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Abstract. Understanding the rationale behind the predictions made
by machine learning models holds paramount importance across nu-
merous applications. Various explainable models have been developed
to shed light on these predictions by assessing the individual contribu-
tions of features to the outcome of black-box models. However, exist-
ing methods often overlook the crucial aspect of interactions among
features, restricting the explanation to isolated feature attributions. In
this paper, we introduce a novel Choquet integral-based explainable
method, termed ChoquEx, which not only considers the interactions
among features but also enables the computation of contributions for
any subset of features. To achieve this, we propose an innovative algo-
rithm based on support vector regression that efficiently estimates the
contributions of all feature subsets. Intriguingly, we leverage game-
theoretic concepts, including Shapley values and interaction index, to
calculate both the feature importance and interaction strength. This
approach adds further interpretability and insight into the model’s
decision-making process. To evaluate the effectiveness of ChoquEx,
we conduct extensive experiments on diverse real-world scenarios.
Our results convincingly demonstrate the superiority of the proposed
model over existing explainable techniques. With its ability to un-
ravel feature interactions and furnish comprehensive explanations,
ChoquEx significantly enhances our understanding of predictive mod-
els, opening new avenues for applying machine learning in critical
domains that require transparent decision-making.

1 Introduction

The use of machine learning has witnessed remarkable growth across
various domains of science and technology, showcasing promising
predictive capabilities. Evaluating these predictions often involves
multiple performance metrics, designed to quantify the distinctions
in performance among different models. However, a drawback of
this approach lies in the lack of comprehensible explanations for
model predictions, leading to limited understanding by human users
leveraging such models. This dearth of justification is particularly
concerning in critical domains like healthcare, where decisions can
directly impact the well-being and lives of individuals. Without trans-
parent explanations for predictions, domain experts may hesitate to
trust predictive models, potentially impeding their adoption.

To address this challenge, significant efforts have been dedicated
to developing explainable methods for machine learning models (for
a review, refer to [3, 19]). These methods can be broadly categorized
into model-specific, providing explanations for a specific machine
learning model (e.g., random forest), and model-agnostic, offering

* Corresponding Author. Email: majid.mohammadi690@ gmail.com

explanations for any trained model. Explanations can be either global,
revealing insights into the overall functioning of the predictive model,
or local, focusing on explaining predictions for individual samples.

Local explainable methods often resort to assigning contributions
to individual features, typically overlooking the interactions among
features [28, 21]. Some approaches attempt to capture interactions, but
due to the exponential growth of model parameters, they are restricted
to 2-way interactions [21, 24, 30, 23, 27, 32]. In contrast, black-box
models like deep neural networks exhibit remarkable performance
due to their ability to model complex patterns, including feature
interactions.

This paper introduces the concept of non-additive explanations,
leveraging the Choquet integral [6], a nonlinear aggregation function
widely used in decision theory [22]. Building upon this notion, we
develop a local explainable model capable of computing contribu-
tions for any subset of features. A significant challenge in computing
contributions for all subsets arises from the exponential increase in
parameters that need estimation concerning the number of features.
To address this, we propose an algorithm based on support vector
regression, where the problem dimension scales proportionately to
the number of samples (and not features), enabling efficient discovery
of feature interactions.

The key contributions of this paper are as follows:

e Introduction of non-additive explanations using the Choquet inte-
gral, presenting an explainable yet nonlinear model, distinguishing
it from conventional approaches that rely on linear surrogate mod-
els.

e Development of an efficient algorithm based on support vector
regression to estimate the parameters of the Choquet integral, re-
quired for computing contributions of each feature subset. The
parameter estimation involves solving a number of linear equa-
tions, with the equation count being proportional to the number of
samples used for explanation.

e Calculation of feature importance and interactions using game-
theoretic notions, such as Shapley importance and interaction index
[2]. It is important to note that unlike other explainable methods,
we do not estimate feature importance solely based on the Shapley
value; instead, we estimate the parameters essential for computing
such values.

The structure of this paper is as follows: Section 2 discusses re-
lated works, while Section 3 introduces the fundamental concept of
the Choquet integral. Section 4 presents the concept of non-additive
explanations based on the Choquet integral, along with the efficient
algorithm for parameter estimation using support vector regression.
In Section 5, we demonstrate the calculation of individual feature
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importance and interaction values using Shapley value and interaction
index. Section 6 provides details on the experiments conducted to
validate the proposed method, and finally, Section 8 concludes the

paper.

