Earlier LS methods are primarily
rule-based[3, 2] or relied on word embedding models[9, 21]. How-
ever, such approaches only account for individual complex word, re-
sulting in many candidate substitutes that do not fit for the context.
In recent years, LS methods based on pretrained language models in-
cluding BERT and its variations [25, 17, 20, 38] generate substitutes
by predicting the probability distribution of the vocabulary from the
representation of the complex word based on its context, and have
emerged as the predominant technique compared with previous LS
methods. But, there remains two limitations for them:

(1) Poor multilingual scalability. Considering the available pre-
trained language models, such efforts have coalesced around a small
subset of languages, leaving behind the vast majority of mostly low-
resource languages. Additionally, for LS tasks in different languages,
it is necessary to use pretrained language models in different lan-
guages, which greatly limits the effectiveness and applicability of
this type of method in a multilingual environment.

(2) Disregarding the preservation of sentence meaning. The gen-
erated substitutions are both semantically coherent with the complex
word and contextually appropriate. But, there is no guarantee that the
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generated substitutions could still preserve the original sentence’s
meaning [18, 37]. For example, given one sentence "Tom is a bad
guy", the substitutes for word "bad" using BERT are "good, rough,
big, dangerous".

To address those limitations mentioned above, we study how to
generate simpler substitutes for complex word via paraphrase mod-
eling. (1) Inspired by one work [34], we use a paraphraser via mul-
tilingual Neural Machine Translation (NMT) system (NLLB) based
on encoder-decoder framework[4], enabling high-quality zero-shot
translations in 200 languages. By configuring the output language to
correspond with the input language, multilingual NMT can generate
paraphrases directly, overcoming the first limitation. (2) Paraphrases
generated from the paraphraser provide diversity in word selec-
tion while preserving the sentence’s meaning[12, 11]. The meaning-
preserving properties of paraphrase models can aid in addressing
the second limitation. But, no studies have been conducted to uti-
lize paraphraser to generate the substitutes. Because the output para-
phrases using the existing decoding strategy concern the lexical vari-
ations of the whole sentence rather than the complex word, it be-
comes challenging to extract substitutes from them. Therefore, the
big challenge we face is how to generate the paraphrases that only
concerns the lexical variations of the complex word, rather than the
whole sentence.

In this paper, we propose a multilingual LS method via multilin-
gual NMT, which adopts one novel decoding strategy that focuses
on lexical variations of the complex word. We first force the de-
coder begin with the complex word’s prefix, to subsequently gener-
ate the probability distribution of the complex word’s position. Then,
we adopt a re-scoring approach that incorporates an estimate of the
complex word’s suffix to make a more knowledgeable choice. By
following this methodology, the generated paraphrases only concern
the lexical variations of the complex word.

Our primary contributions in this paper are as follows:

(1) We are the first to introduce the idea of utilizing a multilingual
NMT to tackle the challenge of LS. Our method guarantees that the
generated substitutions can surely better preserve the original sen-
tence meaning. Moreover, our approach relies on a single model and
accommodates various languages.

(2) We propose a simple but effective decoding strategy for substi-
tution generation. Our decoding strategy can effectively identify the
lexical variations of complex word and select candidate words that
are most suitable for the given context.

(3) Experimental results on the TSAR-2022 multilingual LS
benchmark (English, Spanish and Portuguese), our zero-shot method
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outperforms previous BERT-based methods and zero-shot GPT3-
based method by a significant margin, and shows marginal improve-
ments over the ensemble GPT3-based method. We release our code
and the results at github .

2 Related work

Lexical Simplification: LS generally consists of three or four steps:
complex word identification, substitution generation, substitution se-
lection (optional), and substitution ranking[22]. Complex word iden-
tification is usually treated as an independent task, which is not ad-
dressed in this paper. Earlier LS methods were rule-based[3, 2] or re-
lied on word embedding models[9, 21]. These methods typically seek
to find synonyms or words similar with the complex word. However,
as these methods only take into account individual complex words,
they often generate many potential substitutions that are not fit for
the context.

Some work [23, 16] utilize large-scale paraphrase rule database,
e.g., PPDB [8] or its variations [24, 23, 28], to find substitute candi-
dates for complex words, where the paraphrase rule database consists
of large-scale lexical paraphrase rules (e.g., "berries — strawber-
ries") that are extracted from large-scale paraphrase sentence pairs,
such as ParaNMT [40] or ParaBank [13]. These works do not take
into account the context as rule-based LS methods do.

