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Abstract. Image-level weakly supervised semantic segmentation
(WSSS) has attracted much attention due to the easily acquired class
labels. Most existing methods resort to utilizing Class Activation
Maps (CAMs) obtained from the classification network to play as the
initial pseudo labels. However, the classifiers only focus on the most
discriminative regions of the target objects, which is referred to as the
information bottleneck from the perspective of the information the-
ory. To alleviate this information bottleneck limitation, we propose
an Information Perturbation Module (IPM) to explicitly obtain the in-
formation difference maps, which provide the accurate direction and
magnitude of the information compression in the classification net-
work. After that, an information bottleneck breakthrough mechanism
with three branches is proposed to overcome the information bottle-
neck in the classification network for segmentation. Additionally, a
diversity regularization on the generated two information difference
maps is proposed to improve the diversity of the output CAMs. Ex-
tensive experiments on PASCAL VOC2012 val and test sets demon-
strate that the proposed method can effectively improve the weakly
supervised semantic segmentation performance of the advanced ap-
proaches.

1 Introduction

Owing to the development of deep neural networks (DNNs), se-
mantic segmentation [21, 5] has made outstanding progress in the
recent few years. However, the fully supervised semantic segmen-
tation requires time-consuming pixel-wise annotations for each im-
age. To alleviate such expensive and unwieldy annotations, the semi-
supervised segmentation [7, 22] and the image-level weakly super-
vised semantic segmentation (WSSS)[17, 32] has been widely stud-
ied recently. Image-level WSSS methods [17, 32, 8] usually rely
on the initial seeds of Class Activation Maps(CAMs) [41] gener-
ated by the classification networks. However, the trained classifiers
tend to highlight the most discriminative regions oriented to clas-
sification, while neglecting other non-discriminative but category-
related regions of the target objects, making the pseudo labels ob-
tained from such coarse CAMs unsuitable for segmentation. Some
approaches[2, 32, 37] aim to refine the pseudo labels based on the
initial coarse CAMs. AffinityNet [2] propagates the same semantic
pixels by random walk strategy. SEAM [32] expands the activate re-
gions by adding equivariance regularization on different augmented
inputs.

∗ Equal contribution.
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Figure 1. (a) Visualization of the information compression in the
classification network ResNet-50 [11]. (b) The process of generating the
information difference maps that illustrate the direction and magnitude of

the information compression (white arrows).

Albeit these methods increase the response regions, they refine the
initial CAMs through the results-driven approach and ignore the es-
sential problem of the classification network that exists as the in-
formation bottleneck limitation for the segmentation task. Different
from these approaches, we explicitly explore the underlying reason
for such coarse CAMs from the perspective of information theory
and locate the specific position of information compression in the
classification network, and further reduce the information bottleneck
limitation for segmentation.

We first visualize the features in each layer of the classification
network in Figure 1 and observe that the amount of total activated
information in each layer is gradually compressed as the layers go
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Figure 2. The pipeline to obtain the information difference maps, where the Information Perturbation Module (IPM) regulates the information flow by adding
noise perturbation. The auxiliary branch is added to generate the comprehensive perturbed maps.

deeper, which is referred as the information bottleneck[30] in the
classification network. To this end, the response regions of the fea-
tures in the last layer only focus on the most important part of the
target object since other task-irrelevant information is restricted by
the information bottleneck.

In order to locate the position of the information compression, we
introduce Information Perturbation Module (IPM) to the pre-trained
classification model. The proposed IPM adds noise perturbation in
the internal feature space to regulate the information flow process,
so that the network can extract more information from the non-
discriminative regions. After that, perturbed CAMs covering more
response regions can be leveraged with the classical CAMs to gen-
erate the information difference maps. As shown in Figure 1, the
information difference maps reflect the direction and the magnitude
of the information compression.