2 Related Work

There are many methods available for explaining black-box models.
LIME [28] provides explanations by learning a linear model at the
neighborhood of the sample under explanation and uses the coeffi-
cients of the model as an explanation. SHAP [21] estimates the feature
importance based on Shapley value, whose model-agnostic version,
known as Kernel SHAP, estimates the feature importance by using a
weighted linear model [7]. There are other variations of SHAP, for
instance, for tree-based models [20] or for global explanations [8].

There are several explainable methods that relax the feature inde-
pendence assumption, imposed by many methods including SHAP
and LIME. In [15], authors take into account the causal structure of
the data (if available) and then estimate the feature importance accord-
ingly. In particular, they use the causal structure to ignore some of the
generated samples for explanations. Another model for considering
the causal structure is developed by [12], where the weight in the
Shapley value formula is replaced based on the given causal structure.
Also, the work in [1] considers the correlation between features and
provides a new formulation to estimate the feature importance by the
Shapley value.

All of these methods estimate only the importance of individual fea-
tures and provide limited information regarding the feature interaction.
Identifying feature interactions has recently drawn much attention
[30, 32,23, 24, 33, 9]. In [30], authors employ an axiomatic approach
and put forward a new interaction index that can be used to compute
the interaction between features. A general axiomatic framework for
interaction detection is developed in [32], according to which the
interactions among features are computed based on mixed partial
derivatives. The work in [9] estimates the global feature interactions
by using a Bayesian neural network, but computations are limited
to binary interactions only. Estimating binary interactions using the
Shapley interaction index for the neural network is also studied in
[33]. Contextual importance [24] is an explainable method for LSTM
[16] and can estimate the interactions among consecutive features.
Generally, the explainable methods with feature interactions are typi-
cally restricted to 2-way interaction only, as higher-order interactions
increase exponentially the number of parameters.

The Choquet integral has been successfully applied as an aggrega-
tion operator in many settings [6, 22]. Recently, the use of Choquet
integral in machine has also been investigated [18, 11, 31, 17]. A ridge
regression model based on the Choquet integral is developed in [18],
while a nonlinear monotone logistic regression using the Choquet
integral is developed in [11]. The theoretical behavior of the Choquet
integral in the machine learning settings is studied in [17, 31], where it
is shown that the VC-dimension of models based on Choquet integral
(~ 2%, d is the number of features) is much higher than that of linear
models, yet the Choquet integral remains explainable.

3 Choquet Integral and Mobius Transformation

This section reviews the basic notions of the non-additive measures
and Choquet integral that will be used to present the non-additive
explanation.

Let {x;,y:}i—, be n data points and their corresponding label,
z; € RY, and F = {f1, f, ..., fa} be the finite set of features. The

measure y is a set function that maps any subset to a real number, so
© X — R, where X is the power set and R is the real space. If
is additive, then p(A U B) = p(A) + u(B) forall A, B C F. The
linear function typically used in different machine learning models
could be seen as a result of an additive assumption on the features,
ie.,

d d
wlay =Y wiwy =Y p{fi}wi, M
j=1 j=1

where w is the coefficient vector. Equation (1) is typically used for ex-
plainable methods, where 1 ({ f;}) is interpreted as the importance of
the corresponding features. Also, this equation ignores the interaction
between the features that could possibly influence the prediction as
well. In order to consider the interactions, we need a more generalized
measure, referred to as non-additive measures, that has the following
properties [29]:

n(@) =0

pu(A) < pu(B)
The last property in equation (2) refers to as monotonicity of the
measure, but other non-monotone measures are also put forward [26].
Also, measure y is called k-additive if & is the smallest integer where
u(A) =0foreach A C F and |A| > k.

Given the non-additive measure, we require a proper function to
aggregate the feature values and their associated importance and inter-
actions. The Choquet integral is a satisfactory manner to build such an
aggregation function [6, 14]. The departure point for the Choquet in-
tegral is that it is an alternative way to compute the area under a curve,
where it decomposes the area under the curve horizontally instead of
vertically. Figure 1 shows the intuition behind the Choquet integral.
The panel on the left shows the linear model over three features, which
is computed as the sum of the product of their width (i.e., weight)
to their corresponding height (i.e., feature value). This computation
could be rewritten as in the middle panel, where the vertical rectangles
are replaced by horizontal ones, which provide the same value as the
one on the left panel. However, this representation would allow us to
incorporate the interactions of features, as shown by an exemplary
case in the right panel of Figure 1. Intuitively, in the right panel, we
see that the measure (1, z2, x3) is more than the sum of weights in
the other panels, highlighting a positive interaction between the three
features. In contrast, the middle horizontal rectangle in the right panel
suggests that j1(x2, x3) is less than the sum of their weight, implying
a negative interaction, or redundancy, between them.