LS methods based on the pretrained model BERT have recently at-
tracted much attention [25, 17, 20, 38]. Such methods involve mask-
ing the complex word and predicting potential substitutions based
on the context. BERT-based methods have demonstrated significant
performance enhancements compared to previous methods, and have
now become the dominant approach for LS.

While previous research primarily focused on English, recent ad-
vancements in multilingual and cross-lingual NLP models have fa-
cilitated studies in other languages[7, 32, 27]. This trend is reflected
in the Text Simplification, Accessibility, and Readability (TSAR-
2022) shared task[31], which provides participants with multilin-
gual LS datasets in three language tracks: English, Spanish, and Por-
tuguese. The shared task garnered significant interest, with a total of
60 systems submitted across different languages. During the study,
participants introduced a range of language-specific BERT-based
methods[17, 20, 38]. Additionally, Aumiller and Gertz[1] submit-
ted two systems based on GPT3, demonstrating the potential of large
language models in multilingual LS. However, this method solely re-
lies on paid inference for research purposes. In contrast to the afore-
mentioned methods, we employ a multilingual NMT to tackle the
challenge of multilingual LS.

Multilingual NMT: Multilingual NMT has emerged as a rapidly
growing field in recent years[S]. Google’s multilingual NMT
system[15] has demonstrated the ability to translate between lan-
guages without direct parallel data, which is called zero-shot transla-
tion. Multilingual NMT system NLLB [4] can support translation in
over two hundred languages. To enhance the performance of multi-
lingual NMT, researchers have explored various approaches, such as
language clustering[33] and multilingual pretraining[6].

The potential of multilingual NMT has been explored in sev-
eral studies, including text similarity measure[35] and paraphrase
generation[34]. These investigations provide valuable insights into
the efficacy of multilingual NMT for diverse applications. However,
to our knowledge, our study is the first to examine the utilization of
multilingual models for multilingual LS.

L https://github.com/KpKqwq/LSPG

Decoding method: In recent years, autoregressive modeling has
emerged as a popular approach for text generation tasks such as ma-
chine translation[5] and paraphrase generation[41, 29]. During in-
ference, beam search is commonly used as the decoding strategy,
which involves keeping a fixed number of the most probable partial
sequences at each decoding step. Although the basic beam search
algorithm is effective, several modifications have been proposed to
further enhance its performance for specific objectives. For instance,
diverse beam search[36] aims to improve both diversity and quality
of generated sequences. Additionally, for constrained text generation,
Lu[19] employs lookahead heuristics to steer the generations towards
sequences that satisfy the given constraints. In contrast to these de-
coding strategies, our approach focuses on identifying substitutions
for single complex word.

3 Method

Given one sentence x = {xo, ..., Tc, ..., Tn } and the complex word
Z., we will introduce how to utilize multilingual machine transla-
tion system for generating suitable substitutions for z. in many lan-
guages.

During decoding, we propose an effective decoding strategy to
generate substitutes of the complex word. Then, we rank the gen-
erated substitutions via three features to select the most appropriate
simpler one.

Paraphraser: By aligning the output language with the input
language (e.g., “translation” from English to English), multilingual
NMT could be treated as a paraphraser that supports the paraphras-
ing of multiple languages. In our method, we use the multilingual
NMT system NLLB [4] that enables high-quality zero-shot trans-
lations in 200 languages. NLLB is a standard left to right autore-
gressive model:py (y|x) = HL”:‘O po(Yely<ec,Xx), trained on differ-
ent language directions.

Decoding

He tried to
evade the issue

Figure 1. Substitute generation of our method. Let us consider the
example of a sentence "He attempted to evade the issue" containing the
complex word "evade". By inputting the sentence into the Multilingual NMT
encoder, we derive the top five possible candidates, along with their
respective probability scores, by directing the decoder to initiate with the
prefix phrase "He attempted to" of the complex word. Subsequently, we
re-score these candidates by computing the likelihood of generating suffix
words for these candidates. Finally, the top three substitutes, "avoid, elude,
and hide", are obtained by eliminating the original word.

Substitution generation: The process of substitution generation
is employed to produce the candidates of x.. Following the input of
x into the Paraphraser, we can generate a multitude of paraphrases
through beam searching. However, it proves to be arduous to extract
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substitutes from them, as the paraphrases pertain to the lexical varia-
tions of the entire sentence instead of the intricate word.

Here, we propose a novel decoding strategy that is exclusively de-
signed to leverage lexical variations of the complex word, as shows
in Figure 1. After feeding the sentence x into the encoder of Multi-
lingual NMT, we force the decoder to begin with prefix x. of com-
plex word, and decode succeeding token distribution pg (ye|y<c =
X<c,X). We select the top K tokens Y. with the highest probability
in the distribution as the results of decoding.

