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Abstract. In Multi-Agent Systems (MAS), Multi-Agent Path Find-
ing (MAPF) is the problem of finding a conflict-free plan for a group
of agents from a set of starting points to a set of target points. De-
viations from this plan are standard in real-world applications and
may decrease overall system efficiency and even lead to accidents
and deadlocks. In large MAS scenarios with physical robots, multi-
ple faulty events occur over time, contributing to the overall degraded
system performance. This raises the main problem we address in this
work: how to attribute blame for a degraded MAS performance over a
set of faulty events. We formally define this problem and propose us-
ing the Shapley values to solve it. Then, we propose an algorithm that
efficiently approximates Shapley values by considering only some
subsets of faulty events set. We analyze this algorithm theoretically
and experimentally and demonstrate that it enables effectively trad-
ing off runtime for error.

1 Introduction

Multi-Agent Planing (MAP) is the problem of finding a set of plan
series for a group of agents known as Multi-Agent System (MAS) to
execute in order to achieve a goal defined by the system [48]. MAP is
a known problem and has been studied and applied in many domains,
and in particular in the Multi-Agent Path Finding (MAPF) domain
[49, 32, 46].

The execution of such plans often deviates from the plan. Such de-
viations may occur for a variety of reasons, including internal reasons
(i.e., failures in the navigation systems of an agent [37]), external
reasons (difficult environmental conditions such as sandstorms [11]),
or due to imprecise assumptions about the world [36]. The impact
of these deviations may lead to system failures, e.g., accidents and
deadlocks, or unacceptable degradation in overall system through-
put. For example, consider an automatic warehouse where robots are
tasked to move items [47]. A delay in one of the robots may cause
it to interfere with another robot which in turn will interfere later
with other robots, and so on. Eventually, this can cause a significant
and unacceptable delay in moving the items. Another example comes
from the domain of multi-agent logistics [32], where agents collab-
orate to move packages from one place to the other by passing the
packages between each other. A faulty execution of an action may
cause a chain reaction which will lead to package delivery failure.

An important question to ask when a multi-agent system fails is
“what is the root cause of the failure?”. Previously proposed diagno-
sis algorithms for MAS [29, 28] were designed to answer this ques-
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tion and localize the responsible faulty events. However, they do not
account for the possibility that each agent in the MAS deviates a lit-
tle bit. In this work we ask the complementing question: “how much
did each faulty event contribute to the system failure?” We denote
this question as Blame Attribution. To motivate answering the blame
attribution question, consider an automated warehousing company.
The agents continuously move items, and unavoidably, small devi-
ations in the agent’s movement speed are constantly occurring. On
a small scale, this is acceptable, but with time those deviations pile
up and cause jams that lead to an unacceptable decrease in through-
put. Assigning blame to individual faults is helpful since it allows
the planning team to plan more robustly for future tasks. The QA
team logging the faults can forward the faults that matter, helping the
planning team replan more effectively. For instance, blame attribu-
tion might conclude that a specific agent that rotates slowly should
be given tasks that involve fewer rotations or that only a selected
number of robots should traverse a key area (i.e., a narrow corridor)
at any given time. This is very useful for companies that wish to
cut costs and use their agents to the fullest. In another scenario of
autonomous vehicles, diagnosis algorithms may infer which defec-
tive vehicles are to blame for an accident, but will not determine how
much each vehicle contributed to it. This could be achieved by blame
attribution algorithms.

The first contribution of our paper is to formally define the blame
attribution problem in the context of MAPF execution failures. We
call this the Blame Attribution for Multi-Agent Path Finding Ex-

ecution Failures (BAMPEF). There may be multiple ways to at-
tribute blame, but in this work, we propose to use the well-known
Shapley Values [43]. Shapley values have been used in game theory
[39, 38], in moral philosophy [53, 33], law [10], politics [21, 9], and
other areas [14, 13]. Also, it has several desirable properties that are
suitable for BAMPEF.

Unfortunately, the calculation of Shapley values is exponential in
the number of members (in our case, fault events), as it iterates over
all subsets of them. For instance, the execution in our domain took
36 seconds on average when executing with 13 fault events that the
agents were involved in. To address this gap, there are approaches
that improve run-time by approximating the real Shapley values,
for example by sampling subsets of the fault events [4]. The sec-

ond contribution of this paper is a fast method to approximate the
Shapley values that we call Diagnosis-Directed Blame Attribution

(DDBA). DDBA uses concepts from the field of Model-Based Di-
agnosis [40] to identify which subsets of fault events are sufficient to
obtain an effective approximation for the shapely values, and which
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will not contribute as much. Limiting this calculation to consider
only these subsets significantly reduces the run-time. For instance,
in the same example of 13 fault events it took 1.62 seconds on aver-
age, while the mentioned sampling-based approach ran for 3.54 sec-
onds. Experiments show that our proposed method outperforms the
sampling-based calculation in terms of run-time, and still provides a
better approximation of the Shapley values.