That being said, the Choquet integral of = with respect to a non-
additive measure y, shown by C), (), is defined as [6]:

forall AC B C F. 2)

d

Culz)=> (%) - qul))u(F(j)), 3

j=1

where (.) is a permutation of features such that 0 < z(;) <

T2y < < @, Ty = 0 by definition, and F{;
{fi)s fij+1) - f(a)}- For the additive case, one can write:
d
Culz) = (%‘) - fB(jfl))u(F(j))
j=1

= 2: (as(j) - x<j_1)) (u({ﬁj)}) +ot u({ﬁd)}))

d
= iju({fj}% &)
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Figure 1: An example of the Choquet integral.

which is the weighted sum, identical to equation (1).

The Choquet integral as in equation (3) requires ordering of x,
which might not be efficient for practical purposes. A representation
of non-additive measures, that can be used for computing the Choquet
integral, is the Mobius transformation, defined as [14]:

w(B) = mu(A), ®)

ACB

where the Mobius transform m,, is defined as follows:

my(A) = Y (~)"(C). ©)

CCA

Thus, there is a one-to-one mapping between measure p and its
Mobius transformation m,,. The Choquet integral with respect to the
Mobius transform could be written as [11]:

Cu(z) = mu(f) x mina;. 7

fCF e

Equation (7) obviates the need of ordering = for computing the Cho-
quet integral, but we need to find the minimum values in a set.

4 A Local Non-additive Nonlinear Explainable
Model

In this section, we first present the notion of the non-additive expla-
nation based on the Choquet integral and then develop an efficient
algorithm based on support vector regression to estimate the param-
eters in the Choquet integral (i.e., the contributions of any subset of
features).

4.1 Non-additive explanation

Let f be the trained model and g be a local surrogate model for
the explanation. We seek to explain the prediction f(z) for a single
input z. For doing so, explanation methods often use a simplified
version of x, shown here by x’, where the original data could be
estimated by the mapping = h.(z"). The simplified version of the
sample is different for various types of inputs. For text classification,
a simplified input is a binary vector showing the presence or absence
of a word, or for image classification, it is a binary vector showing

the presence or absence of super-pixels (i.e., a batch of similar pixels
in a neighborhood). In any case, the local methods try to build a
model like g whose prediction for =’ matches the original prediction,
ie., g(z') = f(ha(z')). We show the original sample by = € R?,
the binary vector for the interpretation by =’ € {0, 1}4/, and the
perturbed samples from x’ by 2. The following definition provides a
basis for the non-additive explanation model.

Definition 1 (Non-additive Explanation) A non-additive explana-
tion model is a nonlinear function of binary variables, defined as:

9(z") = po + Cu(z), (®)

where 2’ € {0, 1}d,, to € R, and i € R 1 and d' is the number
of input features to the explainable method.

According to Definition 1, we need to identify the parameters of
the non-additive measure in the Choquet integral. These parameters
identify, not only the attribution of each individual feature but also
the contribution of any subset of features.

The non-additive explanation as in Definition 1 could also be writ-
ten based on the Mobius transformation:

2" = po + my (Friy) X min 25, )
9(z) =p ig;w} u(Fray) x min z

where Fi;3 = {fj|j € i} is the Mobius coefficient for set 4. To
simplify the notation, let I = {1, ...,d'} and denote its power set by
3. Also, letw : X1 — N be a one-to-one function that gets a subset
from [ and returns a unique natural number less than 2% — 1. For
further simplification, we define m = [m1, ma, ..., My ;| where
mq = mu(Fry-1¢4)) (u™" is the inverse of u) and write equation

(9) as:

24 1
. /
z) = mg X min Zz;. 10
9(2") = po + qE:l R (10)

This equation implies an additive representation of a non-additive
measure, but the additive representation is in a higher-dimensional
space (i.e., 24 — 1). We use this representation to estimate the param-
eters of the Choquet integral. Recall that the number of parameters in
equation (9) is the same as that presented in Definition 1.
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4.2 Explanation model

To provide an explanation for a single prediction, a popular strategy
is to create a neighborhood around the sample under the explanation
[28, 7]. This is typically done by perturbing the corresponding binary
vector 2z’ and generating new samples around it. The influence of
each generated sample on building the explanation model g could be
proportionate to its distance to the original input z’. The proportional-
ity is taken into account by using proper loss functions weighted on
the distances of the samples. We show the distance function for the
explaining instance z’ is Y,.