Y. = argtopK{logpe(ycly<c, )} )]

Ye

where y <. = X<¢

Based on Equation (1), if we directly select the top K tokens Y.
with highest probability in token distribution at complex word’s po-
sition , we could not ensure that the selected candidates are also suit-
able for the original suffix of the complex word. As Figure 1 shows,
the candidate ‘get’ owning a higher probability is clearly not the vari-
ation of ‘evade’, even though it is semantically coherent with the
complex word and contextually appropriate.

Inspired by Lu[19], we incorporate an extended estimate for the
original suffix into our scoring function, replacing Equation (1) with:

Y. = argtopK {log pe(yely <c, @) +1ogpo(y>cly<e ¥, )} (2)

Ye

where Y<ec = X<, Y>e = X>e.

The primary enhancement involves the incorporation of a looka-
head heuristic that modifies the score of a candidate (y<., y.) based
on the probability of satisfying additional suffix constraints y.. In
practice, it is not necessary to analyze the entire suffix, examining
just two or three words is sufficient. As illustrated in Figure 1, the
top substitutes generated by our decoding strategy effectively align
with the context and successfully retain the intended meaning of the
sentence.

Substitution ranking: The step of substitute ranking aims to rank
the generated substitutes by their simplicity, which is a necessary
step in LS task. Word frequency feature calculated by large corpus is
often used to measure the complexity of the substitutes [22, 26, 31].
Considering that the higher the word frequency, the more simple the
word is, this phenomenon could be beneficial to lexical simplifica-
tion.

We give one simple ranking method that uses three features with
different weights to rank the generated substitutes: (1) prediction fea-
ture using Equation (2) (the probability of the candidate extracted
during the substitute generation), (2) Word Frequency, and (3) se-
mantic similarity (cosine similarity between the word embedding
vector of the complex word and the candidate). To support a wide
range of languages, we utilize fastText® to obtain word embedding
vectors supporting 157 languages, and the wordfreq package® to cal-
culate frequency scores for 44 languages. The final score for each
substitute is calculated as a weighted sum of the three features.

However, it is imperative to emphasize that with our methodology,
the generated substitutes can be utilized directly without the need
for substitute ranking. This is because NMT models usually tend to
generate more high-frequency tokens and less low-frequency tokens
[10, 14]. In our experiments, it verifies that our method without sub-
stitution ranking has also yielded excellent results.

2 https://fasttext.cc/docs/en/crawl-vectors.html
3 https:/pypi.org/project/wordfreq/

4 Experiments
4.1 Experiment Setup

Evaluation Datasets: For reliable comparison of methods’ perfor-
mances across the different languages, we use the newest multilin-
gual LS evaluation datasets from TSAR-2022 shared task[31], which
are composed of three language tracks: English, Spanish and Por-
tuguese. Table 1 presents the dataset statistics, and each dataset is
further divided into separate test and validation sets.

Substitution per target

dataset  instances Min  Max Ave
EN 386 2 22 10.55
ES 381 2 19 10.28
PT 386 1 16 8.10

Table 1. Statistics on the TSAR-2022 share task multilingual LS dataset.

Metrics: We use the same metrics with TSAR2022 shared task
to evaluate the performance of LS methods for the three languages:
ACC@1, MAP@k, Potential @k, Accuracy@n@topl where k €
{3,5,10} and n € {1,2,3}. Potential@k is defined at least one
of the k top-ranked substitutes is also present in the gold data.
Accuracy @k @top1 evaluates whether most frequent suggested syn-
onym in the gold data is also still in the generated candidates.
MAP@FE additionally takes into account the position of the relevant
substitutes among the first £ generated candidates. ACC@1 is same
as Potential@1 and MAP@1. The above metrics account for various
aspects of methods’ performances, allowing fair comparisons for dif-
ferent languages.

Baselines: We mainly compared our method LSPG with the fol-
lowing baselines.

(1) BERT-based LS methods. LSBERT[25], MANTIS[17],
PresiUniv[39] and GMW-WLV[20] are the most competitive BERT-
based method in English, Spanish and Portuguese from TSAR-2022,
respectively.

(2) GPT3-based LS methods [1]. GPT3(Single) is a zero-shot
prompted GPT-3 with a prompt asking for simplified synonyms given
a particular context. GPT3(Ensemble) is an ensemble over six dif-
ferent GPT3 prompts/configurations with average rank aggregation.
The version of GPT-3 used is text-davinci-002.