2 Background and Related Work

In this section, we present the necessary background for our work, in-
cluding Multi-Agent Planning, Multi-Agent Path Finding and Shap-
ley values, and survey previous work on robust path finding, MAS
diagnosis, and blame attribution.

2.1 Multi-Agent Planning and Path Finding

Multi-Agent Planning (MAP), is a well-studied AI domain [49]. The
domain’s main problem is finding a series of actions that allows
a group of agents to achieve their goals while minimizing costs.
The problem for n agents is formally defined as a tuple TMAP =
〈AG,V,A, I,G〉whereAG = {1, ..., n} is a finite non-empty set of
agents, V =

⋃
i∈AG V

i where Vi is the set of state variables known
to agent i, I =

⋃
i∈AG I

i is a state of fluents that defines the ini-
tial state, G is the set of goal states, and A =

⋃
i∈AG A

i is the set
of actions. [49]. A solution to this problem is an ordered set of ac-
tions whose application achieves the system’s goals. A specific but
widespread use of MAP is the field of Multi-Agent Path Finding.

Multi-Agent Path Finding (MAPF), is also a well-studied AI do-
main [46]. The main problem in this domain is finding paths from
starting points to target points for a group of agents while minimiz-
ing costs. The problem for n agents is formally defined as a tuple
〈G, s, t〉 where G = (V,E) is a graph representation of a set of lo-
cations (V ) and the roads between them (E), and s : [1, ..., n]→ V ,
t : [1, ..., n] → V maps each agent to its start and target vertices
on the graph, respectively. A solution to this problem is a set of n
single-agent paths, one for each agent.

2.2 Shapley Values

Calculation of Shapley Values is a concept from the game theory
domain, first introduced in 1953 [43]. The goal of Shapley values
calculation is to determine the division of power among a group of
members. This is done by using the marginal contribution of each
member to the various subsets of the member group. A formal defi-
nition can be found in many forms in the literature [54, 42, 51]. We
give here one of those forms.

Definition 1 (Shapley Value). Given a group N of n members and a
cost function v : 2N → R, the Shapley Value for member i is defined
as follows:

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

[
v(S ∪ i)− v(S)

]

We next present related work on Diagnosis and Shapley values.

2.3 Related Work

A common approach to address MAS failures, particularly in the
MAPF domain, is to run a diagnosis process to identify the faulty

agents that caused the failure. Our work addresses a different aspect
- given a system failure, attributing the blame among the fault events
that caused the failure. To that end, we survey works in three research
fields: MAS Diagnosis, MAPF and Blame Attribution in AI.

MAPF algorithms address MAPF execution failures in a variety of
ways. One work addresses delay and acceleration faults in the MAPF
execution by postprocessing the output of a MAPF solver [20]. Their
approach considers the robots’ velocities and creates a safe distance
between them. Another work proposes pathfinding that considers de-
lay probabilities (MAPF-DP) [31]. The authors propose a solver for
generating MAPF-DP solutions and policies for robust plan execu-
tion. Addressing a more general problem of MAPF under uncertainty
was done in a later work [52]. The authors develop a multi-agent
path planner that considers uncertainty. The planner plans through
the belief space of the agents and coordinates agents that are likely
to collide. Another work [19] presents a robust framework for multi-
agent plan execution that deals with uncertainty and unpredictable
speed changes and obstacle appearances. The authors demonstrate
their method on warehouse simulations and mixed reality simulations
using physical robots. Lastly, a recent work applied MAPF plan exe-
cution techniques to a realistic railway scheduling problem with un-
certainty [30]. By incorporating existing state-of-the-art MAPF tech-
niques, the method is capable of planning collision-free paths and
deadlock-free actions in real time.

The above work shows how planning before or during execution
helps build robust systems. In the case where systems fail, diagno-
sis methods are used. Diagnosis of MAS has been studied in vari-
ous settings w.r.t. different criteria [28]. Attributes like fault types,
centralized/decentralized methods of diagnosis, number of observa-
tions, and temporality are some of the settings that previous work
addresses. Fault type is a notable point of the difference between
previous work. Some studies aim to diagnose faulty agents when a
fault in the execution of the plan occurs [8, 41, 7, 34, 35, 50, 37].
Others aim to diagnose failures in the cooperation between agents
[6, 24, 27, 25, 26, 23]. We refer to [28] for a comprehensive sur-
vey of previous work in this field. In all the mentioned work, the
assumption is that agents are either "faulty" or "not faulty", with no
intermediary values. One can imagine a system where many of the
agents fail a bit (e.g. lags in its movement in the MAPF domain). In
such cases, diagnosing the faulty agents is not sufficient, but rather
blame attribution is necessary.