With the explicit representation of the information bottleneck, we
suggest to break through the information bottleneck limitation and
provide complementary CAMs for WSSS. We propose a novel three-
branch framework, which consists of a basic branch network and two
auxiliary branches. The basic branch network generates the classical
CAMs, which only highlight the classification-related regions. The
other two auxiliary branches, equipped with Information Perturba-
tion modules, are to compute the information difference maps with
the classical CAMs. Additionally, we leverage the diversity regular-
ization on the two difference maps to make the information compres-
sion direction be orthogonal. Therefore, the perturbed CAMs gener-
ated by two auxiliary branches are diversity. Our contributions can
be summarized as follows:

• To alleviate the information bottleneck limitation, we propose a
novel information perturbation module to locate the position and
the direction of the information compression, named information
difference maps.

• We design a three-branch framework to break through the infor-
mation bottleneck limitation in the weakly supervised semantic
segmentation task. The information difference maps are used to
extend the classical CAMs. Diversity regularization is used to en-
sure the diversity of output CAMs.

• Extensive experiments demonstrate that the designed training
framework can effectively improve the performance of weakly su-
pervised semantic segmentation, e.g., our method achieves 2.2%
and 1.2% mIoU improvement on val and test set based on
IRNet[2].

2 Related Work

2.1 Weakly Supervised Semantic Segmentation

In recent years, there has been a significant advancement in image-
level weakly supervised semantic segmentation (WSSS). Many state-
of-the-art methods commonly utilize classification networks to gen-
erate Class Activation Maps (CAMs) [41] as localization maps. Most
of these efforts[34, 32, 28, 18, 2, 14, 23] attempt to refine the pseudo
labels obtained from the CAMs. [33] enforces CNN to focus on
more regions by erasing the most discriminative regions continu-
ously. [34] uses dilated convolution with different dilate rates to
increase the response regions. AffinityNet [2] learns the relation of
pixels and propagates the similar semantic pixels by a random walk
algorithm. SEAM [32] captures different regions from transformed
images via equivariance regularization in classification networks.
OAA [14] fuses multi-attention maps in different training processes.
[10] and [28] capture the information of cross-image semantic simi-
larities and differences. [37] introduces a graph-based global reason-
ing unit to discover the objects in the non-salient regions. However,
these approaches mentioned above resort to extract the initial CAM
seeds by directly employing classification networks, which exist the
information bottleneck limitation that is hard to localize the whole
target region for segmentation.

2.2 Information Bottleneck

Neural networks are analyzed that tend to learn the minimal suffi-
cient statistics of the input with respect to the output [30], which
is illustrated as information bottleneck. [3] proposes a variational
inference algorithm to estimate the bounds on mutual information.
Recently, [40] employs the information bottleneck in classification
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networks to visualize the perturbation maps that highlight the impor-
tant regions for the classification task. The information bottleneck
principle is exploited by DICE [24] to curtail the mutual information
between the internal representation features and the inputs. When
multiple models share information, the redundant information across
features is also mitigated. [16] reduces the information bottleneck
effects by inserting new classified layers to find more regions. [25]
counts the amount of information by restricting the information flow.
In this paper, we analyze the problem of the information bottleneck
in classification for semantic segmentation, and propose to improve
the performance of image-level weakly supervised semantic segmen-
tation from the perspective of the information theory.

3 Methodology

3.1 Existing Information Bottleneck Problem

Most weakly supervised semantic segmentation approaches [17, 27,
32, 8] resort to obtain the CAM seeds as the initial pseudo labels
from classification networks. However, with the classification loss
function, the classifiers tend to focus on the most discriminative re-
gions of the target object while neglecting other non-discriminative
parts of the target object which are crucial for segmentation.