Implementation details: We employed Transformers* for the im-
plementation of our decoding method. The multilingual NMT we
used is released with NLLB with 3.3B parameters which supports
more than 200 languages[4]. For English, the weights for prediction,
frequency, word similarity are 0.04, 0.04, 0.1, respectively. For Span-
ish, the weights are 0.04,0.02, 0.4. For Portuguese, the weights are
0.04, 0.04, 0.4. We finetune these hyper-parameters on the valid set
separately. The number of output paraphrases K is set to 50. The
estimated suffix length during decoding is 3. We select up to 10 can-
didates for final evaluation.

4.2  Experiment Results

The results of our methods as well as the state-of-the-art methods are
displayed in Table 2. Because BERT-based LS methods are based on
open source pre-trained language models, and GPT3-based methods

4 https://github.com/huggingface/transformers
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Acc@k@Topl MAP@k Potential @k

Language | Method ACC@1 | k=I k=2 k=3 k=3 k=5 k=10 k=3 k=5 k=10
GPT3(Ensemble) 0.8096 | 0.4289 0.6112 0.6863 | 0.5834 0.4491 0.2812 | 0.9624 0.9812 0.9946
GPT3(Single) 0.7721 | 04262 0.5335 0.5710 | 0.5096 0.3653 0.2092 | 0.8900 0.9302 0.9436

English | LSBERT | 0.5978 | 0.3029 0.4450 ~ 0.5308 | 0.4079 ~ 0.2957 0.1755 | 0.8230 ~ 0.8766 0.9463 ~
MANTIS 0.6568 | 0.3029 0.4450 0.5388 | 0.4730 0.3599 0.2193 | 0.8766 0.9463 0.9785

| LSPG(w/o ranking) | 0.7640 | 04021 035656 0.6514 | 0.5655 0.4351 0.2829 | 0.9436 ~ 0.9839 0.9973 ~
LSPG 0.8176 | 0.4557 0.6166 0.6890 | 0.5881 0.4632 0.2994 | 0.9624 0.9839 0.9973
GPT3(Ensemble) 0.6521 | 03505 0.5108 0.5788 | 0.4281 0.3239 0.1967 | 0.8206 0.8885  0.9402
GPT3(Single) 0.5706 | 0.3070 0.3967 0.4510 | 0.3526 0.2449 0.1376 | 0.6902 0.7146 0.7445

Spanish | LSBERT | 0.2880 | 0.0951  0.1440 ~ 0.1820 | 0.1868 ~ 0.1346 ~0.0795 | 0.4945 ~0.6114 0.7472 ~
PresiUniv 0.3695 | 0.2038 02771 03288 | 02145 0.1499 0.0832 | 0.5842 0.6467 0.7255

| LSPG(w/o ranking) | 0.6385 | 0.3206 04619 ~ 0.5461 | 04382 03330 0.1996 | 0.8260  0.8858 0.9239 ~
LSPG 0.7119 | 0.3722 0.5123 0.5951 | 0.4983 0.3840 0.2275 | 0.8831 0.9184  0.9402
GPT3(Ensemble) 0.7700 | 0.4358 0.5347 0.6229 | 0.5014 0.3620 0.2167 | 0.9171 0.9491 0.9786
GPT3(Single) 0.6363 | 03716 0.4615 0.5160 | 0.4105 0.2889 0.1615 | 0.7860 0.8181  0.8422

Portuguese | LSBERT | 0.3262 | 0.1577 02326 0.2860 | 0.1904 ~ 0.1313 0.0775 | 0.4946 ~ 0.5802  0.6737
GMU-WLV 04812 | 0.2540 03716 0.3957 | 02816 0.1966 0.1153 | 0.6871 0.7566 0.8395

| LSPG(w/o ranking) | 0.6176 | 0.3582" 04839 ~ 0.5962 | 0.4135 ~ 0.3100 ~0.1899 | 0.8877 ~0.9278 0.9545
LSPG 0.7433 | 0.4598 0.5989 0.6524 | 0.5023 0.3739 0.2250 | 0.9197 0.9491 0.9625

Table 2. Evaluation Results on English, Spanish and Portuguese languages. Only GPT3(Ensemble) over six different GPT3 prompts/configuration is
few-shot method, and other methods are unsupervised or zero-shot methods. LSPG is our proposed method, and LSPG(w/o ranking) indicates that LSPG
without the step of substitution ranking. Best values are bolded.

are based on commercial APIs, we will discuss and analyze them
separately.

Compared with BERT-based LS methods (LSBERT, MANTIS,
PresiUniv, GMU-WLYV), we can draw these conclusions.

(1) Our method significantly outperforms BERT-based methods
in all three languages. Even without the step of substitute ranking,
our method LSPG(w/o ranking) is superior to the best BERT-based
methods.

