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Abstract. This paper concentrates on the understanding of in-
terlocutors’ emotions evoked in conversational utterances. Previous
studies in this literature mainly focus on more accurate emotional
predictions, while ignoring model robustness when the local context
is corrupted by adversarial attacks. To maintain robustness while en-
suring accuracy, we propose an emotion recognizer augmented by
a full-attention topic regularizer, which enables an emotion-related
global view when modeling the local context in a conversation. A
joint topic modeling strategy is introduced to implement regulariza-
tion from both representation and loss perspectives. To avoid over-
regularization, we drop the constraints on prior distributions that ex-
ist in traditional topic modeling and perform probabilistic approx-
imations based entirely on attention alignment. Experiments show
that our models obtain more favorable results than state-of-the-art
models, and gain convincing robustness under three types of adver-
sarial attacks. Code: https://github.com/ludybupt/FATRER

1 Introduction

ERC (Emotion Recognition in Conversations) [27, 34] aims to iden-
tify hidden emotion states by mining utterance expressions in conver-
sations, and each utterance conveys one type of emotion, such as hap-
piness, anger, sadness, etc. ERC is undeniably essential for enabling
a humanoid robot to be empathetic with human emotions [24, 26].
In addition, ERC technologies can be easily transferred to other dia-
logue understanding tasks [10, 45] for further research.

Emotion dynamics modeling is an important criterion for the ERC
task [20]. Specifically, emotion dynamics assumes that the interlocu-
tors’ emotions are influenced by two factors in a conversation: self
and interpersonal dependencies [29]. Studies [28, 36, 51, 22] for-
mulate the two factors in a way of hierarchical context modeling
for more accurate emotional predictions. However, model robust-
ness [44] is rarely touched, especially robustness against adversarial
examples. Adversarial examples [18, 35] shown in Figure 1 are small
and intentional worst-case perturbations to test samples that have
high confidence in fooling a target classifier. Compared to speech
recognition errors, robustness to adversarial examples can explain
the reliability and safety of a target model.

Adversarial attacks arise mainly from local perturbations, and the
fundamental issue with weak robustness stems from an excessive de-
pendence on local context. Therefore, a global view is needed to
withstand the impact of adversarial attacks. In addition, the global
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Figure 1: An example of adversarial attacks in ERC

view should correlate with hidden emotional states so that accuracy
is also ensured. To this end, we try to employ topic models [4] to
help achieve accurate and robust emotion recognition in conversa-
tions. The topic is an important latent semantic factor related to hid-
den emotional states and is reported to be effective for more accu-
rate emotional predictions in previous studies [42, 41, 51]. However,
these topic models represent documents as topic variables, which
only indicate the importance of topics, lacking a global view to en-
sure robustness. Therefore, the key problem lies in how to enable
an emotion-related global view through topic modeling, and how to
conduct proper joint modeling to fully exploit the advantages of the
emotion-related global view to strike a balance between accuracy and
robustness. In this paper, we propose FATRER (Full-Attention Topic
Regularizer augmented conversational Emotion Recognizer) for the
ERC task and share our insights on the above issues.

First, our topic modeling interprets document generation as a two-
stage process, which is

p(w|d) =
∑
z

p(w|z)p(z|d). (1)

Here, based on the Law of Total Probability, the conditional proba-
bility of words given a document (utterance), p(w|d), is decomposed
into topic-word conditional probabilities, p(w|z), and document-
topic conditional probabilities, p(z|d). Traditional topic models only
use p(z|d) to represent a document, while ignoring to exploit p(w|z)
that is associated with the global vocabulary. The vocabulary is nat-
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urally robust to local perturbations. Thus, based on the generation
process in equation (1), an utterance can be represented as a combi-
nation of topic embedding by p(z|d), and p(w|z) is used to combine
the whole word embedding into the topic embedding. Through such a
two-stage weighted linear combination, we obtain a topicalized rep-
resentation of an utterance, which is tightly coupled with the entire
word embedding and thus has the global views to ensure robustness.