This phenomenon can be interpreted from the perspective of in-
formation theory. Since the trained classification network aims to
extract maximally compressed information (the most discriminative
information) from the input for accurate category distinction [25],
it inevitably restricts other non-discriminative but class-relevant in-
formation flow to the output, which is referred as the information
bottleneck[30]. The information bottleneck urges the model to find
the compressed features by minimizing the mutual information of the
input X and the features F , and maximizing the mutual information
between F and the output Ỹ :

min(I(X,F )− βI(Ỹ , F )), (1)

where I(·, ·) denotes the mutual information, and β ∈ [0, 1] is a
trade-off parameter between encouraging F to be predictive of Ỹ
and encouraging F to “forget” X . To this end, the compressed rep-
resentations F are commonly the minimal sufficient features about
the output and eliminate the irrelevant information which does not
contribute to classification. As shown in Figure 1, the deeper layer
of the network, the more severely the feature information is com-
pressed. The last layer of features contains only the salient features
of the most important part of the region, e.g., head of dog.

3.2 Information Difference Maps

In order to solve the limitation of the information bottleneck problem
and make the features of classification networks satisfy the require-
ments of the segmentation task, we first need to locate the position
where the information is compressed. We propose a novel informa-
tion perturbation module (IPM) to find the compression direction and
region of feature information flow, which is called information differ-
ence map. As shown in Figure 2, the information perturbation mod-
ule is employed in each layer to generate the intermediate perturbed
features, which can reflect more context features rather than focusing
too much on local region.

We incorporate the proposed IPM in each layer of the pre-trained
classification network. Given the feature of ith layer Fi, IPM intro-
duces the noise perturbation into Fi and outputs more comprehensive

��� ��� ��� ���

Figure 3. Illustration of different CAMs. (a) The perturbed CAMs
generated by our proposed IPM module. (b) The original CAMs generated
by the traditional classification networks. (c) The information difference
maps where the white arrows represent the direction of the information

bottleneck from the original most discriminative regions to the
non-discriminative regions of the target objects. (d) The ground truth labels

of the images.

Figure 4. The architecture of the proposed information perturbation
module. δi denotes the noise perturbation. αi denotes the attentive map

obtained from the multi-level features.

features Zi. After obtaining all the internal features, we fuse these
multi-level features via concatenation:

Zo = Cat(Z1, Z2, ..., Zn), (2)

where Zo denotes the fused features and Cat represents the concate-
nate operation. Then a MLP module is used for the fused features Zo

to increase the information exchange between different layers. Fi-
nally, we leverage the classification head to complete the goal of the
classification and the CAM module to obtain the perturbed maps Mp.
Mp emphasizes more diverse context features than classical map,
which is beneficial to locate the direction of the information com-
pression according to the difference maps Md.

We obtain the difference map by utilizing the new CAMs Mp and
the classical CAMs Mc of the pre-trained network:

Md = Mp −Mc, (3)

where Md is the information difference map. The obtained Md in-
dicates the direction and magnitude of the information compression,
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Figure 5. The framework of the proposed method for breakthrough the
information bottleneck in weakly supervised semantic segmentation.

and also represents the existence of the information bottleneck. As
shown in Figure 3, the visualization of the information difference
maps help us to exploit the solutions of breaking through the limita-
tion of information bottleneck for WSSS.

The proposed IPM is designed to perturb the internal feature Fi. It
utilizes all internal features F1, ..., Fn to calculate the attentive map
αi, which is defined as:

αi = Hi(F1, ..., Fn), (4)

where Hi is the hiden convolution layer. The attentive map αi re-
flects the importance of each area to the target. The whole process is
shown in Figure 4, the random noise is added to the current features
according to αi,

Zi = (1− αi)Fi + αiδi, (5)

where the noise δi is sampled from the gaussian distribution
N(μi, σ

2
i ) defined with the mean and variance obtained from the i-th

features. Fi and Zi are the input and output features of IPM. Since
the attentive map αi is obtained from features, the noise makes more
perturbation on the important regions of the internal features. The
final perturbed maps contain larger regions of target objects.

