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Abstract. This paper introduces a formal definition of the setting
of ad hoc teamwork under partial observability and proposes a first-
principled model-based approach which relies only on prior knowl-
edge and partial observations of the environment in order to perform
ad hoc teamwork. We make three distinct assumptions that set it apart
previous works, namely: i) the state of the environment is always
partially observable, ii) the actions of the teammates are always un-
available to the ad hoc agent and iii) the ad hoc agent has no ac-
cess to a reward signal which could be used to learn the task from
scratch. Our results in 70 POMDPs from 11 domains show that our
approach is not only effective in assisting unknown teammates in
solving unknown tasks but is also robust in scaling to more challeng-
ing problems. Supplementary material is available at https://github.
com/ jmribeiro/adhoc-teamwork-under-partial-observability

1 Introduction
One of many aspects of human intelligence is the ability to cooperate
with strangers when unexpected events, such as emergencies, occur.
Introduced by Stone et al. [26], the setting of ad hoc teamwork, stud-
ies how autonomous agents can efficiently handle this same scenario.
Instead of being evaluated according to their ability to learn and/or
perform a given task, agents are evaluated according to how efficient
they are able to assist unknown teammates in performing unknown
tasks (without being able to pre-coordinate or communicate before-
hand).

Even though the setting of ad hoc teamwork has recently been un-
der great attention by the multi-agent systems community [20], cur-
rent approaches [3] rely on assumptions unfeasible to attain in real-
world scenarios, such as full observability of the state of the environ-
ment [3, 23] and being able to observe the actions of the teammates
[3]. In a more recent line of work, Gu et al. [14] showcase that by
learning via trial-and-error how to perform tasks on a fully observ-
able environment (where both the states and actions of the teammates
are fully observable), an ad hoc agent is then able to transfer this
knowledge to a partial observable environment where only a single
observation is available.

In this paper, we follow both Ribeiro et al. [23] and Gu et al.
[14], and formalize the problem of ad hoc teamwork under partial
observability, relying on the novel assumptions that an agent never
has access to the full state of the environment nor the actions of its
teammates. We propose a novel, first-principled Bayesian online in-
ference algorithm for the setting of ad hoc teamwork, named ATPO
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(Ad hoc Teamwork for Partially Observable environments), which
relies on a library of possible models (in our case, Partially Ob-
servable Markov Decision Processes (POMDPs)). To the best of our
knowledge, ATPO represents the first model-based approach for ad
hoc teamwork capable of assisting unknown teams in completing un-
known tasks, relying only on partial observations of the environment.
These assumptions also make ATPO suited to address tasks involving
ad hoc robotic agents, accommodating the natural perceptual limita-
tions of robotic platforms [12] and allowing for the interaction, not
only with other robots but also humans as teammates.

We evaluate ATPO by conducting an empirical evaluation, resort-
ing to a total of 70 POMDPs from 11 benchmark multiagent prob-
lems. Our results demonstrate the effectiveness of ATPO in perform-
ing ad hoc teamwork under partial observability by not only effi-
ciently assisting unknown teammates, but also identifying, from par-
tial observations, which teammates it is interacting with and which
tasks they are currently performing.

To summarize, our contributions are threefold:

• We contribute to the formalization of ad hoc teamwork under par-
tial observability;

• We propose ATPO, a novel approach for ad hoc teamwork un-
der partial observability that is capable of inferring the underlying
target task and teammate’s behaviour from the agent’s history of
observations;

• We illustrate the applicability of our approach in a set of eleven
distinct domains.

2 Related Work
The setting of ad hoc teamwork was first introduced by Stone et al.
[26]. In ad hoc teamwork, an agent (named the ad hoc agent) has
the goal of joining an already formed team and assisting it on-the-
fly. The ad hoc agent is not assumed to be able to pre-coordinate or
pre-communicate with the team.

Earlier work in the setting of ad hoc teamwork assumed that the
ad hoc agent knew, beforehand, the teams’ behavior and the task they
were performing. Given this information, the only remaining goal for
the ad hoc agent is to understand its role and act accordingly. Stone
and Kraus [27] showcase an example of this scenario, introducing a
finite-horizon decision problem where an ad hoc agent uses a planner
in order to compute its own actions, assisting a single teammate in
performing a single task. The authors are then followed by Barrett
and Stone [4], who extend the approach to discounted infinite hori-
zon problems. Later on, Agmon and Stone [1] approach the same
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scenario, but now consideringN teammates instead of one. All these
approaches, however, by assuming the ad hoc agents knows the team-
mates’ behavior and the task they are performing beforehand, reduce
ad hoc teamwork to a planning problem (where the only challenge is
to figure out the optimal role for the ad hoc agent).

