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Abstract. In some applications, planning-monitoring systems gen-
erate plans and monitor their execution by other agents. During ex-
ecution, agents might deviate from these plans for various reasons.
The deviation from the expected behavior will be observed by the
planning-monitoring system, which will replan in order to provide
the agent a new suggested plan. Most existing replanning approaches
maintain the goals and compute a plan that achieves them under the
new circumstances. This is often not realistic, as achieving the origi-
nal goal might be very costly or impossible under the current condi-
tions. Furthermore, replanning approaches usually overlook agent’s
behavior up to the observed deviation from the original plan. In this
paper we introduce GREPLAN, a novel approach that proposes new
replanning goals (and plans) by solving a multi-objective optimiza-
tion problem that considers all goals within a perimeter of the origi-
nal goal. Empirical results in several planning benchmarks show that
GREPLAN successfully reacts to deviations from the original plan by
generating new appropriate replanning goals.

1 Introduction

In some applications, planning-monitoring systems generate plans
and monitor their execution by other agents. This is the case of multi-
agent architectures, where a centralized entity generates plans and
distributes them for execution by other agents [23, 37, 28]. More in-
terestingly, this is also the case of successful planning applications
such as navigation (Google Maps, Waze), financial planning [30] or
tourist route planning systems [10], where humans are the agents
executing plans generated by planning systems. During execution,
agents might deviate from these plans for various reasons such as in-
ternal decisions, execution failures [16, 40], or the emergence of op-
portunities [9, 5, 6]. The deviation from the expected behavior will
be observed by the planning-monitoring system, which will replan in
order to provide the agent a new suggested plan. Most existing ap-
proaches for replanning assume the initial goal is fixed, and compute
a plan that achieves it under the new conditions. This is often not
realistic, as achieving the original goal might be very costly or im-
possible under the new circumstances. Also, in many of these cases,
agents might accept relaxing the original goal as long as it translates
into less costly plans.

Consider the case of a navigation tool that generates driving routes
for users (the execution agent will be a human in this case). A sim-
plified version of such domain is shown in Figure 1. A user depicted
with a car is using a planning tool to go from its initial location to its
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goal destination, depicted with a blue cell. To do so, the car can move
in the four cardinal directions. The original plan proposed by the nav-
igation tool to the user is shown with a straight blue arrow. At some
point during plan’s execution, the user deviates from the original plan
due to an unexpected traffic jam or a road block in the surroundings
of its destination, turning left and following the plan depicted with
the green arrow. These unexpected situations are common in the real
world due to partial observability of the environment by the naviga-
tion tool and/or stochastic environments. If the navigation tool uses
standard replanning techniques and maintains the original goal, the
new plan would be very costly, i.e., it will cause the user to waste a
lot of time as s/he will still be routed through the traffic jam to reach
its desired destination. This is what actually happens in most current
navigation tools, sometimes leading to user frustration. Instead, the
user could prefer the tool to generate an alternative goal destination
that is not far from the original one, aligns with the followed route,
and does not take long to reach from its current location. In the ex-
ample shown in Figure 1, this could mean the tool suggesting a new
plan to achieve the cell depicted in green.

Figure 1: Replanning scenario in a navigation domain where the
driver of a car deviates (green arrow) from the original plan (straight
blue arrow) proposed by the navigation tool to achieve its original
goal (reaching the blue cell). Green cell depicts a potential new re-
planning goal.

Yet another example is on financial planning tools [30] where a
user might want to save some amount of money (e.g. $1000) in a
given horizon (e.g. four months). The available actions are to save
different quantities at each month, with increasing costs associated
with higher savings levels due to the difficulty in saving more money.
The suggested plan involves the user saving $250 each month. While
the user followed the plan the first month, s/he faced unexpected pay-
ments in the second month, being able to save only $50. If we would
keep the original goal and replan from the new state, the new plan
would be very costly, as it would require the user saving extra money
in the subsequent months. This would be a very unrealistic and frus-
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trating plan that the user would not like. A more realistic plan could
entail relaxing the goal, i.e., propose the user a new goal/plan that
seems likely to be achievable/executable given the user behavior up
to the replanning step. In this case, the planner might suggest the user
to save $500 by contributing $100 in the remaining two months, even
if it does not reach the original goal.

Other approaches do take into account the agent’s behavior up
to replanning, being able to extend or even change the original
goal [13, 35]. However, they assume humans can specify a set of
alternative goals to be achieved under the different conditions. While
this information is sometimes available, explicitly providing this
knowledge upfront is impossible in many other applications where
users can only specify one goal state in order to simplify user ex-
perience. This is the case of navigation tools, where users specify
their destination; or financial planning tools, where users specify the
money they want to save.

In this paper we introduce GREPLAN, a novel approach that pro-
poses new replanning goals (and plans). First, GREPLAN generates
the set of replanning candidate goals by computing the set of goals
within a perimeter of the original goal. Then, GREPLAN solves a
multi-objective optimization problem that considers the following
features/objectives for each replanning candidate goal:

• Distance between the original goal and the replanning candidate
goal. We compute this distance as the backtracking cost of reach-
ing the new goal from the original one.