Secondly, the global view obtained by topic modeling should not
only guarantee robustness but also enhance accuracy. To achieve this,
the topics discovered should be emotion-related, i.e. the top words of
a topic should relate to a specific emotion, which can lead to more
accurate emotional predictions. Thus, we design a training loss in-
cluding a classification loss term and a topic-oriented regularization
term to optimize a full-attention model. The classification loss term
is used to model emotion labels. This term drives the attention model
to assign more weight to words that are related to the target emotion
labels. The topic-oriented regularization term guides p(w|d) to be as
similar as possible to the observed word distribution of a given utter-
ance. As we use the attention mechanism to approximate p(z|d) and
p(w|z), regularization of p(w|d) will propagate to attention align-
ment for p(z|d) and p(w|z) and increase sparsity of the two distribu-
tions. To sum up, the full-attention framework and the two terms in
the training loss help the topics discovered to be discriminative and
emotion-related, which are properties towards more accurate emo-
tional predictions.

Finally, we use our FATR (Full-Attention Topic Regularizer) to en-
able a global view when modeling the local context for the ERC task.
Regularization from both representation and loss is conducted. To
avoid over-regularization, we drop the constraints on prior distribu-
tions that exist in traditional topic modeling. Specifically, we perform
our topic modeling to represent an utterance from a global view, ob-
taining the topicalized representation. On the other hand, we conduct
context modeling for representing an utterance from the local view,
generating contextualized representation. Such multi-view modeling
for representing interlocutor-specific utterances constitutes our ap-
proach to self-dependency1 modeling. Then, the multi-view repre-
sentations of interlocutors at each conversation turn form a time-
series sequence. Through deep layers of sequence interactions for
modeling interpersonal dependency2, the multi-view representations
are fully balanced and mixed in the final representation. Together
with our training loss, the full-attention model is guided toward ac-
curate and robust emotional predictions.

Experimental results show that our models achieve new SOTA
(State-Of-The-Art) on four benchmark datasets in terms of Micro F1,
and obtain convincing robustness under three types of adversarial at-
tacks. Analysis and visualizations are conducted to better understand
our models.

Our contributions can be summarized as:

• We propose a novel full-attention topic regularizer to enable an
emotion-related global view when modeling local context for rec-
ognizing emotions in conversations.

• Our joint topic modeling strategy provides regularization from
both representation and loss perspectives for accurate and robust
emotional predictions.

• We conduct a series of experiments in terms of not only gener-
alization but also robustness to evaluate the performance of our
proposed models and baselines on the ERC task.

1 Self dependency is known as emotion inertia manifested as the interlocu-
tor’s tendency to maintain their emotional state during the conversation.

2 Interpersonal dependency is an emotional factor from other interlocutors in
a conversation that tries to change the emotion of the current interlocutor.