Blame Attribution has been addressed previously in the context of
responsibility and blame in AI [5, 18, 17, 12]. These works present
definitions for the concept of blame attribution, while considering en-
vironments where a number of members participate. They also point
out challenges in blame attribution in systems where an action of
one member influences the actions of another [18], which is com-
mon in multi-agent systems where the action of one agent depends
on or influences other actions. Building on the above work, a recent
work [51] addresses the task of allocating blame to agents for caus-
ing system inefficiency [51]. They particularly focus on cooperative
decision-making formalized by Multi-Agent Markov Decision Pro-
cesses (MMDPs). They present criteria of desirable properties for
blame attribution, inspired by game theory literature [22, 45, 3]. An
example of such property is the Efficiency which states that the value
of the grand coalition is distributed among the members. They study
some of the known blame attribution methods with relation to this
criteria: core [15], Shapley Values [43, 44] and Banzhaf Index [1, 2],
and also introduce a novel blame attribution method. Although pre-
senting important results, the run-time of the various methods is not
presented. In our work, we focus on the Shapley values to attribute

A. Natan et al. / Blame Attribution for Multi-Agent Path Finding Execution Failures1764



the blame among fault events in a multi-agent system, while improv-
ing the run-time of the baseline Shapley values by using a diagnosis-
based method. In another work [4], the authors present an approxima-
tion to the Shapley values that does not consider the complete subset
of the members (in our work – faults), but rather rely on a random
sampling of subsets. This sampling provides an approximation to the
Shapley values and by doing so, reduces the run-time. Our method
also uses select subsets of the faults set but chooses the specific sub-
sets which are connected to the success of the system, thus guiding
the entire process to a closer approximation of the real values.

3 Methodology

In this section, we define the problem of Blame Attribution in Multi-
Agent Plan Execution Failures (BAMPEF) and propose an algo-
rithm for solving it. Our algorithm is general and requires a plan
as an input. The algorithm can easily be configured to conform to
different inputs of different domains. For simplicity, we define and
demonstrate our method on the well-studied domain of Multi-Agent
Path Finding (MAPF) that we surveyed in the previous sections [46].
Notable application instances are automated warehousing [47] and
automated parking [55]. We first define domain-specific preliminar-
ies for MAPF and then present our domain-agnostic approach.

3.1 MAPF related preliminary definitions

A solution to the MAPF problem is a set of single-agent plans
(paths), one for each agent. Here we describe the plan:

Definition 2 (Plan). Given a set of agents A, time-steps T ⊆ Z
+

and locations V , a plan π : A × Z
+ → V is a mapping of (a, t) to

the location agent a is planned to hold at time-step t, ∀a ∈ A, t ∈ T .

Example 1. Table 1 shows an example of a plan π, and Figure 1
shows a visualization of the plan. We will use them as a running
example throughout the paper.

π t1 t2 t3 t4 t5 t6 t7 t8
a1 (7,3) (6,3) (5,3) (4,3) (3,3) (2,3) (1,3) (0,3)
a2 (2,2) (2,3) (2,4) (2,5) (3,5) (4,5) (5,5) (6,5)
a3 (1,7) (1,6) (1,5) (1,4) (1,3) (1,2) (1,1) (1,0)

Table 1. A running example showing a plan π for 8 steps.

Figure 1. Visual repre-
sentation of the plan pre-
sented in Table 1. The
three arrows represent the
plans of three agents.

Once a plan is generated, the system is executed. Each agent fol-
lows its plan, and an observation is recorded.

Definition 3 (Observation). An observation o : A × Z
+ → V is a

mapping of (a, t) to the location agent a occupied at time-step t.

Another important representation of the observation is called Plan-
Step. Plan-Step is a mapping between the observed locations to their
ordinal time-step according to the plan, that is generated during the
plan execution. Formally:

Definition 4 (Plan-Step). A plan-step τπ : A × Z
+ → Z

+ is a
mapping between the wall clock time and the time-step at which the
agent was planned to occupy its current location.

In a non-interrupted plan execution, where each agent follows its
plan, the following corollary stands as a direct result of the above
definitions:

Corollary 1. Given that no faults occur during the execution, it fol-
lows that ∀a, t : o(a, t) = π(a, t), and τπ(a, t) = t.

Faulty steps, however, can happen for a variety of reasons and
manifest in a variety of forms. A realistic assumption is that agents
might not accelerate or slow down as planned due to physical rea-
sons, leading to undesired accelerations or delays. When a fault oc-
curs, Corollary 1 is no longer true. When this happens, we are in-
terested to compute the time offset between the agent’s current plan
step and the planned plan step. We define the Plan-Offset of an agent
as the difference in time between the plan steps of the agent and the
wall clock. Formally:

Definition 5 (Plan-Offset). A plan-offset Δτ,π : A × Z
+ → Z is

defined as Δτ,π(a, z) = z − τπ(a, z), where z is the wall clock.

If no faults occur, then it follows that ∀a, t : Δτ,π(a, t) = 0, and
when a fault occurs, ∃a, t : Δτ,π(a, t) 
= 0. Our work deals with
attributing the blame among the different faulty steps.

In our work, we focus on two types of faults: Delay Fault and
Acceleration fault. Both fault types, change the speed of the agent.
We generalize those faults as Speed Change Fault. Formally:

Definition 6 (Speed Change Fault). A Speed Change Fault for
agent a at time t that follows plan π is a function χ : A × Z

+ ×
Z× F

τ → F
τ that does the following: χ(a, t, z, τπ) = τ ′

π s.t :
∀t′ ≥ t, τ ′

π(a, t
′) = τπ(a, t

′) + z.