• Consistency of the replanning candidate goal with respect to the
already executed plan. We use goal recognition approaches to es-
timate the consistency of a goal with a plan.

• Cost of the plan achieving the new replanning candidate goal. We
compute this cost through heuristic estimations.

The rest of the paper is organized as follows. We first formalize
the concepts we will use throughout the paper: automated planning,
regression in planning, replanning, and planning-based goal recog-
nition. Then, we introduce GREPLAN, our novel realistic replanning
approach that generates new replanning goals. After that, we evaluate
GREPLAN in different planning domains, showing its scalability and
the inherent trade-offs when generating new replanning goals. Fi-
nally, we put our contribution in the context of related work, present
our conclusions, and outline some future lines of research.

2 Background

2.1 Automated Planning

Automated Planning is the task of choosing and organizing a se-
quence of actions such that, when applied in a given initial state,
it results in a goal state [18]. Formally:

Def. 1 A STRIPS planning task can be defined as a tuple Π =
〈F,A, I,G〉, where F is a set of propositions, A is a set of instanti-
ated actions, I ⊆ F is an initial state, and G ⊆ F is a set of goals.

A state consists of a set of propositions s ⊆ F that are true at a
given time. A state is totally specified if it assigns truth values to all
the propositions in F , as the initial state I of a planning task. A state
is partially specified (partial state) if it assigns truth values to only
a subset of the propositions in F , as the conjunction of propositions
G of a planning task. Each action a ∈ A is described by a set of
preconditions (pre(a)), which represent literals that must be true in
a state to execute an action, and a set of effects (eff(a)), which are
the literals that are added (add(a) effects) or removed (del(a) effects)

from the state after the action execution. The definition of each action
might also include a cost c(a) (the default cost is one). The execu-
tion of an action a in a state s is defined by a function γ such that
γ(s, a) = (s \ del(a)) ∪ add(a) if pre(a)⊆ s, and s otherwise (it
cannot be applied). The output of a planning task is a sequence of
actions, called a plan, π = (a1, . . . , an). The execution of a plan π
in a state s can be defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π �= ∅
s if π = ∅

A plan π is valid if G ⊆ Γ(I, π). The plan cost is commonly
defined as c(π) =

∑
ai∈π c(ai). A plan with minimal cost is called

optimal. Since solving planning tasks is challenging [8], sometimes
we will be interested in using heuristic functions that estimate the
cost of reaching the goal from a given state s, h(s). We will use
function PLANNER(Π) to compute a plan that solves planning task
Π, and function HEURISTIC(Π) to estimate the cost of reaching G
from I in planning task Π. We assume both functions return infinity
if the planning task is not solvable, i.e., the goal is not reachable from
the initial state.

2.2 Regression in Planning

Most planning algorithms search forward, expanding states from the
initial state until the goal state is reached [3]. But plans can also
be computed by searching backwards (regression), i.e., starting from
the goal and applying the actions backwards to find a path from the
goal to the initial state [2]. The applicability of actions is redefined
as follows: a ∈ A is applicable in a partial state s if it is relevant
(add(a)∩ s �= ∅) and consistent (del(a)∩ s = ∅). The resulting state
obtained from regressing a in s is defined by a function γr such that
γr(a, s) = (s \ add(a)) ∪ pre(a). Progression (searching forward)
and regression (searching backward) in planning are not symmetric,
as each state in the regression state space may represent a set of states
of the progression state space. We use REGRESSION(Π, D) to refer
to an algorithm that computes the set of partial states that can be
reached from the goal G by searching backwards with a cost bound
or perimeter ≤ D.

2.3 Replanning

We are interested in scenarios where an initial plan π that solves a
planning task Π has been constructed, and its execution has devi-
ated from the expected one. As discussed, this can happen due to a
number of reasons, and we do not make any assumption on the event
that triggered replanning. The plan already executed up to replan-
ning cannot be retracted, so we can always consider the current state
as the new initial state and plan again. While other approaches focus
on the whole initial plan π so as to perform plan repair or similar
tasks [16, 4], we only focus on the agent’s current state when re-
planning was triggered. We formally define a replanning problem as
follows.

Def. 2 A replanning problem is a tuple ΠR = 〈Π, I ′, G′〉 where
Π is the original planning task, and G′ is the new goal state to be
achieved from the current state I ′.

Although some works allow the replanning component to modify the
actions when replanning [14], we assume the set of available actions
is the same as in the original planning task Π. Also, most replanning
approaches assume either the new goal remains the same (G′ = G)
or the new goal is provided by humans. We will later discuss how we
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relax this assumption and compute a new goal G′. The solution to a
replanning problem is a new plan π that achieves the new goal G′

from the agent’s current state I ′.

2.4 Goal Recognition

Goal Recognition is the task of inferring another agent’s goals
through the observation of its interactions with the environment.
The problem has captured the attention of several computer science
communities [1]. Among them, planning-based goal recognition ap-
proaches have been shown to be a valid domain-independent alterna-
tive to infer agents’ goals [31, 21, 27]. Most approaches distill from
Ramírez and Geffner [32] seminal work, which formally defines a
planning-based goal recognition problem as:

Def. 3 A goal recognition problem is a tuple T =
〈F,A, I,G, O, Pr〉 where G is the set of possible goals G
such that G ⊆ F , O = (o1, ...., om) is an observation sequence
with each oi being an action in A, and Pr is a prior probability
distribution over the goals in G.