2 Related Work

Emotion Recognition in Conversations. Prior research on ERC
mostly focuses on exploring different context models, such as Bi-
directional LSTM [32], memory network [14], Transformer [28],
etc. Later, emotion dynamics [20] is summarized to guide the con-
text modeling in ERC. Following this criterion, many hierarchical
structures [27, 11, 28] are putting forward to capture the self and
inter-personal dependencies in conversations. Inspired by the success
of the pre-training paradigm [7], approaches [13, 36] try to implic-
itly memorize external knowledge into a large number of parameters
via the language model pre-training. Other studies [50, 9] explic-
itly extract commonsense knowledge via the ConceptNet [37]. Very
recently, [51] proposes a two-stage learned topic-driven knowledge-
aware Transformer whose topic module is removed in the fine-tuning
stage. Differently, we perform a joint topic modeling strategy with
consistent topic guidance. Our strategy not only boosts accuracy but
also guarantees robustness.
Topic Model. Typically, a statistical topic model [15, 4] captures
topics in the form of latent variables with probability distribu-
tions over the entire vocabulary and performs approximate infer-
ence over document-topic and topic-word distributions through Vari-
ational Bayes [3]. However, such a learning paradigm requires an
expensive iterative inference step performed on every document in
a corpus [30]. The efficiency is boosted after the introduction of
VAE-based (Variational AutoEncoder) neural topic model [2, 49] be-
cause variational inference can be performed through a single for-
ward pass [19]. The VAE-based topic models often hypothesize a
prior distribution [38, 8] that is used to approximate the posterior
for latent document-topic distribution by maximizing the Evidence
Lower Bound (ELBO) using the reparametrization trick. Differently,
our strategy of topic modeling does not have prior constraints. Re-
cently, pre-training models are used to augment neural topic mod-
els via enhanced text representation [2], knowledge distilling [16],
or embedding clustering [39]. Besides VAEs, there are other frame-
works of neural topic models including autoregressive models [12],
and graph neural networks [47]. Our topic modeling is fully based on
attention alignments.
Neural Topic Enhanced Supervised Model. Fitting unsupervised
topic representations is sub-optimal for the supervised task. Research
has been conducted to build a joint learning framework that integrates
neural topic models with supervised learning models [6, 31, 42, 43,
41]. [6] proposes a simple feed-forward net with a max-margin loss
to approximate topic-word distribution and a classification loss for
the downstream task. [31] proposes an attention-based topic module
without a regularization term. [41] uses document-topic distribu-
tion as just a vector to guide the attentive pooling of classification
vectors (hidden layers of recurrent nets). [42] enables the classifica-
tion model to be aware of topic information through different kinds
of topic inference in auxiliary tasks, but there are no connections to
link topic and classification models. [43] links a VAE-based topic
model to a recurrent net for better representations. Our joint learning
framework produces regularization from both representation and loss
perspectives and can lead to more accurate and robust predictions.

3 Methodology

3.1 Topicalized Representation

The topicalized representation of an utterance is obtained via the full-
attention topic modeling depicted in the bottom right of Figure 2.
We first represent documents (utterances), topics, and words in the
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embedding space. Then, we use attention alignments to approximate
parameters α and β for document-topic and topic-word multinomial
distributions, respectively. Finally, we deploy α and β as the weights
to construct a topicalized representation of an utterance.

A document is represented as a linear combination of topics, and
a topic is a linear combination of words. Specifically, let K be the
topic number, V be the vocabulary size, and H be the embedding di-
mension. The topicalized representation of a document is calculated
as

∑K
k=1 αkzk, or αZ� in matrix form, where α={α1, · · · , αK}

is the document-topic distribution over K topics given a document.
Z ∈ R

K×H is the topic embedding matrix stacked from {zk}Kk=1.
The k-th topic embedding zk ∈ R

H is represented as
∑V

v=1 βk,vev ,
or βkE

� in matrix form, where βk={βk,1, · · · , βk,V } is the topic-
word distribution over V words given the k-th topic. ev ∈ R

H is
the v-th word embedding from the embedding matrix E ∈ R

V ×H ,
where E is initialized from the embedding layer of BERT and is fine-
tuned during training. In the following, z denotes the topic variable,
and bold z or Z indicates the topic embedding or embedding matrix.

Let p(z|d) ∼ Multinomial(α), p(w|z) ∼ Multinomial(β), our
topic modeling output the document-word posterior distributions via
probability inference in equation (1), which is

p(w|d) =
∑
z

p(z|d)p(w|z)

=
K∑

k=1

αβ�
k = αB�.

(2)

Here, B = {βk}Kk=1 is the topic-word probability matrix. Note that,
the attention alignment is natural conditional probabilities of the val-
ues given the queries. Thus, α can be approximated via attention
alignments between a document as the query and topics as the val-
ues. Similarly, β is from alignments between topics as the query and
words as the values. The process is defined as,

α :=att(rbow → {zk}Kk=1)=softmax(
rbowZ�
√
H

), (3)

βk :=att(zk → {ev}Vv=1)=softmax(
zkE

�
√
H

). (4)

Here, rbow = γE� is the bag-of-word combination of local word
embedding. γ ∈ R

V is the observed word distribution of a docu-
ment. 1√

H
is the scaling factor [40]. Through topic modeling, the

representation of a document evolves from a combination of local
terms, γiE

�, to a combination of global topics, αiZ
�.