Another important aspect of the explanation, also discussed in
[28, 21], is the complexity of the provided explanation, as the complex
explanation (like linear models with many non-zero coefficients or a
deep decision tree) could not be essentially interpretable. This is why
the complexity of the explanation model should be controlled. As a
result, the following model is used for building an explanation model
for 2’ [28, 21]:

min L(f,g,7%.1) + Q9), (D

where €(g) is a function controlling the model complexity of g.
LIME [28] entails the distances to the sample under explanation and
the complexity of the explanation model by using the weighted lasso
for estimating a linear g, where the loss is the weighted least square
and (2 is the ¢; regularization. Kernel SHAP (i.e., the model-agnostic
version of SHAP) also uses a similar framework, but the weights for
the model are computed based on the Shapley value formula [21, 7],
and they include the ¢; regularization in their implementation for
controlling the complexity. Within this framework, we now develop a
non-additive, nonlinear explainable method.

4.3  Support vector regression for estimating
contributions

The non-additive explanation as presented in Definition 1 has many
advantages. However, the number of parameters is still exponential to
the number of input features. As a result, obtaining such an explana-
tion could be very time-consuming.

‘We now develop an efficient algorithm based on support vector re-
gression (SVR) that can estimate the non-additive measure parameters
in the non-additive explanation. The reason that we think of the SVR
is that there is an additive representation, as presented in equation (9),
that can represent the non-additive measure in a higher-dimensional
space. Intuitively, it resembles mapping to the feature space in the
SVR, where it is assumed that the input data are linearly separable
in a higher-dimensional space (e.g., infinite dimension for the radial
basis function).

We then propose the following optimization model for the non-
additive explanation for =’ based on the SVR:

inQ(p) +C W&
min Q(y) ;vi

st. Cu(zi)+b—yi=&, i=1,..,n, (12)

where Q(u) is the regularization controlling the complexity of the ex-
planation model, b is the bias term, and C' is the regularization param-
eters indicating the trade-off between the error and the regularization,
n' is the number of samples generated for building explanation model,
z; represents a generated samples, and v; = ~,(z;). For purpose
of solving this nonlinear problem, we use the Mobius representation

of the Choquet integral as in equation (9), as it does not require the
ordering of values and can uniquely correspond to a non-additive
measure. In order to do so, we assume that F' = {f1, ..., i/ } is the
input features to the explainable method, and then rewrite the Choquet
integral for a sample z € R as:

24" 1 2d’ 1
. / N T,
Cu(z) = po + g mg X min zj = E MeZq =M’ 2,

p jeu=t(q) pry

2d _1 . .
where 2 € R is the following vector:
2= (21, 22y .oy Zar,min{z1, 22}, ..., min{zg _1, 24 },
min{zl,22723},...,min{zl,...,zd/}), (13)

and m is a vector representing the Mobius coefficient of the corre-
sponding set in 2. Using this equation, minimization (12) is rewritten
based on the Mobius coefficient as:

R TR A
oin o lmll2 + C;%fi
st. m s 4+b—yi=6&, i=1,...n. (14)
The Karush-Kuhn-Tucker (KKT) optimality conditions for this min-
imization can be summarized as the following linear system (see
Appendix A for more detail):

At a

where K € R *" is a matrix with elements K =3T%,Qisa
diagonal matrix whose diagonal elements Q;; = 1/2Cy;, and e is a
vector of one. The solution of the system is then calculated by:

e"(K+Q) 'y

b= TE Q) e

a=(K+Q) (y—eb)

By calculating o based on the above equation systems, m is computed
from the following equation (see Appendix A for more detail):

=1

For applying the SVR, we need to calculate the matrix K according
to 2;’s. In the following theorem, we show that this matrix can be
calculated very efficiently. See Appendix B for the proof.

Theorem 1 The elements of matrix K in equation (15) can be calcu-
lated as:

k

Kij=2l%=Y (j) : 17)

j=1

where q is the number of non-zero elements common in both z; and
zj, and k denotes the k-additivity of the non-additive measure.

4.4  Time Complexity

The main advantage of using the SVR is that we only need to perform
a few arithmetic operations, proportionate to the number of samples
for explanation n’, or alternatively, solve n’ -+ 1 linear equation sys-
tems, where n’ is independent of the number of input features d’ and
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length of m (that is 27 — 1). One way of obtaining the solution to the
SVR problem is by computing the pseudoinverse of n’ + 1 x n’ + 1
matrix (see Appendix A). The inverse is computed in O(n'®), and the
solution to the SVR can be computed with a matrix-vector multiplica-
tion by n’? multiplications and summations. Also, for computing the
coefficient m, we also need the n'2% multiplications and summations.
Note that the latter two operations are not iterative and we need to do
the matrix-vector multiplications only once.