The solution to a goal recognition problem is a probability distri-
bution over the set of goals Gi ∈ G giving the relative likelihood of
each goal. The probability of each goal is computed based on the cost
difference between the cheapest plan that can reach the goal, given
the observed actions already executed, and the cheapest plan that
could have reached the goal, had the agent not executed the observed
actions. The costs of these optimal plans are given as optc(G,O) and
optc¬(G,O), respectively. The cost difference is formally defined as
follows:

costdif(Gi, O) = optc(Gi, O)− optc¬(Gi, O) (1)

This approach needs to compile and solve two planning tasks for
each candidate goal, which are more complex than the original plan-
ning task Π. To avoid this, Masters and Sardina [24] developed a less
demanding approach that is observation-free, i.e., it does not need to
compile the observations into two new planning tasks, just relying
on the difference between the cost to achieve the goal from the initial
state I and the current state of the agent I ′:

costdif(Gi, I, I
′) = cost(I ′, Gi)− cost(I,Gi) (2)

Even though this approach might not be as accurate as Ramírez and
Geffner’s, we will use it in the remainder of the paper, as it is com-
putationally more efficient and requires us to make less assumptions
on the received observations.

A probability distribution that solves the goal recognition problem
is derived by inputting the cost differences of all Gi ∈ G in a formula
that satisfies the property that the lower the cost difference, the higher
the probability, and the relative cost differences are preserved [24]. In
this work we will use the following formula to compute the probabil-
ity distribution. In order to simplify notation, we use cd(Gi) to refer
to the cost difference computed by Eq. 2, and Mcd(G′) and mcd(G′)
to refer, respectively, to the maximum and minimum cost difference
value across the candidate goals G′ ∈ G.

P (Gi | I, I ′) =
{ Mcd(G′)−cd(Gi)

Mcd(G′)−mcd(G′)
, if Mcd(G′) �= mcd(G′)

1, otherwise
(3)

In this formula, most likely goals across the candidate goals will have
a probability of 1, least likely goals will have a probability of 0, and
the rest of candidate goals will have probabilities within the [0, 1]

range. We use GR(F,A, I,Gi, I
′) to refer to a function that returns

the probability of Gi ∈ G being the agent’s actual goal given its
initial (I) and current (I ′) states.

3 GREPLAN: Generating Replanning Goals
through Multi-objective Optimization

We consider a planning-monitoring system that generates plans and
monitors their execution by other agents. We do not make any as-
sumption on the planning component and how it computes the plans,
i.e., the accuracy of the planning model used to generate the plans
wrt. the real world, or the quality of such plans. Likewise, we do
not make any assumption on the executing agents. The only assump-
tion we make is that the monitoring component is able to (i) observe
the agent’s plan execution; and (ii) trigger replanning when needed.
We do not impose any restriction on how often the monitoring com-
ponent can receive observations from the agent’s execution. We do
assume that when an observation is made, the planning-monitoring
system can retrieve, at least, the agent’s current state I ′. This is not
restrictive, and observations could contain more information such as
the agent’s executed actions or the previous agent’s states. Regarding
the mechanism used by the monitoring component to trigger replan-
ning, we treat it as a black-box. Depending on the monitoring capa-
bilities (type and frequency of observations) and the designer choice,
planning-monitoring could trigger replanning when the agent devi-
ates from the original plan, when the preconditions of the next action
do not hold, or when an unexpected state is observed.

When replanning is needed, most approaches to solve replanning
problems (Def. 2) assume the goal remains the same, G′ = G. They
also overlook agent’s behavior up to replanning, which might re-
veal important information about the environment. In this section we
present GREPLAN, our novel approach that proposes a new replan-
ning goal G′ (and a plan) by solving a multi-objective problem that
considers three different aspects or objectives: distance, consistency
and cost. GREPLAN will select G′ as the one from the set of alter-
native potential goals that maximizes a linear function of these three
objectives. When solving multi-objective problems, it is usually de-
sirable to understand how changes to one of the objectives (or its
weight if they are combined in a linear function) will affect the over-
all quality of a solution. This is not possible when the value of some
of the objectives are unbounded a priori, as the cost of reaching the
new replanning goal. In order to make our multi-objective function
easier to manipulate and understand, we will bound each objective
between 0 and 1. For all objectives, values closer to 1 will indicate
better performance.

GREPLAN is described in Algorithm 1. It selects the new replan-

ning goal as the replanning candidate goal G′ ∈ Gr that maximizes
the multi-objective function defined in line 13. It receives as input
the original planning task Π, the agent’s current state I ′, the distance
bound D, and a set of weights W = 〈w1, w2, w3〉 | wi ∈ [0, 1] that
weight the importance of the different objectives.