Intuitively, this definition states that a speed change fault changes
the plan-step mapping τ to consider the speed change fault that hap-
pened. For positive values of z, we denote the fault as Acceleration
fault and for negative as Delay Fault.

It is logical to assume that due to faults, agents will sometimes
interrupt other agents. In that case, we say that a conflict has oc-
curred between two agents. More specifically, we say that agent a is
in conflict at time t with agent a′ when a′ occupies the location agent
a tries to move to at time t. In many applications, conflicted agents
are instructed to stay in place, adjusting their plan offset accordingly:(
π(a, τπ(a, t)+1) = o(a′, t)∨π(a, τπ(a, t)+1) = o(a′, t−1)

)
→

∀t′ ≥ t : χ(a, t, 1, τπ)

Example 2. Tables 2, 3 and 4 show an example of an execution
(observation, plan-step, plan-offset) of the plans in Table 1 that in-
troduced some faults. The execution is also presented in Figure 2.
Agent a1 experiences two speed change faults of type acceleration
fault during time-steps one and two. This is expressed as position
skipping in Table 2, in higher time-step in Table 3 and in negative
values in Table 4 (see columns t1 and t2). During that time, a3 ad-
vances normally, and this is reflected by the first two green arrows in
Figure 1, in observation similar to the plan, shown in Table 2, and
in the expected values in columns t1 and t2 of Tables 3 and 4. Agent
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a2 experiences speed change fault of type delay fault at t2, which
causes it to remain in its position, as shown by the circle arrow and
the corresponding values in the tables. Next, in time-step 3, agent a1

tries to advance to position (2, 3), but since a2 is still there, there is
a conflict between the agents. a1 remains in its position and its plan
offset increases accordingly. The other two agents proceed with their
plans. Specifically agent a2 reaches its next position with a delay.
This example continues until the agents reach their targets, and dur-
ing which agent a1 is further delayed by agent a3. This delay is also
shown in the corresponding tables.

Figure 2. Visual repre-
sentation of a faulty execu-
tion of the plans in Figure
1. The accelerations and
delays are indicated by the
round arrows.

o t1 t2 t3 t4 t5 t6 t7 t8 t9
a1 (7,3) (5,3) (3,3) (3,3) (3,3) (3,3) (2,3) (1,3) (0,3)
a2 (2,2) (2,2) (2,3) (2,4) (2,5) (3,5) (4,5) (5,5) (6,5)
a3 (1,7) (1,6) (1,5) (1,4) (1,3) (1,2) (1,1) (1,0) -

Table 2. The observation o of the faulty execution in Figure 2.

τπ t1 t2 t3 t4 t5 t6 t7 t8 t9
a1 1 3 5 5 5 5 6 7 8
a2 1 1 2 3 4 5 6 7 8
a3 1 2 3 4 5 6 7 8 -

Table 3. The Plan-Step τπ of the faulty execution in Figure 2.

Δτ,π t1 t2 t3 t4 t5 t6 t7 t8 t9
a1 0 -1 -2 -1 0 1 1 1 1
a2 0 1 1 1 1 1 1 1 1
a3 0 0 0 0 0 0 0 0 -

Table 4. The Plan-Offset Δτ,π of the faulty execution in Figure 2.

Considering Corollary 1, when o(a, t) 
= π(a, t), we call it an
Inconsistent Event. We define three types of inconsistent events: (1)
Expected Event is an inconsistent event that can be explained by a
previous fault event. (2) A Conflict Event is an inconsistent event
where agent a′ was occupying the position to which a is planned to
move at t, or occupied it at step t. (3) A Fault Event is an inconsistent
event that is neither of the first two. Formally:

Definition 7 (Inconsistent Event). An Inconsistent Event is a tuple
〈π, o, a, t〉 where o(a, t) 
= π(a, t). We separate such events into
three types:

• Expected Event: if o(a, t) = π(a, τπ(a, t)).
• Conflict Event: if ∃a′ :

(
π(a, τπ(a, t) + 1) = o(a′, t) ∨

π(a, τπ(a, t) + 1) = o(a′, t− 1)
)
.

• Fault Event: if it is neither a conflict event nor an expected event.

We omit π, o when the context is clear. In addition, we abuse the
notation of inconsistent event to include the change in speed. A fault

event, in that case, given that we remove π, o will have the form:
〈a, t, z〉when z ∈ Z is the acceleration amount (positive or negative)
for the fault.

Using the above definitions, we can derive the fault events set,
denoted as E once a system is being executed.