It is later on that Chakraborty and Stone [8] drop the assumption
that the teammates’ behavior is known a priori. In their work, the au-
thors assume that the teammates follow an unknown Markov policy
that the ad hoc agent must identify to plan its actions. The authors,
however, still assume that the task being performed is known to the
ad hoc agent. From this perspective, ad hoc teamwork is closely re-
lated to learning in games, a problem for which an extensive litera-
ture already exists [11].

More recently, Melo and Sardinha [18] formalize the setting of ad
hoc teamwork by breaking it down into three sub-problems: (i) task
identification (the ad hoc agent has to identify the task the teammates
are performing), (ii) teammate identification (the ad hoc agent has to
identify the behavior of its teammates) and (iii) planning/execution
(after identifying the task and teammate behavior, the ad hoc agent
has to plan its best response accordingly). The authors are then fol-
lowed by Barrett et al. [3], who follow this formalization and intro-
duce the PLASTIC framework [3, 5]. The PLASTIC framework is
an approach which, relying on a set of previous interactions, is able
to identify the current team (and task being performed) by perform-
ing Bayesian updates. This is done by first assigning each possible
model a belief prior, and, using as evidence the observed actions
of the teammates for the current state, updating the beliefs in each
timestep until. Using the most likely model, a pre-trained policy for
the ad hoc agent can then be used to compute the best response.

Expanding upon Barrett et al. [3], Ribeiro et al. [23] later on tackle
these limitations by dropping the assumption that the actions of the
teammates are visible to the ad hoc agent. In their work, the authors
also rely on a set of prior interactions, however this time modeled
as Markov Decision Processes. Gu et al. [14] afterwards introduce
an approach relying on reinforcement learning techniques to allow
an agent to first learn how to perform tasks from scratch in a fully
observable environment (in which the agent is also able to observe
the actions of its teammates) and is then deployed into a partial ob-
servable scenario, where it has to assist unknown teammates. In this
paper, we expand upon Ribeiro et al. [23] and Gu et al. [14] by re-
lying on the assumptions that the state of the environment is never
observable and the actions of the teammates never visible to the ad
hoc agent. Furthermore, we consider a setting of closed ad hoc team-
work, where teams are fixed and teammates do not dynamically join
and leave. We formalize ad hoc teamwork under partial observability
and propose a novel algorithm (ATPO) which assumes the environ-
ment is partially observable and the ad hoc agent has no access to
the actions of its teammates. Similar to Ribeiro et al. [23], ATPO re-
lies on a library of prior interactions, this time modeled as Partially
Observable Markov Decision Processes (POMDPs). The beliefs over
each possible model are then updated using Bayesian updates, using
as evidence the partial observations. ATPO then uses the beliefs to
compute the best response for the ad hoc agent, by relying on the so-
lutions for the POMDPs, obtained using an arbitrary POMDP solver
(in our case, Perseus [25]).

2.1 Similar Lines of Research

Four similar lines of work, parallel to ad hoc teamwork, are the as-
sistance framework [9], the problem of zero-shot coordination [15],
the IPOMDP framework [13] and the problem of few-shot coordina-

tion [10]. The assistance framework [9] models a scenario where an
agent must help a teammate in solving a given sequential task un-
der uncertainty. The goal, however, is for an agent to assist unknown
teammates in performing known tasks. Even though the authors do
not refer to the problem as ad hoc teamwork, one could argue that
the identification of unknown teammates with known tasks falls un-
der the scope of ad hoc teamwork. In their work, however, Fern et
al. [9] also consider that the teammate’s actions to be accessible to
the assistant. The problem of zero-shot coordination [15], unlike ad
hoc teamwork, studies how independently trained agents may inter-
act with one another on first-attempt [6, 17, 28]. This can be seen
as a flavor of ad hoc teamwork where there is only one teammate
which the ad hoc agent knows to have computed an optimal solution
to the task being performed. It also assumes the ad hoc agent knows
the task being performed, reducing it only to a problem of team-
mate identification. The IPOMDP framework [13], considers how an
agent can augment the state space of a POMDP taking into account
all possible, unknown, teammates. Not only does this approach grow
exponentially with the number of possible teammates, but, similar to
the framework of assistance, it also assumes that all teammates per-
form the same task (modeled by a single reward function). In their
work, however, Gmytrasiewicz and Doshi [13] do not assume that the
teammates’ actions are visible to the agent, therefore sharing a com-
mon assumption with our work. Unlike Gmytrasiewicz and Doshi
[13], our approach grows linearly with the number of possible team-
mates and tasks (instead of exponentially, like with IPOMDPs). Fi-
nally, the problem of few-shot teamwork (FST) considers a scenario
where teams of agents are tasked with adapting to one another, sim-
ilar to ad hoc teamwork. FST, however, unlike ad hoc teamwork,
allows for an adaptation phase where teams can interact with one an-
other before the final evaluation takes place, while ad hoc teamwork,
requires agents to adapt on-the-fly without any pre-coordination or
pre-communication.