First, GREPLAN generates the set of replanning candidate goals

Gr (line 2) by applying the regression function that computes the par-
tial states that can be reached from the original goal G by searching
backwards with a cost bound ≤ D. The original goal G is always in-
side Gr , as it can be reached with cost 0. Then, the algorithm iterates
over all the replanning candidate goals. For each Gi ∈ Gr , a new
hypothetical planning task Πi is built (line 5), where the candidate
goal needs to be achieved from the agent’s current state I ′. The es-
timated cost of solving this planning task h(πi) is computed by the
HEURISTIC function. If this estimation returns infinity, i.e., Gi can-
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Algorithm 1 GREPLAN

Input: Π = 〈F,A, I,G〉, I′, D,W = 〈w1, w2, w3〉
Output: G′
1: G′ ← ∅
2: Gr ← REGRESSION(Π, D)
3: f(Gi,W )← 0, ∀Gi ∈ Gr
4: for Gi in Gr do
5: Πi ← 〈F,A, I′, Gi〉
6: h(πi)← HEURISTIC(Πi)
7: if h(πi)←∞ then
8: f(Gi,W )← −∞
9: else

10: distance← 1− bd(G,Gi)
11: consistency← GR(F,A, I,Gi, I

′)
12: cost← 1− bc(πi)
13: f(Gi,W )← w1 × distance + w2 × consistency + w3 × cost
14: end if
15: end for
16: G′ ← argmaxGi∈Gr

f(Gi,W )

17: return G′

not be achieved from I ′, Gi is discarded from the set of replanning
candidate goals; e.g. assigned the lowest possible value (line 8). Oth-
erwise, GREPLAN computes the three objectives considered to select
the new replanning goal: distance, consistency and cost.

The first objective optimized by GREPLAN is the distance be-
tween the original goal and the replanning candidate goal, D(G,Gi).
We compute this distance as the cost of reaching Gi from G by
searching backwards. We bound the distance term by dividing it by
the cost bound D, i.e., the size of the perimeter.

bd(G,Gi) =
D(G,Gi)

D
(4)

The second objective is the consistency of the new goal with
respect to the agent’s behavior up to replanning. We use the
observation-free goal recognition approach [24], which returns a
probability distribution of all replanning candidate goals Gi ∈ Gr

after observing I and I ′. We use the function GR(F,A, I,Gi, I
′)

to compute this probability distribution, whose values are already
bounded in the [0, 1] range (see Eq. 3).

The third and last objective is the cost of the plan achieving the
replanning candidate goal Gi from I ′. We bound the cost term by
dividing the difference between the estimated cost of reaching the
given goal minus the minimum cost across all the replanning goals
Gi ∈ Gr , by the difference between the maximum and minimum
costs across all the replanning candidate goals. In order to simplify
notation, we use Mh(Gj) and mh(Gj) to refer, respectively, to the
maximum and minimum estimated cost to achieve any of the replan-
ning candidate goals Gj ∈ Gr from I ′.

bc(πi) =

{
h(πi)−mh(Gj)

Mh(Gj)−mh(Gj)
, if Mh(Gj) �= mh(Gj)

0, otherwise
(5)

Finally, GREPLAN returns as the new replanning goal G′ the one
that maximizes the function f(·, ·) (line 16), which consists of a lin-
ear sum of the three objectives weighted by the set of weights W
(line 13). By maximizing this multi-objective function, GREPLAN

can propose new replanning goals that: are not far from the original
one (w1); (ii) align with the agent’s observed behavior (w2); and are
not costly to achieve (w3).

We would like to end the section by providing a few remarks. First,
GREPLAN could avoid generating the set of replanning candidate
goals if this set is given. The rest of the algorithm would remain the
same, and we would only be reasoning about the distance, consis-
tency and cost of the goals provided by the user. Second, GREPLAN

uses heuristics to compute the consistency and cost terms. While they
could also be computed through more precise and expensive meth-
ods, i.e., Ramírez and Geffner’s goal recognition approach (Eq. 1)
to compute consistency, and optimal plans to compute cost, we want
GREPLAN to be as fast as possible.

3.1 Running Example

Let us exemplify how GREPLAN works by considering the naviga-
tion domain discussed in the Introduction and shown in Figure 2. The

Figure 2: Navigation example previously shown in Figure 1. Blue
cells conform the set of replanning candidate goals Gr when D =
2. Numbers unequivocally identify each replanning candidate goal
Gi. The green star depicts the new replanning goal G′ generated by
GREPLAN.

blue cells represent the set of replanning candidate goals generated
by the algorithm when called with a distance bound D = 2, i.e.,
those states at a distance (cost) of two or less from the original goal
state. The original goal is included in this set. Then, GREPLAN finds
the goal that maximizes the function f(·, ·). Hence, it computes the
value of each of the objectives (distance, consistency and cost) for
each replanning candidate goal, resulting in a matrix where goals are
represented in the rows and the objectives in the columns. Table 1
shows an excerpt of that matrix for the navigation example when we
use the FF heuristic [20] to estimate consistency and cost.

Candidate Goal Distance Consistency Cost
G1 1.0 0.0 0.5
G2 0.5 0.0 0.25
G4 0.5 1.0 0.75
G8 0.0 1.0 1.0
G9 0.0 1.0 0.5

Table 1: Value of the three objectives for a subset of goals in Gr in the
navigation example shown in Figure 2. Values are computed using
the FF heuristic. Bold numbers represent best scores for each metric.