Example 3. Consider Definition 7. We compute E for our
running example presented in Figure 2. The resulting set is:
E =

{
〈a1, 2, 1〉, 〈a1, 3, 1〉, 〈a1, 5,−2〉, 〈a2, 2,−1〉

}
. For instance

〈a1, 2, 1〉 denotes that agent a1 had an acceleration fault at time
step 2 - it accelerated by 1 step in executing its plan. An example of
conflict event is 〈a1, 4,−1〉, since π(a1, τπ(a1, 4) + 1) = o(a2, 3),
i.e., agent a2 holds the position that agent a1 tries to occupy at
time step 4. An example of an expected event is 〈a1, 7, 0〉, since
o(a1, 7) = π(a1, τπ(a1, 7)), i.e., considering the previously exe-
cuted steps, agent a1 should advance to the position observed at
time-step 7, although it is not originally planned.

Note that an agent that already halted can still cause a conflict. This
can happen if the goal position of that agent is on the path of another
agent, and when due to accelerations or delays, the agent reaches the
goal position before the other agent passed it.

Fault events may cause the multi-agent system degradation in its
performance. We hence define a Value Function to evaluate the exe-
cution of a plan π with observations o and the set E. There may be
different ways to define this function, in this paper, we define it as
the maximal plan offset at the wall clock time at which the system
halted. Formally:

Definition 8 (Value Function). A Value Function is a function v :
F
π × F

o × F
E → R that returns the cost of simulating π, given

the fault events E derived from the observation o. We define v as:
v(π, o, E) = maxa∈A Δτ,π(a, tlast) where tlast is the wall clock
time when the system simulation halted.

Example 4. In our example, the cost value is: v(π, o, E) =
max{Δτ,π(a1, t9),Δτ,π(a2, t9),Δτ,π(a3, t8)} = max{1, 1, 0} =
1

Now that we defined the domain-specific preliminaries, we can
use the value function v, together with the plans π, observations o,
and fault events E to evaluate simulations of plan executions, which
is the focus of the rest of the paper. As mentioned in the beginning
of Section 2.1, the preliminary definitions are domain-specific, and
should be defined separately for each domain.

3.2 The Blame Attribution problem

It is obvious that if E = ∅ then v(π, o, E) = 0. In case that E 
=
∅, we are interested to compute the amount of contribution of each
one of the fault events in E to the degradation of the system. We
thus define the problem of Blame Attribution for Multi-Agent Plan

Execution Failures (BAMPEF). Formally,

Definition 9 (BAMPEF). Given a tuple 〈π, o, E, v〉 the objective
is to compute the blame of each fault event e ∈ E.

A solution to the BAMPEF problem is a vector �S of the form
R

|E|, with each value in the vector representing the blame value of
a fault event in E. In this work, we approach this problem using
Shapley values calculation. Next, we elaborate on the way we apply
it.
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3.3 Shapley Values for Blame Attribution

Shapley values have been used in a wide variety of research domains.
The Shapley values have many desirable properties. Specifically, the
properties that are relevant to our domain are Efficiency, Symmetry,
Additivity, and Null-member. We present each of them with its rele-
vance to our domain:

• Efficiency states that the value of the grand coalition is distributed
among the members. Its relevance to our domain is trivial because
we assume the fault events are the sole reason for the system fail-
ure, and as such we are interested to distribute the blame solely
among them.

• Symmetry states that for any two equal members, the distributed
value is equal. In our domain, it means that two fault events that
have an equal marginal contribution to the system’s failure will
get the same blame.

• Additivity states that if two coalition games, described by gain
functions v and w, are combined, then the distributed gains should
correspond to the gains derived from v and the gains derived from
w. Mathematically: φe(v +w) = φe(v) + φe(w). This is impor-
tant since it allows us to aggregate Shapley values, which we do
in our approach, as we describe in the next section.

• Null-member states that the value of a null actor (an actor that does
not contribute to any coalition) is zero. It is relevant to our domain
since we assume that some of the fault events are not the cause of
the system failure, and in that case, they will receive no blame.

Those properties are desirable to our domain and specifically to our
approach. For that reason, we chose the Shapley values as a baseline
for attributing the blame among the fault events.

Recall the Shapley values formula for a member as shown in Defi-
nition 1, applying it to solve the BAMPEF problem will be formally
defined as follows:

Definition 10 (Shapley Values for BAMPEF). Given a set E of n
fault events and a value function v : 2E → R, the Shapley Value for
fault event e is:
φe(v) =

∑
E′⊆E\{e}

|E′|!(n−|E′|−1)!
n!

[
v(E \ (E′ ∪ {e}))− v(E \ E′)

]

We compute this formula for every fault event e ∈ E, and get
the vector of Shapley values �S. This vector is normalized and the
resulting vector has values ranging between 0 and 1, when their total
sum is 1. Example 5 demonstrates this calculation for our running
example.

Example 5. Given the set E from Example 3, the Shapley values
vector that corresponds to the fault set E is: �S = [0.5, 0.5, 0.0, 0.0].
This means that the first two fault events have equal blame for the
degradation of the system.

Calculating the Shapley values is exponential in the number of the
fault events, due to the iteration over all subsets of E. To address this,
we propose an approach that approximates the Shapley values, by
considering only part of the fault events in E, selected by a diagnosis
process. We elaborate on it in the next section.