To add supervision for the information perturbation module, the
mutual information between the perturbed features and the input fea-
tures is formulated as the information loss:

Linfo =
1

n

n∑
i=1

I(Zi, Fi), (6)

where I(Zi, Fi) represents the mutual information between Zi and
Fi. In the word, the final loss function for the information difference
map is summarized as:

L = Lcls + Linfo, (7)

3.3 The Overall Activation Map Framework

To break through the limitation of the information bottleneck in the
classification networks, we design a novel architecture for generat-
ing comprehensive CAMs using the information difference maps, as
shown in Figure 5. The overall framework consists of a basic clas-
sification network and two pairwise auxiliary branches. The auxil-
iary branches contain the information perturbation module proposed
above, which aims to generate the information difference map Md.

After obtaining two information difference maps, we employ a diver-
sity regularization loss function Ldiv as,

Ldiv = cos(Md1,Md2), (8)

where cos denotes the cosine distance between the two difference
maps Md1 and Md2. The diversity regularization aims to guarantee
the diversity of information difference maps by increasing the cosine
distance. To sum up, the whole loss function of training the frame-
work is composed as:

Lall = Lcls + λ1Linfo + λ2Ldiv , (9)

where Lall denotes the final loss. λ1 and λ2 denote the coefficients
of different losses. Finally, we leverage two information difference
maps and the classical maps to expand the discriminative region for
weakly supervised semantic segmentation. The final CAM Mf is ob-
tained as:

Mf = Mc +
1

2
γ(Md1 +Md2), (10)

where Mc denotes the classical CAMs. γ denotes the weight of dif-
ference maps.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct all our experiments on the PASCAL VOC2012 dataset.
It contains 20 foreground object classes and one background class.
Following the common methods [32, 1], we use 10,582 images for
training, 1,449 images for validation, and 1,456 for testing. During
the whole training process, we only adopt the image-level class la-
bels for supervision. We calculate the mean intersection over union
(mIoU) of all classes to evaluate the performance of the experiments.

4.2 Implementation Details

To verify the effectiveness of our method, we conduct experiments
on three basic methods, i.e., IRNet[1], SEAM[32], and EPS[19].
The main classification backbones are ResNet50[11] and Wide-
ResNet38. The parameters of the backbones are pre-trained with the
two basic methods and will be fixed while training our proposed
framework. All the training settings are followed the two methods.
Based on IRNet, we train the network for 4 epochs with a batch size
of 16. The initial learning rate is set to 0.01 with a momentum of
0.9. For SEAM, we also train 4 epochs with a batch size of 4. The
learning rate is set to 0.02. λ1 and λ2 are equal to 0.01 and 0.1.
γ = 0.8 and the hardware setup is 4 NVIDIA V100 GPUs. Follow-
ing the works [2, 1], we exploit the random walk algorithm on the
expanded CAMs to refine the pseudo labels. After obtained the final
pseudo labels for segmentation, we train the DeepLab-v2 [5] with the
backbone of ResNet101 [11], which is pre-trained on the ImageNet.

4.3 Per-class Results

The comparison of segmentation results of all categories on
VOC2012 validation set is elaborated, as visualized in Table 1. This
provides a comprehensive analysis of the performance of each cat-
egory. Our method is evaluated based on two different baseline ap-
proaches, IRNet and SEAM, demonstrating its generalization abil-
ity. The separate performance gain of applying our method on each
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Table 1. Per-class segmentation results on PASCAL VOC2012 val set with DeepLab-v2 [5].
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MCOF [31] 87.0 78.4 29.4 68.0 44.0 67.3 80.3 74.1 82.2 21.1 70.7 28.2 73.2 71.5 67.2 53.0 47.7 74.5 32.4 71.0 45.8 60.3
FickleNet [17] 89.5 76.6 32.6 74.6 51.5 71.1 83.4 74.4 83.6 24.1 73.4 47.4 78.2 74.0 68.8 73.2 47.8 79.9 37.0 57.3 64.6 64.9
AffinityNet [2] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7
SEAM [32] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
IRNet[1] 87.6 70.2 30.7 76.4 47.5 63.9 75.4 61.6 82.3 33.6 74.8 68.9 75.3 71.7 56.3 63.0 50.3 69.8 44.2 67.4 62.5 63.5
IRNet + Ours 88.2 77.6 38.0 72.7 55.1 69.7 79.9 68.4 78.5 37.1 69.0 72.2 79.1 69.7 53.2 65.7 52.9 75.3 40.1 69.0 67.8 65.7