Topic Embedding Chain Rule. Notice that, computing z needs β
and computing β also needs z. Thus, we deploy a chain rule that
connects z and β along the training steps. Let T be the number of
total training steps, and the chain rule can be formulated as

{
1st training step Tth training step︷ ︸︸ ︷ ︷ ︸︸ ︷

β0 �→z0 �→β1 �→z1 �→β2 �→z2 · · ·zT−1 �→βT �→zT

︸ ︷︷ ︸
2nd training step

}, (5)

Here, the computation of zt at the t-th training step relies on βt, and
βt at the t-th training step is computed based on zt−1 from previous
training step. β can be randomly initiated at the 0-th step, just like
the attention alignments that are (almost) equally distributed on all
keys at the early training stage. z cannot be random initialized first
since computing z depends on E as well. We formulate the learning

process in a recursive form,

β = att(z̃ → {e}Vv=1), (6)

z = βE�. (7)

Here, the symbol ˜ indicates that the variable comes from the
previous training step, e.g., Z̃ = {z̃k}Kk=1 denotes the previously
preserved topic embedding matrix.

Representation Underlying Different Topic Hypotheses. We offer
two hypotheses, multi- and single-topic, to explain the generation
process of a document. The two hypotheses correspond to the two
versions of our models.

Multi-Topic: Each document describes a mixture of topics from an
underlying topic set. In the multi-topic hypothesis, a document is rep-
resented as a weighted sum of the entire topic embedding. Since we
have two topic embedding, Z̃ and Z, the model outputs two kinds of
document-topic distribution, which is α̃, by attention alignments be-
tween rbow and Z̃, and α, by attention alignments between rbow and
Z. To keep the learned representation stable, we define the following
process to represent a document,

rtopic = σ(α̃Z̃�)� ξ(αZ�) + σ(αZ�)� ξ(α̃Z̃�). (8)

Here, Z̃ can be understood as the topic embedding learned during the
training steps (long-term info), Z is the updated topic embedding
that affected by the current document (short-term info). The topi-
calized representation rtopic is learned in the form of additive gate
unit [1] that balances the long-term and short-term info. σ and ξ are
sigmoid and Leaky ReLU [46], respectively. � denotes the element-
wise product.

Single-Topic: Each document describes a single topic out of an un-
derlying topic set. Under the single-topic hypothesis, a document is
represented as one single topic embedding sampled from document-
topic distribution. Let α̂∼Multinomial(α), ˆ̃α∼Multinomial(α̃), the
topicalized representation is calculated as:

rtopic = σ( ˆ̃αZ̃�)� ξ(α̂Z�) + σ(α̂Z�)� ξ( ˆ̃αZ̃�). (9)

Here, α̂i, ˆ̃αi ∈ R
K are one-hot vectors in which the position of the

sampled topic is set to one during training. For inference, we always
choose the topic having the highest probability.

Finally, our topic modeling process is shortly denoted as:

α,B, rtopic = ftopic(d,Ω), (10)

where d is the utterance and Ω is the entire vocabulary. The topical-
ized representation is the result of full attention on the overall word
embedding and thus is less sensitive to local perturbations.

3.2 Contextualized Representation

The contextualized representation is obtained in the process of hier-
archical emotion dynamics modeling. Let {Dn}Nn=1 be a corpus of
N conversations. Each conversation Dn = {(dλi

i , yi)}Mn
i=1 contains

Mn utterance-emotion pair, where dλi
i is the i-th utterance spoken

by interlocutor λi, and yi is the corresponding emotion. The self de-
pendency modeling captures emotional influence within an interlocu-
tor. We use fself (d

λi
i , cλi

i ) to denote the self dependency modeling
where cλi

i = {dλτ
τ |τ ∈ [1, i), λτ = λi} is λi’s historical utterances.