3.4 Diagnosis-Directed Blame Attribution

Diagnosis processes aim to identify the root cause of a failure in a
system. In our domain, the root cause is the fault events that caused
the degradation in the system’s performance. To this end, we define
the concept of Useful Repair. A Useful Repair is a subset of the fault
events set E, that reduces the cost of the value function when the
system is simulated without having those faults. Formally:

Definition 11 (Useful Repair). Given a set of fault events E and a
cost function v : 2E → R, the Useful Repair is:

Ω = {E′ ⊆ E : v(π, o, E \ E′) < v(π, o, E)}

Once the set Ω is calculated, we calculate the Shapley values of
the fault events with respect to each ω ∈ Ω. We call this approach
Diagnosis Directed Blame Attribution (DDBA). To that end, we
extend definition 1 to consider the set ω:

Definition 12 (Shapley Value for BAMPEF w.r.t. ω). Given a
set ω ⊆ E of n fault events and a cost function v : 2E → R,
the Shapley value w.r.t. ω for fault event e is defined as follows:
φω
e (v) =

∑
ω′⊆ω\{e}

|ω′|!(n−|ω′|−1)!
n!

[
v(E \ (ω′ ∪ {e}))− v(E \ ω′)

]

At this point Ω may still be big - there may be a lot of useful
repair sets. The calculation would run on all ω ∈ Ω, and this might
lead to long run times. In order to reduce this run-time, we propose to
decrease the size of Ω by considering only ω ∈ Ω with cardinality up
to a number k. We denote the resulting smaller set as Ω′. To that end,
we iterate over the different cardinalities i ∈ [1, ..., k], and for each
cardinality, we compute Shapley values of ω ∈ Ω′ with cardinality i.

Finally, we aggregate those values over all the fault events in Ω′

to achieve an approximation to the Shapley values presented in the
previous section. Note, that the approximation does not converge to
the real value, since we consider only subsets of E that repaired the
system. However, their corresponding counterfactuals have a non-
negligible contribution to the Shapley values by definition (as they
correspond to returning to a nominal state). Thus, the motivation for
using our approximation is that it guides the approximation toward
subsets that have a larger impact on the Shapley values.

Algorithm 1: Diagnosis Directed Blame Attribution
Input: E - a set of fault events
Input: k - iterations number
Result: �S - Shapley values corresponding to E

1 �S ← [0, ..., 0]
2 for i ∈ [1, ..., k] do

3 Ω′ ←
{
E′ ⊆ E : |E′| = i ∧ v(π, o, E \ E′) <

v(π, o, E)
}

4 for ω ∈ Ω′ do

5 �S ← �S + normalize([φω
e1(v), ..., φ

ω
e|E|(v)])

6 return normalize(�S)

Algorithm 1 formalizes this approach. First, the solution vector �S
is initialized (Line 1). Then, the algorithm runs for k iterations (i ∈
1, ..., k). In each iteration, it extracts all the subsets of E that are of
size i and are useful repairs (Line 3). Then, for each useful repair that
was extracted, the algorithm computes a vector of Shapley values,
normalizes it, and adds it to �S (Lines 4-6). Finally, �S is normalized
and returned (Lines 8-9).

Example 6. Consider E from Example 3. For k = 2, the subset
Ω′ ⊆ E includes all single and double fault event sets, that are useful
repairs:
Ω′ =

{
{〈a1, 2, 1〉}, {〈a1, 3, 1〉}, {〈a1, 5,−2〉}, {〈a2, 2,−1〉},

{〈a1, 2, 1〉, 〈a1, 3, 1〉}, {〈a1, 2, 1〉, 〈a1, 5,−2〉}, {〈a1, 2, 1〉, 〈a2, 2,−1〉},
{〈a1, 3, 1〉, 〈a1, 5,−2〉}, {〈a1, 3, 1〉, 〈a2, 2,−1〉}, {〈a1, 5,−2〉, 〈a2, 2,−1〉}

}

The final aggregated set is �S = [0.4, 0.4, 0.0, 0.2]. It is worth noting
that in this case, we saved the computation of the Shapley values for
the sets that include 3 and 4 fault events.
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We note to the reader that for the sake of simplicity in our running
example all fault events with cardinally 1 and 2 are useful repairs.
This is not the case for more complex systems with higher numbers
of agents and with longer plans.

3.5 Time complexity analysis

In this section, we provide theoretical analysis to the run-time of
DDBA. The theoretical evaluation of the random sampling approach
can by found in [4]. Recall that Shapley’s calculation is exponential
in the size of the set on which the calculation is applied. In the case
of the standard calculation, as defined in Definition 10, if it is applied
on the set E, then the complexity is 2|E|. DDBA on the other hand,
considers only the useful repair sets of cardinality up to some k. For
each 1 ≤ i ≤ k, the number of those sets is bounded by

(|E|
i

)
, which

is tighter bound than |E|i. For each such set, we apply the traditional
Shapley calculation. This gives theoretical runtime of 2i. Putting all
together, the theoretical bound to the runtime for DDBA with a car-
dinality of useful repairs up to k is:

∑k
i=1

(|E|
i

)
· 2i. Moreover, we

use dynamic programming approach by memorizing the results of all
subsets’s Shapley values. This lowers the bound to

(|E|
k

)
·2k. Finally,

since not every set is a useful repair, the actual number is significantly
lower.