SEAM + Ours 89.1 71.6 37.6 87.2 44.2 63.8 73.3 80.1 83.0 34.9 76.4 52.5 74.3 76.9 72.1 78.3 51.4 70.3 43.3 61.5 56.7 65.6

Table 2. Quality results (mIoU) of pseudo labels on the VOC2012 train
images. The “CAM” and “Pseudo” indicate the results of the CAMs and the

refined pseudo labels with different methods.

Method Backbone Publication CAM Pseudo

AffinityNet [2] Wide ResNet38 CVPR2018 48.0 59.7
Chang et al. [4] Wide ResNet38 CVPR2020 50.9 63.4
CONTA [39] ResNet50 NIPS2020 48.8 67.9
EDAM[35] Wide ResNet38 CVPR2021 52.8 58.2
AdvCAM[18] ResNet50 CVPR2021 55.6 69.9
CSE[29] Wide ResNet38 ICCV2021 56.6 58.6

IRNet [1] ResNet50 CVPR2019 48.3 66.5
IRNet + Ours ResNet50 - 52.5 +4.2 68.1 +1.6

SEAM [32] Wide ResNet38 CVPR2020 55.4 63.6
SEAM + Ours Wide ResNet38 - 56.8 +1.4 64.8 +1.2

EPS [19] Wide ResNet38 CVPR2021 69.4 71.6
EPS + Ours Wide ResNet38 - 70.0 +0.6 71.9 +0.3

baseline approach further proves the effectiveness of our method it-
self. It is highlighted that our method primarily improves the perfor-
mance of baseline categories with poor results, such as “bottle” of
IRNet and “sofa” of SEAM. This indicates that our method excels
in boosting the performance of long-tail categories. The final mIoU
of 65.7% and 65.6% achieved by our method based on IRNet and
SEAM on VOC2012 validation set are reported, providing quantita-
tive results for analysis. This also provides evidence for the following
qualitative discussion. The qualitative analysis in the end concludes
that our method helps poorly performed categories overcome the in-
formation bottleneck, especially benefiting long-tail categories. This
further proves the validity of our method.

4.4 Improvements of the Pseudo Labels

To verify the effectiveness of our proposed method in generat-
ing CAMs and pseudo labels, we conducted experiments on the
VOC2012 training set and compared the initial CAMs with the fi-
nal pseudo labels, as summarized in Table 2. It is worth noting that
we applied our method to three state-of-the-art techniques, namely
IRNet [1], SEAM [32], and EPS [19].

Our approach yield substantial performance gains over the base-
line method IRNet, improving the CAM and pseudo label accuracy
by 4.2% and 1.6%, respectively. We observed similar improvements
in the pseudo label accuracies of the SEAM and EPS methods. These
results demonstrate that our method is highly effective in alleviat-
ing the information bottleneck present in conventional CAM-based
paradigms and can be seamlessly integrated with existing techniques
to enhance their performance in generating pseudo labels.

Our extensive experiments demonstrate the superiority of our pro-
posed method over existing CAM-based techniques. We believe that

our method has the potential to significantly advance the field of
weakly supervised learning and enable the development of more ac-
curate and efficient models for a wide range of applications.

4.5 Comparison with State-of-the-art methods

To evaluate the effectiveness of our proposed approach in generat-
ing high-quality pseudo labels, we conducted fully supervised seg-
mentation experiments on the PASCAL VOC2012 dataset using the
DeepLab v2[5] network. In our experiments, we trained the network
using the pseudo labels generated by our approach. We compared
the segmentation results obtained using our approach with those ob-
tained using state-of-the-art methods on both the validation and test
sets of the PASCAL VOC2012 dataset, as shown in Table 3. Our re-
sults demonstrate that our approach outperforms the baseline method
IRNet by 2.2% and 1.2% on the validation and test sets, respectively.
Moreover, our approach consistently improves the performance of
the SEAM baseline.