The interpersonal dependency modeling, finter , combines the emo-
tional influence across interlocutors. The complete emotion dynam-
ics modeling forms a hierarchical structure, which is

finter

(
fself (d

λ1
1 , cλ1

1 ), fself (d
λ2
2 , cλ2

2 ), · · ·
)
. (11)
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Figure 2: Joint modeling framework

We drop the superscript λi for simple in the following part.
Here, we use BERT [7] as the branches of the hierarchical struc-

ture to model fself , then the branches are connected to a Trans-
former [40] backbone to model finter . Given an utterance of L
words, d = w1 · · · wL, and its historical context with L′ words,
c = ω1 · · · ωL′ , the input of the BERT can be denoted as,

X = [CLS]w1 · · · wL [SEP]ω1 · · · ωL′ [SEP], (12)

where [CLS] and [SEP] are two special words with specific purposes
in BERT. After feeding BERT with X , it outputs the contextualized
representations from the last hidden layer at [CLS] position, which is

rcontext = fself (d, c) = BERT(X). (13)

The BERT encodes a Mn-turn conversation into a sequence of con-
textualized representations R={rcontext

i }Mn
i=1. By feeding R to a

TRM (TRansFormer), the interpersonal dependency is modeled as,

finter(fself (d1, c1), · · · , fself (di, ci))
=TRM(R,ηi); (ηi = 11 · · · 1︸ ︷︷ ︸

i

00 · · · 0︸ ︷︷ ︸
Mn−i

) . (14)

Here, we use the last hidden layer of TRM at the i-th position as the
classification representation for the i-th turn utterance. ηi masks the
future information.

3.3 Joint Modeling

Given the i-th utterance di, corresponding context ci of the same
interlocutor, and a vocabulary set Ω, the process of topic modeling
links di and Ω such that the topicalized representation has a global
view, and the process of context modeling connects di with ci to
enable the contextualized representation with a local view. The regu-
larization from the representation perspective is enforced by simply
concatenating the two representations. Specifically, the modeling of
emotion dynamics can be reformulated as,

finter

(
f ′
self (d1, c1,Ω), f

′
self (d2, c2,Ω), · · ·

)
(15)

where f ′
self is for self-dependency modeling that concatenates out-

put of ftopic and the original fself in equation (13) to form represen-
tations with both global and local views. Let rconcat be the concate-
nated representation output by f ′

self , the interpersonal dependency

is modeled via feeding the TRM with a representation sequence,
R = {rconcat

i }Mn
i=1. After interpersonal dependency modeling, the

global and local views can be fully balanced and mixed through deep
layers of multi-head attention within the TRM. {hi}Mn

i=1 are the out-
put representation sequence for emotional predictions.

Our joint learning objective contains two terms, a classification
loss term 	CLS and a topic-oriented loss regularization term δREC .
Let Y = {1, · · · , |Y|} be the emotion set. The classification loss is
to minimize the cross entropy between a sequence of the predicted
emotion probabilities {PCLS

i ∈ R
|Y|}Mn

i=1 and a sequence of the
ground truth {yi ∈ Y}Mn

i=1:

PCLS
i = softmax(hiW

� + b), (16)

	CLS = −
Mn∑
i=1

logPCLS
i,yi . (17)

The topic-oriented loss regularization term is to minimize the KL
(Kullback–Leibler) divergence between the document-word poste-
rior distribution Multinomial(PREC

i ) and the observed distribution
Multinomial(γi):

PREC
i = αiβ

�, (18)

δREC =
1

Mn

Mn∑
i=1

V∑
j=1

γi,j log(
γi,j

PREC
i,j

), (19)

where PREC
i is our approximated word probabilities conditioned on

the i-th utterance in a conversation.
The regularization from the loss perspective is enforced by the

product between the two loss terms, which is

L = μ · 	CLS · δREC . (20)

The values of these two terms serve as the learning rates for
each other, which dynamically and interactively adjust the learning
weights during the training process. μ is the global learning rate to
control the convergent speed of the model.

4 Experimental Setup

Datasets. The benchmark of ERC involves four datasets, including
DailyDialog [23], IEMOCAP [5], MELD [33], and EmoryNLP [48].
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The metrics in bold indicate the best values obtained by our models. To focus on the role of topic, we exclude baselines using external resources such knowledge base. * refers to
a TodKat variant that only performs topic modeling without using the knowledge base.