The new replanning goal generated by GREPLAN will depend
on the specified weights, and therefore on the behavior expected
by the driver (agent). For example, setting w1 = 1 (distance) and
w2, w3 = 0 (consistency and cost) would translate into standard re-
planning where the original goal is not changed, G′ = G1 = G. On
the other hand, if we equally balance all weights: w1, w2, w3 = 1,
G4 would be the new replanning goal, as it maximizes the sum of the
three objectives. As we can see in Figure 2, this is a goal that is not
far from the original goal, is consistent with the driver’s behavior up
to replanning, and is not far from its current state.

3.2 GREPLAN in the Absence of Weights

When weights are specified, a Pareto front over the replanning can-
didate goals can be computed. This offers a way to visualize and
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understand the trade-offs between different objectives, showing the
set of solutions that are optimal (dominate) in the sense that there is
no other solution that can improve any objective without worsening
another. However, in some scenarios users of planning-monitoring
systems cannot provide a complete definition or ranking over the
weights. This can occur in cases where users do not fully understand
the problem, are not aware of the different objectives trade-offs, or
are simply lazy to input a set of weights.

In these cases, we propose a way of selecting the new replanning
goal G′ as the goal that optimizes f(·, ·) under a larger number of
weights’ configurations or scenarios W . We model this problem as a
Mixed-Integer Linear Programming (MILP) problem as follows.

max
∑

Gi∈Gr

∑
W∈W

α
(
xGif(Gi,W )

)
+ β

(
xGi WINS(Gi,Gr,W)

)
(6)

subject to: ∑
Gi∈Gr

xGi = 1 (7)

xGi ∈ {0, 1}, ∀Gi ∈ Gr (8)

We create one binary decision variable xGi for each replanning can-
didate goal Gi ∈ Gr . These variables will take a value of 1 if Gi

is set to be the new replanning goal G′, and 0 otherwise. The set of
potential weight configurations W can be either given explicitly as a
set of allowed configurations, or implicitly as rules to compute this
set, i.e., all the combinations of weights with a granularity of 0.1.

The objective function (Eq. 6) maximizes two different objectives.
The first objective, weighted by a constant α, maximizes the value of
f(·, ·) under all possible weight’s configurations W . The second ob-
jective, weighted by a constant β, maximizes the number of weight’s
configurations under which Gi is the best goal. This number is com-
puted by the WINS function, which receives the replanning goal Gi,
the set of replanning goals Gr , and the set of potential weight con-
figurations W . This function returns the number of weight configu-
rations for which Gi maximizes f(·, ·), i.e., the number of scenarios
for which Gi is the best replanning candidate goal. Although these
two objectives are aligned, they might yield different results, i.e., new
replanning goals. While the first objective focuses on the total sum
of the f(·, ·) function across all the scenarios, the second one just
counts the number of scenarios for which Gi turns to be the best new
replanning goal, disregarding the total sum of the function. There-
fore, we would set α = 1 and β = 0 when interested in a goal that
maximizes quality margin, even if this margin occurs in a lower num-
ber of weight configurations. On the other hand, we would set α = 0
and β = 1 when interested in a goal that maximizes the number of
scenarios under which it should be chosen, regardless of the quality
margin.

This objective function is optimized subject to Constr. 7, which
ensures that only one goal is chosen, i.e., we only return one new
replanning goal G′. This simple model can be enhanced to include
arbitrary constraints such as forcing the selected goal to have a given
value in a specific metric across a number of weight configurations.

Going back to our running example, and assuming all the com-
binations of weights with a granularity of 0.1 in the range [0, 1]
(|W| = 220), the MILP returns that G8 is the best replanning can-
didate goal. When we optimize quality margin, G8 obtains a total
score of 291.9 versus the 272.4 obtained by the second best goal, G4.
When we optimize number of scenarios for which the goal should be
chosen, G8 wins in 171 versus the 49 of G4. Therefore, G8 should
be the goal the driver should be pursuing after replanning when a
specific set of weights W is not provided.

4 Evaluation

4.1 Experimental Setting

We evaluate GREPLAN in different planning domains. Although the
technique is general and we could evaluate it in any planning domain,
we opted for selecting a varied set of domains that we believe are bet-
ter suited for GREPLAN’s replanning flavour. We selected the below
well-known planning domains that, semantically, share the following
property: the goal state is somewhat flexible, and after an event trig-
gered replanning, agents could accept goal states that are not too far
from the original one, as long as this relaxation results in less costly
plans.

• DRIVERLOG. A logistics domain where drivers need to use trucks
to deliver packages between locations.

• HIKING. A domain where partners do hiking routes in order to
visit certain landmarks.

• ROVERS. A planetary exploration domain where a collection of
rovers navigate a planet surface, finding samples and communi-
cating them back to a lander.

• TIDYBOT. A household cleaning domain where one or more
robots pick up a set of objects and put them into goal locations.

• TPP. A domain where agents need to travel to buy sets of goods at
different markets.