5 Importance and Interaction Indices

For an additive measure, the importance of a feature is basically iden-
tified by the corresponding coefficient. This implies that the influence
of a feature like f; is independent of the presence or absence of other
features. For the non-additive measure, as used in the previous sec-
tion, the importance of a feature is also influenced by the presence or
absence of other features.

For a given non-additive measure y over a set of features, a nat-
ural way to identify the importance of each feature is to look at the
importance augmentation when a new feature like f; is added to any
subset A € F. Thus, we need to compare p(A U f;) and p(A) for
all A C F'\ f;. The Shapley value, also called the importance index,
is basically the average of the difference p(A U f;) and p(A) for all
possible subsets A:

> WLM (AU f;) — p(A)),

ACE\f;

o(fi) =

where ¢(f;) (or simply ¢;) is the importance of f;. For the additive
case, L(AU fi) — p(A) = p(fs) so that the Shapley value also boils
down to (i)l = ,LL(fZ) = w;.

The feature importance in SHAP is merely an estimation of ¢;’s,
but here we estimate measure p that includes all the parameters re-
quired to compute the importance of features ¢;. An important by-
product of such an approach is that we can compute the interaction
indices as well. The interaction index between two features f; and f;
is also defined as [25]:

L;j:

s

1
| (AU i, f5})
acnngy (m =D (L) (

—w(AU{fi}) — p(AU{f5}) +M(A)>7 (18)

that basically averages the marginal contribution of features f; and
f; to any possible subset of features (excluding f; and f;). Generally,
the interaction index can be extended for any subset of features like
T C F, and is defined from the Mobius coefficient m as [13]:

1
Ir = Z WW(B) 19)
BITCB

As aresult, identifying the non-additive measure enables us to com-
pute the importance and interaction indices.

The importance and interaction indices based on the Shapley value
are only a class of indices that can be used here. It is also possible to
use other indices; examples are the Banzhaf power index as an impor-
tance index [10], and the recently proposed Shapley-Taylor interaction
index [30]. In any case, the proposed method, which identifies the
parameters of a non-additive measure, could be used to compute such
quantities.

The interaction index only indicates the interaction of the features
for a prediction and not their joint importance/influence on the pre-
dicted value. For explainability, however, the importance of a subset
of features to the prediction is desired.

Definition 2 (Joint feature importance) The importance of feature
set A C F is defined as:

G(A) =D ¢(fi)+ > Ir. (20)

ficA TCA

For instance, the joint importance of two features ¢ and j based on
the above definition could be computed as:

o({fis £3}) = o(f3) + 6(fi) + L 5. 1)

So, for nonzero I; ;, the joint importance of two features f; and f;
could be higher or lower than the sum of the importance of each
individual feature, resulting in a non-additive explanation.

6 Experiments

This section provides some experiments regarding the proposed
method and compares them with state-of-the-art explainable methods.
We first use synthetic data sets with known ground truth explanations
that enable us to compare different explainable methods objectively.
We also use three models to compare the explainable methods on
the post-hoc accuracy and execution time. First, we train a bidirec-
tional LSTM on the IMDB reviews for sentiment analysis. We set
the window size to 256, and the dropout to 0.2, with a dense layer
with a sigmoid activation function. Second, we train a random forest
with 50 trees on the Boston housing dataset. Third, we use a real
case study, where we develop a BERT-based deep neural network
to classify the clinical trials of a medical company as worthy (to be
included in the database) and non-worthy. See Appendices C and D
for other experiments. The Python implementation of ChoquEx is
publicly available'.

6.1 Synthetic data

We first experiment on several synthetic data sets to compare objec-
tively the efficiency of the proposed method. We create three synthetic
data sets that are with known ground truth for explanation in or-
der to quantify the goodness of different methods. The data sets are
variations of commonly used data sets in explainability and feature
selection [4, 5]. The first dataset is a 2-dimensional XOR function,
acting as a binary classification. The data set X is 10-dimensional
and generated according to the standard normal distribution, and the
target Y is computed as P(Y = 1]|X) x exp(X1X2). Every sample
in this data set has the first two elements as true features, which are
individually independent of the response variable, but jointly affect
the response. For the second data set, we set the target variable as
Y x exp(—20cos(2X2) + 2|X3| + X1 + exp(—X4)), which is a
nonlinear additive function with respect to X. As a result, the first
four features for each sample in this data set are the important ones,
on which the response variable is dependent. For the third data set,
we set the target variable as Y o exp(3">_, X7), thus only the first
three features influence the response.