(2) We see that BERT-based methods achieve better results in En-
glish than in Spanish and Portuguese languages. Unlike BERT-based
methods which show significant performance gap between languages
when utilizing separate pretrained models, our method exhibits stable
performance across diverse languages using a solitary multilingual
NMT.

Compared with GPT3-based methods, our method improve the
performance on all metrics, except ACC@1 and Potential @10 in
Portuguese. Excluding performance advantages, our approach has
the following advantages.

(1) GPT3-based methods are only accessible through a paid inter-
face and the best ensemble version even requires more than six visits
to simplify a single complex word. They incur high costs in terms
of both time and money to achieve satisfactory performance. In con-
trast, our method is built on a freely available multilingual NMT,
offering a more accessible and efficient solution.

(2) GPT3(Ensemble) is a few-shot method, and LSPG is com-
pletely zero-shot. The performance of GPT3(Ensemble) is influ-
enced by the provided demonstrations. For instance, on Spanish,
our method significantly enhances the ACC@1 score from 0.6521
to 0.7119.

(3) The experimental results of GPT3 are arduous to replicate,
hence unfavorably impacting their potential as comparative results
in the future. We will open source all of our codes and data results,
in order to foster advancement in this domain.

Overall, our method has achieved a new state-of-the-art perfor-
mance in multilingual LS, surpassing previous benchmarks in this

field. It is clear that the success of our method can be attributed to
our method of extracting substitutions during paraphrase decoding,
which ensures that the original sentence’s meaning is kept.

4.3 Ablation Study

To further analyze the factors affecting our method, we do more ex-
periments in this subsection.

Acc@k@Topl MAP@k
Feature | ACC@1 | k=1 k=2 k=3 | k=3 k=5 k=10
- 0.76 040 057 065 | 056 044 0.28
+freq 0.80 046 0.62 069 | 057 045 029
+embed 0.75 040 055 066 | 057 044 029
+both 0.82 046 0.62 069 | 0.59 046 0.30

Table 3. Ablation study of ranking features for LSPG on English dataset.
"+freq" indicates the results of adding only the frequency feature, "+embed"
indicates the results of adding only the embedding similarity feature, and
"+both" is the proposed LSPG. Due to space limitation, we omit the results
of little-varied Potential @k.

Influence of ranking feature We add two new features (Fre-
quency and Similarity) to rank the generated substitutions in our ex-
periments. To further evaluate the effect of each feature on the final
performance, we conduct an ablation study. Table 3 shows the results
on the English dataset. It indicates that both frequency and embed-
ding similarity features are beneficial to improve the performance
of our method in various metrics, especially the frequency feature.
This is becuase incorporating frequency score into the ranking step
enables us to select simpler candidates.

Influence of model size: The multilingual neural machine trans-
lation model we employ offers four variants with varying parameter
scales (0.6B, 1.3B, 3.3B, and 55.3B), of which the default version
in our experiments is 3.3B. To examine the impact of model size,
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Inst. 1 Google says authorities in China have approved its acquisition of Motorola Mobility.

Labels possession;purchase;buying;takeover;purchasing;gain;possesion;investment

GPT3(Ensemble) | purchase;takeover;merger;obtaining;sale;procuring;buyout;consolidation;securing;picking up
GPT3(Single) purchase;takeover;merger;consolidation;buyout;procurement;obtainment;receipt;accession

LSPG purchase;takeover;acquiring;sale;buy;buying;procurement;capture;gain;merger

Inst. 2 Nine people were reportedly killed in the bombardment.

Labels attack;strafe;shelling;burst;assault;bombing;incident;missile attack

GPT3(Ensemble) | shelling;barrage;bombing;attack;air strike;cannonade;fusillade;aerial bombardment;volleys;missile strike
GPT3(Single) air strike;missile strike;artillery strike;aerial bombardment;bombing;shelling;mortar fire;howitzer fire;cannon fire
LSPG bombing;shelling;attack;strike;fire;raid;shooting;blast;assault;attacks

Inst. 3 The shootings are the worst homicides to take place in Brevard County since 1987.

Labels killings;murders;deaths

GPT3(Ensemble) | murders;killings;executions;assassinations;slayings;shootings;stabbings;bloodbaths;massacres;rapes
GPT3(Single) murders;killings;shootings;stabbings;assaults;rapes;robberies;kidnappings;child abuse;domestic violence
LSPG murders;killings;murder;crimes;killing;cases;deaths;shootings;crime;assassinations

Inst. 4 Six of the ringleaders have been captured and sent to other facilities.