Replanning candidate goals in these domains include states where
the packages have been delivered but the truck/driver has not returned
yet to its goal location in DRIVERLOG; or states where goods have
been bought but not yet stored in TPP. We selected the first 10 plan-
ning tasks for each domain from the Planning Domains repository1.
For each planning task, we generated a number of replanning prob-
lems by running Algorithm 2 with different parameters. The algo-

Algorithm 2 Generate Replanning Problems

Input: Π = 〈F,A, I,G〉, n, r
Output: ΠT
1: π ← PLANNER(Π)
2: πn ← PREFIX(π, n)
3: In ← Γ(I, πn)
4: πr ← RANDOMACTIONS(F,A, In, r)
5: I′ ← Γ(In, πr)
6: ΠR = 〈Π, I′〉 � G′ will be generated by GREPLAN
7: return ΠR

rithm receives as input a planning task Π and two parameters that
will affect the behavior of the agent we are simulating. The first pa-
rameter n ∈ [0, 1], represents the ratio of actions from the original
plan followed by the agent until we make it deviate. In the exam-
ple of Figure 2, n = 0.5, as the car followed half of the original
plan before deviating. The second parameter is r ∈ [0, 1], which rep-
resents the ratio of actions from the original plan in which we make
the agent execute random applicable actions. In the running example,
r = 0.25, as the car executed 1 random action out of the 4 actions
the original plan had. By playing with these two parameters, we are
able to generate replanning scenarios where we control how much the
agent follows the original plan, and how large its deviation from that
plan is. First, the algorithm computes a plan π that solves the origi-
nal planning task Π. This plan is computed using the lama-first
configuration of Fast Downward [19], which runs the greedy search
used in the first iteration of the LAMA any-time planner [33]. Then,
it uses the PREFIX function together with the parameter n to get the

1 https://github.com/AI-Planning/classical-domains
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subset (prefix) of the plan πn in which the agent will stick to the
original plan. By executing πn from I , the agent will be at a new
state In from which it will deviate by executing a number of random
actions given by the parameter r. This random plan πr is generated
by the RANDOMACTIONS function (line 4). After that, πr is applied
from In, giving us the agent’s current state I ′. Finally, a new replan-
ning problem ΠR is built with the original planning task Π and I ′.
We run Algorithm 2 with the following parameters’ combinations:
n = [0.25, 0.5, 0.75], and r = [0.1, 0.2]. We did not test higher
values for r since that would imply unrealistic scenarios where the
planning-monitoring system takes too long to detect the deviation
and provide a new suggestion to the executing agent. This gives us
5(domains) × 10(problems) × 3(|n|) × 2(|r|) = 300 replanning
problems for which GREPLAN will generate a new replanning goal.

We run GREPLAN with two distance bounds D = [1, 2]. Again,
we did not test higher values for D as they would entail consider-
ing goals reasonably far from the original one. We consider two dif-
ferent versions of GREPLAN: GREPLANU , which uses a uniform
set of weights W = 〈1, 1, 1〉; and GREPLANA which runs GRE-
PLAN in the absence of weights, with all the combinations of weights
with a granularity of 0.1 in the range [0, 1] (|W| = 220). We set
GREPLANA’s objective function weights (Eq. 6) so it lexicograph-
ically optimizes first the quality margin of the new replanning goal
(α is set to a large constant), breaking ties in favour of new replan-
ning goals that are optimal under more weights’ configurations (β is
set to a small non-zero constant). Both GREPLAN versions use the
FF heuristic as it is implemented in Fast Downward to estimate the
cost and consistency terms in the f(·, ·) function. GREPLANA uses
the CBC solver [15] to solve the MILP. After GREPLAN generates a
new replanning goal G′, a plan to solve the new replanning problem
ΠR = 〈Π, I ′, G′〉 is generated using lama-first. Experiments
were run on an Apple M1 with 8GB of memory. Code and bench-
marks are available upon request.

4.2 Results

We designed GREPLAN’s evaluation in order to answer the following
two questions:

1. Execution time analysis. How much time does it take GREPLAN

to generate a new replanning goal?
2. Quality analysis. Does GREPLAN’s execution time pays off as to

how good the new replanning goal is wrt the original one?

Table 2 shows the results of the execution time analysis, where
we run the two versions of GREPLAN with different distance bounds
D in replanning problems across the five different domains. We mea-
sure the execution time of each version and their respective compo-
nents, as well as the time needed to solve the replanning problem
once GREPLAN generates the new replanning goal (Replanning col-
umn). This is approximately the execution time of standard replan-
ning, which does not reason about which goal should be achieved.
Both GREPLANU and GREPLANA have similar execution times (To-
tal (s) columns). The time needed by GREPLAN to generate a new
replanning goal is related to two factors. First, GREPLAN is comput-
ing two heuristic values for each replanning candidate goal Gi: the
cost of achieving it from I and I ′. The number of replanning candi-
date goals rapidly goes up as we increase D, translating into higher
execution times for both GREPLAN versions. Second, the complex-
ity of the replanning task, for which the replanning time serves as a
proxy. The more complex the planning task is, the more time GRE-
PLAN will take to compute the two heuristic values.