Models Topic IEMOCAP MELD DailyDialog EmoryNLP
AGHMN [17] × 58.28% 54.52% 51.90% 33.54%
DialGCN [11] × 60.63% 56.17% 53.73% 33.13%
BERT [7] × - 63.49% 54.85% 41.11%
RoBERTa [25] × - 63.75% 54.33% 40.81%
DialTRM [28] × 68.41% 64.60% 56.44% 37.13%
CoGBART [22] × 64.10% 63.66% 54.71% 37.57%
TodKat* [51]

√
57.38% 61.11% 53.44% 32.62%

VAE (Laplace)
√

68.98% 65.36% 55.11% 39.43%
VAE (LogNormal)

√
68.95% 65.40% 56.27% 37.80%

VAE (Dirichlet)
√

69.19% 65.82% 56.53% 40.35%
VAE (Gamma)

√
68.48% 64.37% 56.34% 37.91%

FATRER-multi
√

69.69% 66.28% 56.57% 39.13%
FATRER-single

√
68.58% 65.32% 56.46% 41.87%

Table 1: Generalization results on four datasets

AAA denotes Accuracy After Attack. U denotes merely attacking the target utterance. U+C means attacking both the target utterance and its context. - indicates being incompatible
with context perturbations.

PWWS TextFooler TextBugger
Models AAA(U+C) AAA(U) AAA(U+C) AAA(U) AAA(U+C) AAA(U)
CoGBART - 42.57% - 26.73% - 44.36%
DialTRM 4.10% 42.77% 7.00% 22.38% 6.50% 38.61%
TodKat - 28.32% - 8.12% - 22.97%
VAE (Laplace) 6.50% 43.56% 4.48% 22.18% 7.05% 39.21%
VAE (LogNormal) 2.63% 40.99% 2.57% 19.21% 6.12% 40.40%
VAE (Dirichlet) 7.52% 41.58% 13.05% 25.35% 15.57% 40.79%
VAE (Gamma) 4.49% 42.38% 13.42% 26.73% 12.54% 43.17%
FATRER-multi 15.00% 46.14% 19.13% 31.88% 22.50% 44.75%

FATRER-single 14.56% 45.74% 14.52% 23.37% 17.52% 43.56%

Table 2: Robustness to Adversarial Examples on IEMOCAP

The first two are dyadic conversational datasets, and the last two
comprise multi-party conversations. IEMOCAP annotates each utter-
ance with one of 6 emotion labels, and the emotion labels are 7 in the
other datasets. We follow the standard split [51] for training, valida-
tion, and testing in the benchmark. The ‘neutral’ label is not included
in DailyDialog’s evaluation to avoid category imbalance. [9]
Adversarial Attacks. Three types of adversarial attacks 3, including
PWWS [35], TextFooler [18], and TextBugger [21], are employed for
robustness evaluation. PWWS offers a word-level attack according
to the word saliency and the classification probability. TextFooler is
reported to have effectiveness to attack pre-training models. TextBug-
ger can execute both character-level and word-level attacks. We set
all the attackers to perturb up to 25% of words per input.
Implementation Details. The single-topic and multi-topic hypothe-
ses yield the FATRER-single and FATRER-multi versions of our
model, respectively. The model described in section 3.2 is named
as Baseline, in which the BERT is initialized from the BERTBase
and the TRM is a random initialized, 6-layer, 12-head-attention,
and 768-hidden-unit Transformer encoder. Following the spirit of
ProdLDA [38], we implement VAE-based topic regularizers under-
lying different priors. By replacing our topicalized representation
with topic variables obtained via variational inference, we have VAE-
based variants, including VAE (Laplace), VAE (LogNormal), VAE
(Dirichlet), and VAE (Gamma). Based on the same Baseline, we
can perform a fair comparison between FATR-based and VAE-based

3 https://github.com/QData/TextAttack

topic regularizers. We use off-the-shelf implementations of TodKat4

and CoGBART5 as well as their trained models to perform robustness
evaluations in our experimental settings.