Labels leaders;masterminds;bosses;instigators;troublemakers;captains;agitators

GPT3(Ensemble) | leaders;organizers;directors;instigators;coordinators;masterminds;chiefs;pioneers;executives;head honchos
GPT3(Single) leaders;head honchos;bigwigs;top brass;heavyweights;power players;a-listers;big cheeses;big shots;big guns
LSPG leaders;leader;leadership;captains;heads;bandits;leads;conspirators;chiefs;members

Inst. 5 The lowest estimate from Médecins Sans Frontiéres (MSF) is of 50 dead.

Labels estimation;assessment;figure;evaluation;reckon;guess;rough calculation

GPT3(Ensemble) | prediction;forecast;calculation;guess;estimation;guesstimate;projection;inference;opinion;surmise
GPT3(Single) guess;approximation;forecast;prediction;inference;conjecture;estimation;supposition;surmise;postulation
LSPG figure;guess;assessment;report;number;one;value;count;evaluation;calculation

Table 4. The top 10 substitutes of five instances in English track of TSAR2022 shared task. The complex word is bolded, the substitutes in labels are marked

in red and the suitable substitutions not in labels are in blue.

Acc@k@Topl MAP@k ! - Eng‘m. ‘ o8
Size | ACC@I | k=1 k=2 k=3 | k=3 k=5 k=10 s ||
0.6B 0.73 039 055 062 | 054 041 026 I
13B| 076 | 042 055 062 | 056 044 027 T Lo
33B| 076 | 040 057 065 | 057 044 028 L " e |

Table 5. Effect of varying different model size for LSPG on English
dataset. We omit the results of little-varied Potential @k

we compare the performance of the first three models, as hardware
limitations prevent us from assessing the 55.3B model. In Table 5,
we report solely the model’s predictive score to eliminate the influ-
ence of other ranking features. As anticipated, the 3.3B model yields
the best performance, albeit with a marginal difference. To a certain
extent, the increase in model parameters leads to improved simplifi-
cation performance.

Influence of length of estimated suffix: Within our decoding pro-
cess, we introduce a suffix estimate into the scoring function of our
substitutions. This study examines the effect of the estimated suffix
length, with Figure 2 displaying the results. Ranging from O to 5, we
manipulate the length and only record the predictive score to negate
other factors’ influence. Our findings indicate that estimating two or
three suffix words produces optimal results, with no necessity to in-
clude further computations.

4.4 Case Study

In this case study, we compare our output substitutions against those
generated by GPT3-based methods[1]. Table 4 show five examples

Estimated Suffix Length Estimated Suffix Length

() (b)

Figure 2. Effect of varying estimated suffix length for LSPG. (a) the
results on metric ACC@1, and (b) the results on metric Acc@1@Topl.

on the English track. Upon manual inspection, we found that both
GPT3-based methods and our method generate suitable substitu-
tions that are not included in labels. In general, Our method’s ac-
tual performance is competitive with GPT(Ensemble) and outper-
forms GPT(Single). Notably, GPT3(Ensemble) requires combining
the results of over six different GPT-3 prompts, including few-shot
prompts, which is a time-consuming and costly process. In contrast,
our method is completely zero-shot, utilizing a freely available mul-
tilingual NMT.

5 Conclusion

In this paper, we present a novel multilingual LS via paraphrase gen-
eration for generating meaning-preserved substitutions across mul-
tiple languages. We adopt a multilingual NMT system as the para-
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phraser that supports hundreds of languages. To address the chal-
lenges of identifying substitutions, we introduced a new decoding
method that focuses on the lexical variations of the complex word.
Our experiments demonstrate that our method achieves state-of-the-
art results on the latest multilingual LS benchmarks, outperforming
previous BERT-based approaches and showing competitive perfor-
mance compared to ensemble GPT3-based method. We believe that
our approach holds promise for a variety of natural language pro-
cessing tasks, including but not limited to writing assistance and
synonym extraction. Furthermore, our method is especially advan-
tageous for low-resource languages.

Acknowledgement

This

research is partially supported by the National Natural Science

Foundation of China under grants 62076217 and 61906060, and the
Blue Project of Yangzhou University.

References

(1]

(2]

(3]

[4]

[3]

(6]

(7]

(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

Dennis Aumiller and Michael Gertz, ‘UniHD at TSAR-2022 shared
task: Is compute all we need for lexical simplification?’, in T7SAR, pp.
251-258, (2022).

Or Biran, Samuel Brody, and Noémie Elhadad, ‘Putting it simply: a
context-aware approach to lexical simplification’, in ACL, pp. 496-501,
(2011).