Let us also take a look to how each component affects GREPLAN’s
execution time. The extra time needed by GREPLANA to run the
MILP is negligible, making it a good choice if a weight configura-
tion is not provided. The generation of replanning candidate goals
and computation of their distance (Distance column) as well as run-
ning the argmax function to get G′ usually take less than a sec-
ond. On the other hand, computing the cost and consistency terms
takes most of GREPLAN’s execution time. Computing the cost term
(heuristic value from I ′ to Gi) takes slightly longer, as it computes
heuristic values for a larger number of replanning candidate goals.
This is because this heuristic value is used to filter out unreachable
goals, leaving the consistency term with a lower number of replan-
ning candidate goals to reason about.

Table 3 shows the results of the quality analysis, where we run
GREPLANU with different distance bounds D in replanning prob-
lems across the five different domains. Results for GREPLANA are
similar and yield the same conclusions. The aim of this analysis is
to better understand the differences between GREPLAN and standard
replanning. We measure the ratio of times the original goal G is se-
lected as the new replanning goal G′. We also measure the quality
difference (Δ) between the new replanning goal generated by GRE-
PLAN and the original goal. Larger values indicate G′ has a better
score than G in the given objective. As we can see, the number of
times GREPLAN selects a goal different from the original one de-
pends on the domain. While a new replanning goal is picked most
of the times in TIDYBOT, achieving the original goal remains as the
best option in most ROVERS and TPP problems. This is also influ-
enced by the distance bound considered. In all domains a different
goal tends to be selected as we increase D, since more replanning
candidate goals are considered (D = 2). This is due two reasons.
First, by increasing D we are considering more replanning candidate
goals, increasing the probabilities of another one getting better val-
ues across the different objectives. Second, when D = 1 alternative
replanning goals can only get 0 in that objective, while when D = 2
these goals at a distance of one from the original goal get 0.5. The
number of times GREPLAN selects a goal different from the original
one also depends on the weight’s configuration W . In cases where
we run GREPLANA, or GREPLAN with weight configurations that
value more the consistency and cost terms, a new replanning goal is
selected most of the times.

As expected, the original goal outperforms G′ in the distance ob-
jective, as it always gets a value of 1 compared to the 0 and 0.5 values
other replanning candidate goals can get. On the other hand, the new
replanning candidate goal tends to outperform the original goal in the
consistency and cost objectives. This strongly depends on the given
replanning problem, which is highlighted by the high standard devi-
ation numbers. When G′ = G, the difference in all the objectives
will be 0, lowering the average. However, when we only consider the
subset of replanning problems for which GREPLAN returns a goal
different than the original one, these differences increase. For exam-
ple, it goes from 0 to 0.2 in DRIVERLOG when D = 1, and from
0.1 to 0.3 in HIKING and ROVERS when D = 2. This difference is
even higher in certain replanning problems. For example, we observe
a total difference of 0.72 in one DRIVERLOG instance, and a differ-
ence of 1.0 in various HIKING and TIDYBOT instances, with most of
the difference coming from the consistency term. These results show
that while in some replanning problems standard replanning (where
the goal is fixed) is the best choice, in others using GREPLAN to gen-
erate a new replanning goal offers great advantages, as the new goal
is closer to the agent’s current state and better aligns with the agent’s
behavior up to replanning.
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GREPLANU GREPLANA Replanning
Domain D |Gr| Distance (s) Consistency (s) Cost (s) Total (s) MILP (s) Total (s) Time (s)

DRIVERLOG
1 29± 9.7 0.1± 0.0 2.3± 0.9 2.4± 0.9 4.8± 1.7 0.0± 0.0 4.8± 1.7 0.1± 0.0
2 111± 55.1 0.1± 0.0 9.0± 5.0 9.0± 5.0 18.1± 10.1 0.1± 0.0 18.2± 10.1 0.1± 0.0

HIKING
1 3± 1.4 0.1± 0.1 0.7± 0.6 0.7± 0.6 1.5± 1.3 0.0± 0.0 1.5± 1.3 0.4± 0.3
2 313± 241.0 0.1± 0.1 76.1± 91.2 76.1± 91.2 152.3± 182.5 0.3± 0.2 152.6± 182.7 0.4± 0.3

ROVERS
1 35± 26.1 0.1± 0.0 2.9± 2.3 3.4± 2.9 6.4± 5.2 0.0± 0.0 6.4± 5.2 0.1± 0.0
2 103± 65.6 0.1± 0.0 8.6± 6.0 9.3± 6.7 17.9± 12.7 0.1± 0.1 18.0± 12.8 0.1± 0.0

TIDYBOT
1 6± 1.0 3.3± 0.7 27.4± 8.9 32.6± 9.0 63.3± 18.0 0.0± 0.0 63.3± 18.0 10.7± 2.9
2 83± 47.7 3.5± 0.7 375.6± 249.2 1029.0± 300.6 1408.1± 491.9 0.1± 0.0 1408.2± 491.9 10.7± 2.9

TPP
1 12± 11.7 0.1± 0.0 1.0± 1.1 1.7± 1.6 2.8± 2.5 0.0± 0.0 2.8± 2.6 0.1± 0.0
2 44± 44.3 0.1± 0.0 3.7± 3.9 6.9± 7.4 10.7± 11.1 0.0± 0.0 10.7± 11.2 0.1± 0.0

Table 2: Execution time results of GREPLANU and GREPLANA in replanning problems across the five different domains when they are run
with different distance bounds D. The |Gr| column shows the average and standard deviation of the number of replanning candidate goals
considered. Columns under GREPLANU and GREPLANA show the average and standard deviation seconds required by each component, as
well as the total execution time. The last column shows the time needed to solve the replanning problem once GREPLAN generates the new
replanning goal.