5 Results, Analysis, and Visualization

5.1 Generalization on Benchmark Datasets

The generalization results are presented in Table 1. The listed meth-
ods can be divided into two groups according to whether or not latent
topics are used. The methods using latent topics can be further cat-
egorized as 1) merely pre-trained topics, i.e., TodKat, 2) VAE-based
joint learned topics, i.e., VAE (Dirichlet), etc., and 3) our FATR-based
topics. We employ Micro F1 to measure the accuracy of the listed
models. The results show that FATRER-multi achieves the best per-
formance on the benchmark in terms of Micro F1. Compared with
TodKat which applies VAE-based topic modeling only in the pre-
training stage, we understand the importance of performing joint
topic modeling which provides consistent topic guidance for accu-
rate predictions. Compared to adding VAE-based topic regularizers,
we can see that our FATR can obtain better generalization results.

4 https://github.com/something678/TodKat
5 https://github.com/whatissimondoing/CoG-BART
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PWWS TextFooler TextBugger
Models AAA(U+C) AAA(U) AAA(U+C) AAA(U) AAA(U+C) AAA(U)
CoGBART - 28.50% - 11.22% - 23.96%
DialTRM 11.09% 28.91% 4.95% 11.29% 23.38% 35.54%
TodKat - 28.29% - 17.03% - 43.96%
VAE (Laplace) 10.01% 27.72% 5.54% 11.68% 20.72% 33.47%
VAE (LogNormal) 12.28% 27.72% 5.74% 9.31% 22.82% 37.23%
VAE (Dirichlet) 13.47% 28.71% 8.71% 14.46% 25.32% 37.62%
VAE (Gamma) 15.05% 27.52% 11.29% 14.85% 24.92% 36.44%
FATRER-multi 17.23% 31.68% 12.28% 17.43% 26.28% 38.61%

FATRER-single 14.56% 30.89% 8.32% 15.05% 23.19% 37.43%

Table 3: Robustness to Adversarial Examples on MELD
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Figure 3: Results over training epochs on IEMOCAP

5.2 Robustness to Adversarial Examples

Based on the fully converged models, the robustness results are pre-
sented in Table 2, 3, and Figure 3. The evaluation uses AAA (After-
Attack Accuracy) and ASR (Attack-Success Rate) as the metrics,
where AAA means the accuracy achieved by the target model on
the adversarial samples crafted from the test samples. Specifically,
AAA(U) denotes AAA of merely attacking target utterance, and
AAA(U+C) means AAA of attacking both target utterance and its
context. ASR is the proportion of adversarial samples that can suc-
cessfully change the originally correctly predicted labels.

Table 2 and 3 present the robustness results on IEMOCAP and
MELD, respectively. For a fair comparison, the ANQ (Average Num-
ber of attack Queries) for each model is tuned to be as equal as possi-
ble in this experiment. Our models achieve the best results under the
three types of adversarial attacks on the two datasets. We conclude
four points from the results:

1) Topic-oriented models, e.g., the VAE-based and our FATRERs, get
better robustness performance, which means the joint modeling of
topic and context already provides a certain degree of robustness.
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Figure 4: Results over the number of topics on IEMOCAP

2) Our FATRERs are superior to VAE-based models, which indicates
that our topicalized representation improves robustness beyond
the simple use of topic variables.

3) The robustness of our FATRERs is more evident when the conver-
sational context is disrupted, further demonstrating the benefits of
the global view behind our topicalized representations.

4) TodKat only applies VAE-based topic modeling in the pre-training
stage and gets relatively weak performance, which means that
without joint topic modeling, it is difficult to guarantee robustness.

In a word, the superior robustness of our FATRERs mainly comes
from the topicalized representation guided by a global view and the
full-attention-based joint modeling framework.

In Figure 3, we track the trend of after-attack accuracy, attack-
success rate, and original accuracy (accuracy before the attack) over
340 training epochs. The best performed VAE (Dirichlet) is taken as
the representative of VAE-based variants. In this experiment, to exert
maximum pressure on the models, we let the attacker PWWS deter-
mine the number of attack queries and use U+C attack strategy. From
the trend in Figure 3a, we understand that the generalization ability
converges quickly within 10 epochs. By contrast, the model robust-
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ness in Figure 3b and 3c keeps getting better until 300 epochs, which
means the model robustness needs a long period of training. From
the 200th to 300th training epoch, the ANQ of our models is around
800 which is 1.09 to 1.26 times that of the other models. Higher ANQ
means the model is more difficult to be successfully attacked. The re-
sults show that our models obtain convincing robustness with greater
pressures at every epoch of testing.