To further demonstrate the effectiveness of our approach, we eval-
uated it on the state-of-the-art EPS method, which uses image-level
and saliency supervision. Our method produced a significant im-
provement in segmentation performance, achieving an accuracy of
71.4% and 72.0% on the validation and test sets, respectively. These
results are a testament to the ability of our approach to extract more
comprehensive features, thereby enhancing the performance of the
segmentation task. The success of our approach can be attributed to
its ability to generate high-quality pseudo labels that capture the true
object boundaries and semantics. Our approach also leverages the
power of deep neural networks to learn more features, which are cru-
cial for accurate segmentation. Additionally, our approach is highly
flexible and can be easily integrated with existing methods to im-
prove their performance in generating pseudo labels.

In summary, our experiments demonstrate the efficacy of our pro-
posed approach in generating high-quality pseudo labels for weakly
supervised segmentation. Our approach outperforms state-of-the-art
methods on the PASCAL VOC2012 dataset, highlighting its poten-
tial to advance the field of weakly supervised learning and enable the
development of more accurate and efficient segmentation models.

4.6 Visualization of Segmentation Results

Figure 6 shows the segmentation results obtained using our proposed
approach with the IRNet[1] and SEAM[32] methods on the valida-
tion set of the PASCAL VOC2012 dataset. As can be seen from the
figure, the segmentation results obtained using IRNet and SEAM of-
ten suffer from the loss of fine details in the border regions and con-
fusion between the regions where objects intersect. In contrast, our
proposed approach successfully identifies the important regions of
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Table 3. Comparison with the state-of-the-art methods on PASCAL VOC2012 val and test set. All results are evaluated in mIoU(%). I represents the
image-level label and S indicates the salient label.

Methods Backbone Sup. Val Test Methods Backbone Sup. Val Test

AffinityNet [2] Wide ResNet38 I 61.7 63.7 MCOF [31] ResNet101 I + S 60.3 61.2
IRNet [1] ResNet101 I 63.5 64.8 SeeNet [12] ResNet101 I + S 63.1 62.8
CIAN [10] ResNet101 I 64.3 65.3 DSRG [13] ResNet101 I + S 61.4 63.2
SSDD [26] ResNet101 I 64.9 65.5 AuxSegNet [36] ResNet101 I + S 69.0 68.6
OAA+ [14] ResNet101 I 65.2 66.9 FickleNet [17] ResNet101 I + S 64.9 65.3
SEAM [32] Wide ResNet38 I 64.5 65.7 MCIS [28] ResNet101 I + S 66.2 66.9
Chang et al. [4] ResNet101 I 66.1 65.9 ICD [9] ResNet101 I + S 67.8 68.0
Zhang et al. [38] ResNet101 I 66.3 66.5 Yao et al. [37] ResNet101 I + S 68.3 68.5
Chen et al. [6] ResNet101 I 65.7 66.7 EDAM [35] ResNet101 I + S 70.9 70.6
CONTA [39] ResNet101 I 66.1 66.7 G-WSSS[20] ResNet101 I + S 68.2 68.5
DRS [15] ResNet101 I 66.8 67.4 NSROM [37] ResNet101 I + S 70.4 70.2
AdvCAM [18] ResNet101 I 68.1 68.0 EPS [19] ResNet101 I + S 71.0 71.8

IRNet + Ours ResNet101 I 65.7 +2.2 66.0 +1.2 EPS + Ours ResNet101 I + S 71.4 +0.4 72.0 +0.2
SEAM + Ours Wide ResNet38 I 65.6 +1.1 66.5 +0.8
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Figure 6. Qualitative comparison on the PASCAL VOC2012 validation set. (a) Input images. (b) The segmentation results of IRNet[1]. (c) The segmentation
results of SEAM[32]. (d) The segmentation results of our method. (e) Ground truth labels.

the target objects and accurately segments them. The results obtained
using our approach are more visually appealing and exhibit fewer er-
rors in the border regions. This can be attributed to the fact that our
approach generates high-quality pseudo labels that capture the true
object boundaries and semantics. These pseudo labels are then used
to train the network in a weakly supervised manner, enabling it to
learn more discriminative features that are crucial for accurate seg-
mentation.