GREPLANU

Domain D ΔDistance ΔConsistency ΔCost ΔTotal G′ = G

DRIVERLOG
1 −0.0± 0.2 0.0± 0.1 0.0± 0.2 0.0± 0.0 0.97
2 −0.3± 0.3 −0.1± 0.2 0.5± 0.5 0.1± 0.2 0.45

HIKING
1 −0.2± 0.4 0.1± 0.2 0.2± 0.4 0.1± 0.2 0.78
2 −0.2± 0.3 0.1± 0.2 0.3± 0.4 0.1± 0.2 0.63

ROVERS
1 −0.0± 0.2 0.0± 0.0 0.0± 0.2 0.0± 0.0 0.97
2 −0.2± 0.3 −0.0± 0.2 0.4± 0.5 0.1± 0.2 0.57

TIDYBOT
1 −0.6± 0.5 0.2± 0.2 0.6± 0.5 0.2± 0.2 0.37
2 −0.4± 0.2 0.2± 0.2 0.6± 0.3 0.4± 0.3 0.20

TPP
1 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 1.00
2 −0.1± 0.3 0.0± 0.2 0.2± 0.4 0.1± 0.2 0.83

Table 3: Quality results of GREPLANU in replanning problems across
the five different domains when running with different distance
bounds D. Columns under GREPLANU show the average and stan-
dard deviation quality difference in the given objective between the
new replanning goal G′ generated by GREPLAN and the original
goal G. Larger values indicate G′ has a better score than G in the
given objective. The last column shows the ratio of times the original
goal is selected as the new replanning goal.

5 Related Work

Most replanning literature has focused on how to compute new plans
to achieve the original goal [26]. Approaches to do so include com-
pletely disregarding the original plan and planning from scratch [22];
or generating a new plan that is similar to the original one [38, 16].
More recent works have questioned this assumption, considering re-
planning as a broader problem where goals, or even models [11], can
be changed when replanning.

Cushing et al. [13] propose an oversubscription planning [34] ap-
proach, where the utility of goals is changed according to a reward-
penalty model that penalizes agents not respecting commitments
made by the original plan. During each replanning epoch, the agent
selects objectives considering the current state, the partially executed
plan, and all the available goals, including any opportunities and
commitments (with their rewards and penalties). These goals (and
their rewards) need to be specified a priori, while GREPLAN can
generate new goals by only considering the agent’s initial and cur-
rent states and the original goal.

Closer to our approach, other works also use goal recognition in
the replanning process [35], or acknowledge the trade-offs of differ-
ent metrics when replanning [36]. These works use goal recognition
in the context of human-robot coordination, as a way of modelling
beliefs: the robot will extend its set of goals and replan based on
the human’s observed behavior. Regarding the trade-offs, they fo-

cus on three aspects: (i) computational efficiency, i.e., time to replan;
(ii) plan stability, i.e., minimize changes with respect to the origi-
nal plan; and (iii) commitments, i.e., soft constraints that are induced
by an executing plan. Like [13], they compile these different replan-
ning flavours into an oversubscription planning task, and discuss how
these objectives compete with each other, i.e., you cannot do fast
replanning if you consider plan stability. In our case, GREPLAN is
solving a standard planning task, where the new goal is generated
by solving a multi-objective problem that optimizes three objectives
not previously considered in the literature: distance from the original
goal, consistency with the already executed plan and cost from the
current state.

Although we have mainly focused on architectures where
planning-monitoring is decoupled from execution, GREPLAN could
also be used by autonomous agents capable of creating/managing
their own goals [25, 39]. While other works on Goal Reasoning
and Goal-Driven Autonomy generate new goals based on rule-based
systems [12], models predicting the appearance of goals in the fu-
ture [7, 17], or based on the behavior of opponent agents [29], we
allow agents to generate their own goals when replanning by consid-
ering different objectives.

6 Conclusions and Future Work

We have introduced GREPLAN, a novel approach that proposes new
goals for replanning by solving a multi-objective optimization prob-
lem that considers all goals within a perimeter of the original goal.
GREPLAN optimizes three objectives: (i) the distance between the
original goal and the replanning candidate goal; (ii) the consistency
of the replanning candidate goal with respect to the already executed
plan; and (iii) the cost of the plan achieving the new replanning can-
didate goal. Experimental results in replanning problems across five
different domains show that, although GREPLAN requires some ex-
tra time to solve the optimization problem, in many tasks the gener-
ated new replanning goal compensates this overhead by being better
suited for replanning, as it is not far from the original goal, aligns
with the agent’s observed behavior, and is not costly to achieve.

In future work we would like to alleviate GREPLAN’s computation
time by reducing the number of candidate goals considered. Poten-
tial ways of doing so include randomly sampling a subset of goals,
or devising heuristics that help us decide which goals should be fil-
tered. Finally, we would also like to run user studies to understand
how humans value the suggestions made by the system and how they
weight each of the objectives, as well as identify any other objective
humans consider important when replanning.
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