John Carroll, Guido Minnen, Yvonne Canning, Siobhan Devlin, and
John Tait, ‘Practical simplification of english newspaper text to assist
aphasic readers’, in AAAI Workshop, pp. 7-10, (1998).

Marta R Costa-jussa, James Cross, Onur Celebi, Maha Elbayad, Ken-
neth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel
Licht, Jean Maillard, et al., ‘No language left behind: Scaling human-
centered machine translation’, arXiv preprint arXiv:2207.04672,
(2022).

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan, ‘A survey of multi-
lingual neural machine translation’, ACM Computing Surveys (CSUR),
53(5), 1-38, (2020).

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-
Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume
Wenzek, Vishrav Chaudhary, et al., ‘Beyond english-centric multilin-
gual machine translation’, The Journal of Machine Learning Research,
22(1), 4839-4886, (2021).

Pierre Finnimore, Elisabeth Fritzsch, Daniel King, Alison Sneyd,
Aneeq Ur Rehman, Fernando Alva-Manchego, and Andreas Vlachos,
‘Strong baselines for complex word identification across multiple lan-
guages’, in NAACL, pp. 970-977, (2019).

Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch,
‘Ppdb: The paraphrase database’, in NAACL-HLT, pp. 758-764, (2013).
Goran Glavas and Sanja Stajner, ‘Simplifying lexical simplification: Do
we need simplified corpora?’, in ACL, pp. 63-68, (2015).

Shuhao Gu, Jinchao Zhang, Fandong Meng, Yang Feng, Wanying Xie,
Jie Zhou, and Dong Yu, ‘Token-level adaptive training for neural ma-
chine translation’, in EMNLP, pp. 1035-1046, (2020).

Wenjie Hao, Hongfei Xu, Deyi Xiong, Hongying Zan, and Lingling
Mu, ‘Parazh-22m: A large-scale chinese parabank via machine transla-
tion’, in Proceedings of the 29th International Conference on Compu-
tational Linguistics, pp. 3885-3897, (2022).

J Edward Hu, Rachel Rudinger, Matt Post, and Benjamin Van Durme,
‘Parabank: Monolingual bitext generation and sentential paraphrasing
via lexically-constrained neural machine translation’, in AAAI, vol-
ume 33, pp. 6521-6528, (2019).

J. Edward Hu, Abhinav Singh, Nils Holzenberger, Matt Post, and Ben-
jamin Van Durme, ‘Large-scale, diverse, paraphrastic bitexts via sam-
pling and clustering’, in CoNLL, pp. 44-54, (2019).

Shaojie Jiang, Pengjie Ren, Christof Monz, and Maarten de Rijke, ‘Im-
proving neural response diversity with frequency-aware cross-entropy
loss’, in The World Wide Web Conference, pp. 2879-2885, (2019).
Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui
Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Watten-
berg, Greg Corrado, et al., ‘Google’s multilingual neural machine trans-

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[32]

[33]

[34]

[35]

lation system: Enabling zero-shot translation’, Transactions of the As-
sociation for Computational Linguistics, 5, 339-351, (2017).

Reno Kriz, Eleni Miltsakaki, Marianna Apidianaki, and Chris Callison-
burch, ‘Simplification using paraphrases and context-based lexical sub-
stitution’, in NAACL, pp. 207-217, (2018).

Xiaofei Li, Daniel Wiechmann, Yu Qiao, and Elma Kerz, ‘MANTIS at
TSAR-2022 shared task: Improved unsupervised lexical simplification
with pretrained encoders’, in TSAR, pp. 243-250, (2022).

Yu Lin, Zhecheng An, Peihao Wu, and Zejun Ma, ‘Improving contex-
tual representation with gloss regularized pre-training’, in NAACL, pp.
907-920, (2022).

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel
Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers,
Noah A. Smith, and Yejin Choi, ‘NeuroLogic a*esque decoding: Con-
strained text generation with lookahead heuristics’, in Proceedings of
the 2022 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies,
pp. 780-799, Seattle, United States, (July 2022). Association for Com-
putational Linguistics.

Kai North, Alphaeus Dmonte, Tharindu Ranasinghe, and Marcos
Zampieri, ‘GMU-WLV at TSAR-2022 shared task: Evaluating lexical
simplification models’, in Proceedings of the Workshop on Text Simpli-
fication, Accessibility, and Readability (TSAR-2022), pp. 264-270, Abu
Dhabi, United Arab Emirates (Virtual), (December 2022). Association
for Computational Linguistics.

Gustavo Paetzold and Lucia Specia, ‘Unsupervised lexical simplifica-
tion for non-native speakers’, in AAAI, volume 30, (2016).