5.3 Analysis

Ablation Study. To better understand our models, we yield several
variants of our model by removing some key components. Firstly,
FATRER-muti and FATRER-single are two basic variants of our
model. - rep regularizer indicates removing the topicalized represen-
tation and thus is identical to the Baseline. - loss regularizer means
removing the topic-oriented regularization term in the training loss
while preserving the attention network for topic modeling, and the
topic relative distributions are driven by the classification loss. From
the results in Table 4, we understand that removing either represen-
tation or loss regularizer leads to a drop in accuracy and robustness.
The model robustness is more sensitive to the removal of the two
regularizers than the accuracy.

Datasets Models AAA(U+C) AAA(U) Micro F1

IEMOCAP

FATRER-multi 15.00% 46.14% 69.69%
-rep regularizer 4.10% 42.77% 68.41%
-loss regularizer 7.04% 45.15% 69.38%

FATRER-single 14.56% 45.74% 68.58%
-rep regularizer 4.10% 42.77% 68.41%
-loss regularizer 9.03% 44.36% 68.58%

MELD

FATRER-multi 17.23% 31.68% 66.28%
-rep regularizer 11.09% 28.91% 64.60%
-loss regularizer 14.06% 31.09% 64.98%

FATRER-single 14.65% 30.89% 65.32%
-rep regularizer 11.09% 28.91% 64.60%
-loss regularizer 13.27% 30.69% 65.19%

Table 4: Ablation study on IEMOCAP and MELD

Effects of Topic Number. We explore the number of topics from 5 to
1000 to analyze their impact on our models. From the results shown
in Figure 4, we can see that our models have better robustness per-
formance than the VAE-based model over the selected numbers of
topics. Our model and the VAE-based model achieve the best orig-
inal accuracy at 80 and 1,000 topics, respectively. Note that, both
the number and the content of the adversarial examples are changed
for each epoch of testing. Thus, the robustness results shown in Fig-
ure 4b and 4c are based on the average of the scores obtained from
the 200th to 300th epoch.

5.4 Visualization

Topic words visualization. We evaluate our topics’ quality by com-
parison with unsupervised topics learned from LDA [4]. By inspect-
ing the top 15 keywords, we depict three topics that are most relative
to a kind of emotion in Figure 5a. We mark the emotional words
in red. Benefiting from the supervision of emotion labels, our topic
model can discover more emotional words than LDA. Such emotion-
related topics can improve accuracy. The top words of our topics
have perceptible probabilities while LDA’s topics have less than 5

(a) Topic words visualization.

(b) Representation visualization.

Figure 5: Topic visualization.

valid keywords. Both frequent and rare words are learned in our top-
ics. Such wide-range and emotion-related global views can guarantee
robustness.
Representation visualization. To give an intuitive understanding of
the adversarial attacks, we plot representations of the original and
the attacked samples output from FATRER-multi in Figure 5b. We
randomly choose 5 out of 800+ attacked samples crafted from each
original sample. As shown in the figure, the representations of the
attacked samples wrap tightly around the original samples. By the
way, we notice that our model still has room for the discrimination of
neutral, angry, and frustrated emotions, which is a clue for improving
our model in the future.

6 Conclusion

We propose a topic-augmented conversational emotion recognizer,
namely FATRER, for the task of ERC. To cope with the impact of
local perturbations, the discovered topic is enabled with an emotion-
related global view based on a full-attention framework. By jointly
performing topic and context modeling, our full-attention topic regu-
larizer augmented models can achieve accurate and robust conversa-
tional emotion recognition. Experimental results on standard bench-
mark datasets and adversarial examples have shown the generaliza-
tion and robustness of our models. Ablation studies are conducted to
help understand the effectiveness of our topic regularizers. We also
provide visualization to give an intuitive explanation of our models.
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