The three data sets were subjected to the random forest with a
maximum depth of ten, and the explanations for 300 test samples are

L https://github.com/Majeed7/choquex
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Figure 2: The box plot of explainable methods on three synthetic data sets.

generated with ChoquEx, LIME, Kernel SHAP, BivariateSHAP [23],
and L2X? [4]. BivariateSHAP can detect the pairwise interactions
between features, and L2X is able to detect the interactions of higher
orders through the use of mutual information. Since the true underly-
ing feature for each sample is known, we can check if the explainable
methods have correctly identified them. The selected features by the
explainable methods are ranked based on their identified importance
and we compute the median rank of the true features for each test
sample. Figure 2 shows the box plot of the median ranks for the
explainable methods on the three synthesized data sets. For the first
data set, ChoquEx and BivariateSHAP have the best performance and
outperform other explainable methods significantly. This is due to the
fact that the first data set includes interaction between two features, so
BivariateSHAP can also detect the interactions properly. In the other
two data sets, ChoquEx and L2X have the best performances since
they can capture highly nonlinear relationships with higher-order
interactions.

6.2 Local accuracy and execution time

The fidelity of the local explanations is an important yardstick to
compare different explainable methods. For doing so, we compare the
prediction of the local explainable model with that of the predictive
model: The closer the two predictions are, the better the explain-
able model could capture the behavior of the predictive model. Yet
another important criterion is the execution time for generating the
explanations.

To conduct a comparison, we generate explanations for a num-
ber of samples from the IMDB reviews, the clinical trials, and the
Boston housing dataset, and compare the explanations generated by
ChoquEx (with k = 5 and k = d’), LIME, Kernel SHAP?, L2X, and
BivariateSHAP. Table 1 shows the means square error (MSE) of the
local explanations and the execution time for different explainable
methods. According to Table 1, the proposed method has better per-
formance in terms of MSE, since it is a nonlinear model as opposed
to LIME and Kernel SHAP which uses linear regression for creat-
ing the explainable model. Specifically, the ChoquEx performance
increases when we increase the order of interactions from 5 to d'.
BivariateSHAP and L2X have also very competitive results, implying
that the accommodation of feature interactions can lead to a better
surrogate model for an explanation. Regarding the average execution
time, ChoquEx is competitive with LIME, both superior to Kernel
SHAP. This means that we can reliably identify feature importance
and interactions with the proposed method in a reasonable time. L2X
is also very fast as it learns the explanations of all samples at once (by

2 L2X needs to train a neural network for generating explanations; we use the
same architecture of the original paper for our experiments.

3 We use Kernel SHAP because it is model-agnostic and can be applied to all
models; even though it sub-samples the training set.

training a neural network for explanation). Bear also in mind that the
average execution time for BERT and LSTM is much higher since we
need to get the predictions of those models for the samples generated
for an explanation, and the forward pass in the LSTM and BERT is
time-wise expensive.

6.3 IMDB sentiment classification

From the LSTM model trained on the IMDB review dataset, we
generated explanations for 100 reviews and found the interactions
between different words. Table 2 shows some of the interesting inter-
actions detected by ChoquEx. The redundancy is captured properly
by ChoquEx: In the second example of Table 2, the words hated and
words convey the same message about the negative sentiment of the
review. A similar redundancy exists in terms good and very funny, as
well as in boring and not ... exciting in the fourth and fifth example of
Table 2, respectively. In addition, in the third example, the words must
see has strongly positive interactions. This is aligned with the context
of the review since both words together are a stronger indication of
the positiveness of the review.

To demonstrate the non-additive explanations, we plot the interac-
tion and importance explanation provided by ChoquEx on the first
IMDB review example in Table 2. Figure 3a shows the feature impor-
tance and interaction index of the top three compounds in the given ex-
ample. According to this plot, the term not pushes the prediction of the
review to have a negative sentiment (¢(not) = —0.43), while good
forces the prediction in the other direction (¢(good) = 0.24). There is
also a negative interaction between the two terms: I50¢,good = —0.33.
Since such values only indicate how the two features interact with
each other, not how they influence the prediction, we can calculate
the joint feature importance as in Definition 2. Accordingly, the joint
importance of not and good is calculated as:

¢(not V good) = ¢p(not) + ¢(good) + Inot,gooa = —0.52.