Gustavo H Paetzold and Lucia Specia, ‘A survey on lexical simplifica-
tion’, Journal of Artificial Intelligence Research, 60, 549-593, (2017).

Ellie Pavlick and Chris Callison-Burch, ‘Simple ppdb: A paraphrase
database for simplification’, in ACL, pp. 143-148, (2016).

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin
Van Durme, and Chris Callison-Burch, ‘Ppdb 2.0: Better paraphrase
ranking, fine-grained entailment relations, word embeddings, and style
classification’, in ACL, pp. 425430, (2015).

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, Yang Shi, and Xindong
Wau, ‘Lsbert: Lexical simplification based on bert’, IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 29, 3064-3076,
(2021).

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, and Xindong Wu, ‘Lexi-
cal simplification with pretrained encoders’, Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, 8649-8656, (2020).

Jipeng Qiang, Xinyu Lu, Yun Li, Yunhao Yuan, and Xindong Wu, ‘Chi-
nese lexical simplification’, IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 29, 1819-1828, (2021).

Jipeng Qiang and Xindong Wu, ‘Unsupervised statistical text simpli-
fication’, IEEE Transactions on Knowledge and Data Engineering,
33(4), 1802-1806, (2021).

Jipeng Qiang, Shiyu Zhu, Yun Li, Yi Zhu, Yunhao Yuan, and Xindong
Wau, ‘Natural language watermarking via paraphraser-based lexical sub-
stitution’, Artificial Intelligence, 103859, (2023).

Horacio Saggion, ‘Automatic text simplification’, Synthesis Lectures on
Human Language Technologies, 10(1), 1-137, (2017).

Horacio Saggion, Sanja Stajner, Daniel Ferrés, Kim Cheng Sheang,
Matthew Shardlow, Kai North, and Marcos Zampieri, ‘Findings of
the tsar-2022 shared task on multilingual lexical simplification’, arXiv
preprint arXiv:2302.02888, (2023).

Sanja §tajner, Daniel Ferrés, Matthew Shardlow, Kai North, Marcos
Zampieri, and Horacio Saggion, ‘Lexical simplification benchmarks for
english, portuguese, and spanish’, Frontiers in artificial intelligence, 5,
991242, (2022).

Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao Qin, and Tie-Yan Liu,
‘Multilingual neural machine translation with language clustering’, in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 963-973, Hong
Kong, China, (November 2019). Association for Computational Lin-
guistics.

Brian Thompson and Matt Post, ‘Paraphrase generation as zero-shot
multilingual translation: Disentangling semantic similarity from lexi-
cal and syntactic diversity’, in Proceedings of the Fifth Conference on
Machine Translation, pp. 561-570, (2020).

Jannis Vamvas and Rico Sennrich, ‘NMTScore: A multilingual analy-
sis of translation-based text similarity measures’, in Findings of the As-



[36]

[38]

[39]

[40]

[41]

K. Liu et al. / Multilingual Lexical Simplification via Paraphrase Generation

sociation for Computational Linguistics: EMNLP 2022, pp. 198-213,
Abu Dhabi, United Arab Emirates, (December 2022). Association for
Computational Linguistics.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath Selvaraju, Qing
Sun, Stefan Lee, David Crandall, and Dhruv Batra, ‘Diverse beam
search for improved description of complex scenes’, in Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, (2018).
Takashi Wada, Timothy Baldwin, Yuji Matsumoto, and Jey Han Lau,
‘Unsupervised lexical substitution with decontextualised embeddings’,
in Proceedings of the 29th International Conference on Computational
Linguistics, pp. 41724185, (2022).

Peniel Whistely, Sandeep Mathias, and Galiveeti Poornima, ‘PresiUniv
at TSAR-2022 shared task: Generation and ranking of simplification
substitutes of complex words in multiple languages’, in Proceedings
of the Workshop on Text Simplification, Accessibility, and Readability
(TSAR-2022), pp. 213-217, Abu Dhabi, United Arab Emirates (Vir-
tual), (December 2022). Association for Computational Linguistics.
Peniel Whistely, Sandeep Mathias, and Galiveeti Poornima, ‘Presiuniv
at tsar-2022 shared task: Generation and ranking of simplification sub-
stitutes of complex words in multiple languages’, in TSAR, pp. 213—
217, (2022).

John Wieting and Kevin Gimpel, ‘Paranmt-50m: Pushing the limits of
paraphrastic sentence embeddings with millions of machine transla-
tions’, arXiv preprint arXiv:1711.05732, (2017).

Jianing Zhou and Suma Bhat, ‘Paraphrase generation: A survey of the
state of the art’, in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 5075-5086, (2021).

1535