4.7 Effect of main components

We conduct the ablation study to verify the effect of the proposed
method. As shown in Table 4, with IPM, our method can improve the
original CAM by 1.4% of mIoU. To increase the diversity of the ex-
panded CAMs, the two auxiliary branch with IPM are introduced for
consistent regularization. Our method achieves 51.9% performance.
The proposed diversity regularization Ldiv is proposed to increase
the diversity of the expanded CAMs, which bring out the perfor-
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Table 4. Effectiveness of different designed modules. Baseline indicates
the original CAM generation. IPM represents that only one auxiliary branch
is employed. And IPM2 represents the two auxiliary branches. Ldiv denotes

the diversity regularization employed on the two information difference
maps.

Baseline IPM IPM2 Ldiv mIoU (%)
√

48.3√ √
49.7√ √ √
51.9√ √ √ √
52.5

mance improvement by 0.6%. By combining all these components,
our full method performs significantly performance of CAMs of
52.5%. Additionally, the results show that our method break through
information bottleneck in the pre-trained classification networks and
releases the category information to improve the segmentation per-
formance.

We conducted an ablation study to analyze the impact of each
component. As summarized in Table 4, our method achieved an im-
provement of 1.4% in mIoU by incorporating IPM. This demon-
strates the effectiveness of IPM in generating high-quality CAMs
that accurately capture the object boundaries and semantics. To fur-
ther increase the diversity of the expanded CAMs, we introduced two
auxiliary branches with IPM for consistent regularization. This re-
sulted in a further improvement of 0.6% in mIoU, bringing the over-
all performance of our approach to 51.9%. This highlights the im-
portance of regularization in producing diverse and accurate CAMs.
We also proposed a diversity regularization term Ldiv to encourage
the network to produce more diverse CAMs. This component im-
proved the performance of our approach by an additional 0.6% in
mIoU, demonstrating the importance of diversity in producing accu-
rate and robust CAMs. By combining all these components, our full
method achieved a significant improvement in the performance of
CAMs, achieving an mIoU of 52.5%. These results demonstrate the
effectiveness of our proposed method in overcoming the informa-
tion bottleneck in pre-trained classification networks and releasing
the category information to improve the segmentation performance.

Overall, our ablation study provides a comprehensive analysis of
the effectiveness of each component of our proposed approach. The
results demonstrate that each component plays a crucial role in pro-
ducing accurate and diverse CAMs.

5 Discussions and Limitations

We use publicly available training datasets with official authoriza-
tion to avoid data privacy issues. WSSS methods may have nega-
tive societal consequences, such as in surveillance or facial recogni-
tion systems. It is vital to consider potential misuses and take ethical
measures. Our method utilizes general scene images, avoiding bias
against specific groups or regions.

Our framework has limitations in certain scenarios or data con-
ditions, such as complexity of target objects. Our framework may
struggle to capture complex visual patterns and structures of certain
objects, particularly those with highly variable appearances or occlu-
sions.

6 Conclusion

In this paper, we attempt to explore the information bottleneck prob-
lem for image-level weakly supervised semantic segmentation that

the trained classifiers only focus on the most discriminative regions
of the target objects. To alleviate this limitation, we propose an Infor-
mation Perturbation Module (IPM) to locate the position of the infor-
mation compression with information difference maps. With the ad-
vantages of the information difference maps, we then design a three-
branch framework to overcome the information bottleneck limita-
tion, making it more suitable for WSSS. The qualitative and quan-
titative experiments show that the proposed method can effectively
improve the weakly supervised semantic segmentation performance
of the advanced methods.
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