Figure 3b plots the joint feature importance of the IMDB review
example. This highlights the non-additive explanation provided by
the proposed ChoquEx.

7 Broader Impact

The main purpose of this work is to provide more insight into the
black-box machine learning models. A critical risk of using ChoquEx
is how the interactions between different features are interpreted,
which might be confused with the importance of interacting features.
For instance, the negative interactions between two features are a sign
of redundancy of the features involved, not that negatively impacting
the prediction. Also, the user of the method should not rule out other
explainable methods for their experiment. For instance, if there is a
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Table 1: The comparison of explainable methods based on mean square error (MSE) of the local explanation and the average execution time in

seconds (rounded to the first integer).

MSE Average time (s)
Method LSTM BERT RF | LSTM BERT RF
LIME 12¢72  14e 2 3¢ 3 123 214 2

Kemnel SHAP | 1le™2 13e~2
ChoquEx(5) 872 10e 2
ChoquEx(d") 6e 2 2¢72
L2X 10e™2  6e™2
BivariateSHAP Te? 5e™2

473 | 310 426 29
4e73 136 251 3
4e~3 139 267 5
2¢3 73 210 2
4e~3 120 272 12

Table 2: Some examples of word interaction from the IMDB reviews.

Reviews (bold words with interactions) | interaction index
... the movie ... is not good at all -0.32
Hated it with all my being Worst movie ever... It was that bad ... -0.28
A great film in its genre the direction ... A must see 0.45
This is a good film This is very funny ... -0.15
the movie was absolutely boring there was not a single exciting event ... -0.3

Interaction plot

- _

not+good

- -

=05 =03 =01 0.1 0.3

(a) The ChoquEx interaction explanation.

Feature importance plot

- _
| -

-05 -03 -0.1 01 0.3

(b) The ChoquEx joint feature importance explanation.

Figure 3: The ChoquEXx interaction and importance plots on an exem-
plary review (first review in Table 2) from the IMDB dataset.

need to generate neuron-level or pixel-level explanations for respec-
tively neural networks and image classifications, other methods might
better fit such needs. There are also other domain-specific societal
impacts. For instance, we use ChoquEx to provide explanations for the
experts who want to decide to include clinical trials in their database.
If the explanations convince the experts not to include the clinical
trial, then the patients would not be able to see the clinical trial, and
consequently, miss a relevant clinical trial.

8 Conclusion

This paper presented the non-additive explanation for predictive mod-
els based on the Choquet integral. In the given framework, a parameter
in the non-additive measure is assigned to indicate the contribution of
each individual and any subset of features, which increases the num-
ber of parameters exponentially. Nonetheless, we develop a support
vector-based method to estimate the parameters of the non-additive
measure very efficiently, whose complexity is only dependent on the

number of samples generated for an explanation. The proposed model
is a nonlinear surrogate model for the local explanation, which is
unique as the common approach is to use a linear surrogate model for
explainability.

There are many avenues for future research. An essential research
complementary to this study would be to develop a model based on
Choquet integral to provide global explanations. A by-product of
such an approach is to capture a holistic interaction structure among
different features, that could be further used as input for local explain-
able methods. Other types of Choquet integral should also be studied
for explanations. For instance, the level-dependent Choquet integral
could be used to provide local and global explanations simultaneously,
obviating the need to build a local surrogate model for every sample.

ChoquEx uses the SVR as a workaround for the exponential number
of parameters resulting from adding the feature interactions, nonethe-
less, we need to compute the primal solution that includes 27 param-
eters. Given the size of the parameters, the number of operations in
ChoquEx is not high (i.e., n’ multiplication summations for each ele-
ment). However, such operations could be quite time-consuming for
large-scale problems. One way to deal with this issue is to restrict the
order of interactions. Alternatively, the Shapley value and interaction
index (or other indices) could be rewritten based on the solution to
the dual problem of the SVR, so that we can directly compute the
Shapley values from the solution to the dual SVR problem.