4 Evaluation

In this section, we experimentally compare DDBA with a baseline
approach and a complete calculation of the Shapley values. Specifi-
cally, we compare the following three algorithms:

• Gold - the Shapley Values calculation as presented in Definition
10, that takes into account the full set of fault events E for its
calculation.

• Random - the algorithm based on random sampling, which we
mentioned in Section 2 [4].

• DDBA - our algorithm which selects all the subsets of the useful
repair set (Ω′) with cardinality up to k.

4.1 Experimental Setup

All our experiments were performed on a 12x12 empty grid. The
independent variables in our experiment were the number agents x,
the plan length y, the number of faulty agents f , the probability that
a faulty agent experiences a fault p, and the failure threshold th. In
each experiment, we generated a BAMPEF problem 〈π, o, E, v〉 by
performing the following process. First, we create a plan π by ran-
domly placing each of the x agents in the grid and moving them
randomly for y time steps, ensuring that they do not collide. Then,
we randomly select f of the x agents to be faulty. Next, we simulate
the execution of π in a step-by-step manner. In every time step, a
healthy agent follows its plan unless the next location it is planned to
occupy is blocked by some other agent, in which case it waits in its
place. A faulty agent behaves similarly, except that with probability p
it experiences a fault. A fault is either a delay or an acceleration of 1-
3 time steps, selected randomly according to a uniform distribution.
If according to the value function, the cost of the current execution
exceeds the failure threshold th, we create a BAMPEF problem with
the corresponding plan, observations, and faulty events. We gener-
ated BAMPEF instances with plan lengths y ∈ {8, 10, 12}, agents
x ∈ {8, 10, 12}, faulty agents f ∈ {3, 4, 5}, fault probabilities
p ∈ {0.5, 0.7, 0.9} and thresholds th ∈ {2, 3, 4}. An important fac-
tor that we wanted to evaluate is the influence of the number of fault

events on the Shapley values algorithms. However, the simulation
could not directly control the number of fault events. As a result, we
repeated the above process for each configuration, until we achieved
30 BAMPEF instances with fe fault events, where fe ∈ {6, ..., 13}.
In total, we got 58, 320 instances.

For every algorithm A ∈ {DDBA,Random,Gold} and BAMPEF
instance Π, we run A until it returned a solution, denoted A(Π). The
main metrics we considered are runtime in seconds and error. The
runtime includes the time required for computing useful repairs. The
error was computed as the Euclidean distance between the A(Π) and
Gold(Π). Note that the error for Gold is, of course, always zero. The
real Shapley values are affected by the number of participating agents
and may sum up to more than one. To allow a fair comparison across
different experimental configurations, we normalized every Shapley
value computation such that it always sums up to one.

4.2 Results

We first examine the impact of the useful repair cardinality (k) on the
error of DDBA. Table 5 shows the error of DDBA for k = 1, . . . , 8,
for BAMPEF instances with 12 agents, plans of length 12, 5 faulty
agents, 0.9 fault probability, failure threshold 4, and 10 faulty events.
The results show that the error decreases fairly fast until k = 5,
afterwhich the decrease in error slows down significantly. Since in-
creasing k means higher runtime, we limited k to be at most 5 in
the remaining experiments, and report on averages over all evaluated
problem configurations.

Table 6 shows the runtime and error for DDBA, Random, and
Gold. As expected, DDBA is much faster than Gold. For instance,
even the slowest variant of DDBA, which when considering all the
useful repairs up to k = 5, runs in 2.077 seconds on average, while
Gold requires 7.024 seconds on average. Compared to Random, we
observe that DDBA is faster than Random for k ≤ 4. In terms of
error, the error of DDBA is higher than Random for k < 4, and
lower when k ≥ 4. Thus, our results confirm the expected trade-
off provided by the useful repair cardinality parameter k between
runtime and error. In our set of experiments, however, setting k =
4 provides an effective middle-ground between runtime and error.
Hence, in the next results, we fixed k to 4. We did not report the error
for Gold since it is always zero.

Table 7 presents the results of DDBA, Random, and Gold when
varying the number of faulty events (fe).

The first trend we observe is that the runtime of Gold increases ex-
ponentially with the number of faulty events. The runtime of Random
also increases, but at a much lower rate than Gold, while the runtime
of DDBA is even lower. For instance, while considering 13 fault
events, DDBA runs 2 times faster than Random on average, and 50
times faster than Gold. This shows the efficiency of DDBA when
considering a large amount of fault events.

In terms of error, we see that the error of both Random and DDBA
increases very slightly with the number of faulty events, which sug-
gests that Random and DDBA are not influenced much by the num-
ber of fault events in the system. This is specifically of interest since
this means that DDBA is scalable for larger amounts of fault events.
In addition, the error of DDBA is lower than the error of Random.
Specifically, this difference is higher when considering small num-
bers of fault events. This suggests that for small systems, DDBA is
preferable over Random.