Also, another aspect to investigate is the sample-generating mech-
anism. First, the number of samples in ChoquEx is deemed as a
hyperparameter, similar to LIME and SHAP. In addition, the sam-
ples generated for the explanations ignore the causal structure in the
data. Besides, feature interactions induce a causality between the fea-
tures and their associated interactions. Thus, studying both feature
interactions as well as the causal structure is an interesting problem
not only for explainability but also for the broader machine-learning
community.
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A Finding the optimal to the SVR

To solve problem (14), we introduce the following Lagrangian prob-
lem:

1 o
L(m,&,b,0) = S[mllz + C Y vigl =
i=1

’
n

Z ai(m” 2 +b—yi — &), (22)
=1
where « is the Lagrangian multiplier. Following the Karush-Kuhn-
Tucker (KKT) conditions, we have:

oL A
a—m—ij—;aizl,

oL O:>Zai:0,

b

8L (67

851 =0= 52 o 20’}/7;
8L:0:>mT73i+b—yi—§i:0A (23)
80@

By combining the above equations, the solution to minimization
(14) follows from solving the following linear equation systems:

AR [N T

where K € R *" is a matrix with elements Ky =27%,Qisa
diagonal matrix whose diagonal elements Q;; = 1/2Cy;, and e is a
vector of one. The solution of the system is then calculated by:

K+ Q)Ty

b= eT(K+ Q) te

a=(K+Q) " (y—eb)

By calculating o based on the above equation systems, m is com-
puted by the first equation in (23), and the non-additive measure p by
equation (5).

B Proof of Theorem 1

Proof 1 The inner product is invariant to identical permutations of
the two vectors. Thus, we permute the vectors z; and z; in a way that
the first q elements are one in both vectors:

x=[1,1,...,1,..]
N———
q
y=[1,1,...,1,..] (25)
N———
q

where x and y are, respectively, shown the permuted z; and zj on
interest of simplicity. It follows:

(2,2)) = ;1y1 + ... + 2qyq + min{z1, 22} min{y,, y2}
+ ...+ min{xg_k, ..., g} min{yq—k, ..., Yq }, (26)

where the other elements are zero since either x or vy is zero in those
components, making the associated min operation zero. The total
sum in equation (26) is indeed the number of the remaining terms,
which could be counted based on the number of elements in the min

function (selecting the number of parameters in min from the total of
q non-zero elements):

@ . @ **@:Z@ .

one element  two elements k elements

that this completes the proof.

C Experiment on the entity linking use case

Entity linking refers to assigning a unique identity to entities appearing
in a free body of text. It is typical that the combination of some words
in the text might lead to linking any of the words to a different entity.
To replicate such interactions, consider the following text about the
central train station of Amsterdam:

This is Amsterdam Central Station, the transit hub that integrates
two bicycle parking, two bus stations, two tram stops, and the
central railway station for the city in the province of North Holland,
Netherlands.

It is clear that the words “Amsterdam"”, “Central", and “Station"
would refer to different terms (e.g., ’Amsterdam’ refers to the city),
but the three terms together refer to the main train station in the city
of Amsterdam. We create a synthesized classifier that returns one
if a given piece of text contains all three words consecutively, and
zero otherwise. The goal is to explain this classifier with LIME and
ChoquEx. Figure 4a shows the explanation provided by LIME on
the given example. As expected, LIME cannot provide a reliable
explanation nor capture the interaction and importance of the words in
the text. Figure 4b provides the explanations provided by ChoquEx on
the given example. For the purpose of completeness, we demonstrate
all the feature importance and interactions captured by the proposed
method. The importance of the terms “Amsterdam", “Central", and
“Station" are equivalent in the explanation, which is also expected
in the given example as the three words together would lead to
a prediction of one from the classifier. For the joint importance
values, the interaction between the three terms is also correctly
captured by ChoquEx. Less clear interaction is the binary joint
importance between any two terms of the three, but it is indeed from
the ternary interactions of the word that affects the 2-way interaction
as calculated by the Shapley interaction index (see equation (19)).

D Image classification

We also applied ChoquEx to explain the prediction of an image clas-
sifier. For doing so, we use Inception V3 as an image classifier and
applied ChoquEx to three images for generating explanations. Figure
5 shows the explanation generated by ChoquEx. The first column
depicts the original image, the second shows the most important su-
perpixels for the prediction, and the other columns demonstrate the
superpixels with positive interactions identified by ChoquEx. It is
evident that ChoquEx can identify the most important superpixels
for the classification. In addition, it assigns positive values for the
interactions of those superpixels.
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Amsterdam

0.6 0.8 1.0

(a) The LIME explanation.
Explanation

0.0 02 04 06 08
(b) The ChoquEx explanation.

Figure 4: The LIME and ChoquEx explanation for the synthesized
example.
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(d) 4-order interaction

(e) top pred.: Labrador retriever (f) Explanation (g) 2-order interaction (h) 3-order interaction

(i) top prediction: Tree frog (j) Explanation (k) 2-order interaction

Figure 5: Explaining Inception V3 for image classification with ChoquEx.
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