The runtime of DDBA is strongly affected by the number of useful
repairs it considers. To highlight this, Table 7 also shows the num-
ber of useful repairs considered by DDBA for a different number of
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Useful Repair
Cardinality 1 2 3 4 5 6 7 8

Average Error DDBA 0.355 0.229 0.138 0.107 0.089 0.076 0.069 0.066

Table 5. Average error of DDBA, with the increase of the useful repair cardinality (k).

Useful Repair Cardinality 1 2 3 4 5
Average Gold 7.024
Runtime Random 1.074

(Seconds) DDBA 0.006 0.036 0.167 0.588 2.077
Average Random 0.151

Error DDBA 0.376 0.257 0.170 0.130 0.107

Table 6. Average runtime and error of Random and DDBA with the increase in the useful repair cardinality.

Fault Events 6 7 8 9 10 11 12 13
Average Random 0.147 0.146 0.148 0.149 0.153 0.154 0.153 0.156
Error DDBA 0.112 0.113 0.120 0.127 0.133 0.140 0.146 0.146

Average Gold 0.052 0.152 0.334 0.737 1.745 4.449 12.505 36.215
Runtime Random 0.062 0.129 0.256 0.467 0.718 1.239 2.174 3.546
(Seconds) DDBA 0.038 0.090 0.180 0.363 0.517 0.785 1.107 1.623

DDBA Useful Repairs 34.84 58.75 92.37 138.64 198.32 272.80 367.96 476.65

Table 7. Results for a different number of faulty events.

faulty events. Indeed, the runtime of DDBA is correlated with the
number of useful repairs, which increases with the number of fault
events. The relative relation between the number of fault events and
the number of useful repairs somewhat conforms with the theoretical
analysis in Section 3.5, albiet lower than predicted. For example, for
8 faulty events, with cardinality up to k = 4, the upper bound of use-
ful repairs is

(
8
4

)
· 24 = 1120, while the actual number is ∼ 92. This

is because many subsets of the fault events are not useful repairs.

5 Discussion

In this section we highlight some of the assumptions drawn through-
out the paper, which we used to simplify the problem.

Simplification assumptions: Our approach uses a simple model
of the system. This is a common practice when modeling a system,
that is used to address the modeling of a real-world domain in a sim-
ple way [16]. In our work, such simplifications include discrete time
steps, modeling plans as discrete series of locations, and setting the
same plan length for all the agents. We also assume that in each time
step the agents should advance to their next position (rotation and
acceleration time are not modeled), and that an agent failure mani-
fests as a delay or acceleration. Last, we assume agents do not contest
positions, and instead one of the agents moves first. Such simplifica-
tions help with creating more clear model of the problem, but also
introduce limitations that should be addressed for more specific im-
plementations.

Observation assumption: We assume complete observation. This
allowed us to derive relatively accurate fault events. This assumption
was inspired by a real-world example of warehouse robots, where
a database keeps logs of the robot movements, so the complete ex-
ecution is known. In environments that require relaxation of such
assumption, Shapley values might produce less accurate blame dis-
tribution. Our approach, however, might still give the same approxi-
mation to that (less accurate) distribution.

Complete knowledge of agents’ plans: An important assump-
tion that allows us to derive the fault events is the knowledge of the
agents’ plans in the system. Armed with this knowledge, when ob-

serving the execution, we are able to derive delay and acceleration
faults. Relaxing such an assumption would raise the need to design
different value functions.

Consistent plans: We assume that the plans are consistent; If ex-
ecuted without any faults, the agents would reach their planned final
locations. It is natural to think about cases, where faulty planners
may output faulty plans. In such cases, one may need to reason about
the plan itself but may also need to use the blame attribution in order
to enforce some agents to deliberately create ’repairing’ fault events
(i.e., if the plan leads to a collision, forcing agents to slow down or
speed up might help).

6 Conclusions and Future Work

We defined the problem of attributing blame to fault events, a concept
orthogonal to classic diagnosis in which components of a system are
labeled "faulty" and "not faulty". We built on concepts from Game
Theory to devise our proposed method, which is using Shapley val-
ues to attribute blame. We showed the challenges in using Shapley
values in systems with an increasing number of fault events and sur-
veyed a current approach of Shapley approximation. Our proposed
method (DDBA) improves the surveyed method. By utilizing selec-
tion of subsets of the fault events, DDBA approximates better the
Shapley values while improving run-time. Theoretical evaluation ex-
plains the run-time improvement while empirical evaluation demon-
strates the expected results.

For future work, we plan to focus on three main directions: (1)
showing the validity of our method for different environments, (2)
improving our proposed method. and (3) Demonstrating the useful-
ness of our method. To address (1), we plan to test different fault
settings, domains, and action models of the agents. To address (2)
we plan to research more sophisticated selection functions, and try
to apply the same paradigm (focusing on subsets) on different blame
attributing methods, such as core [15] and Banzhaf index [1, 2]. To
address (3) we intend to integrate our approach with existing diagno-
sis and replan methods.
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