3 Background

A Markov decision problem [22], or MDP, is denoted as a tuple
(X ,A, {Pa, a ∈ A} , r, γ), where X is the state space, A is the ac-
tion space, Pa is a transition probability matrix, where Pa(x′ | x) is
the probability of moving from state x to x′ given action a ∈ A, r is
the expected reward function, and γ ∈ [0, 1] is a discount factor.

A policy πmaps states to distributions over actions. We write π(a |
x) to denote the probability of selecting action a in state x according
to policy π. Solving an MDP consists of determining a policy π to
maximize the value

vπ(x) , EAt∼π(Xt)

[
∞∑
t=0

γtRt | X0 = x

]
, (1)

for any initial state x ∈ X . In the above expression, Xt, At and
Rt denote the (random) state, action and reward at time step t. The
function vπ : X → R is called a value function, and a policy π∗

is optimal if, given any policy π, vπ
∗
(x) ≥ vπ(x), for all x ∈ X .

The value function associated with an optimal policy is denoted as
v∗ and can be computed using, for example, dynamic programming.
An optimal policy, π∗, is such that π∗(a | x) > 0 only if a ∈
argmax q∗(x, ·), where

q∗(x, a) = r(x, a) + γ
∑
x′∈X

Pa(x
′ | x)v∗(x′).
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A multiagent MDP (MMDP) is an extension of MDPs to multia-
gent settings and can be described as a tuple

M = (N,X , {An, n = 1, . . . , N} , {Pa,a ∈ A} , r, γ),

where N is the number of agents, An is the individual action space
for agent n, and Pa is the transition probability matrix associated
with joint action a. We write A to denote the set of all joint ac-
tions, corresponding to the Cartesian product of all individual ac-
tion spaces An. We also denote an element of An as an and an
element of A as a tuple a = (a1, . . . , aN ), with an ∈ An. We
write a−n to denote a reduced joint action, i.e., a tuple a−n =
(a1, . . . , an−1, an+1, . . . , aN ), and thus A−n is the set of all re-
duced joint actions. We adopt, for policies, a similar notation. Specif-
ically, we write πn to denote an individual policy for agent n,
π = (π1, . . . , πN ) to denote a joint policy, and π−n to denote a
reduced joint policy.

The common goal of the agents in an MMDP is to select a joint
policy, π∗, such that vπ

∗
(x) ≥ vπ(x), where, as before,

vπ(x) = EAt∼π(Xt)

[
∞∑
t=0

γtRt | X0 = x

]
. (2)

In other words, an MMDP is just an MDP in which the action se-
lection process is distributed across N agents, and can be solved by
computing π∗ from v∗ as standard MDPs.

Finally, a partially observable MDP, or POMDP, is an extension
of MDPs to partially observable settings. A POMDP can be de-
scribed as (X ,A,Z, {Pa, a ∈ A} , {Oa, a ∈ A} , r, γ), where X ,
A, {Pa, a ∈ A}, r, and γ, are the same as in MDPs, Z is the ob-
servation space, and Oa is the observation probability matrix, where
Oa(z | x) = P [Zt+1 = z | Xt+1 = x,At = a] . The belief at time
step t is a distribution bt such that

bt(x) , P[Xt = x | X0 ∼ b0, A0 = a0,

Z1 = z1, . . . , Zt = zt],

where b0 is the initial state distribution. Given the action at and the
observation zt+1, we can update the belief bt to incorporate the new
information yielding

bt+1(x
′) = Bel(bt, at, zt+1)

,
1

ρt+1

∑
x∈X

bt(x)P(x′ | x, at)O(zt+1 | x′, at), (3)

where ρt+1 is a normalization factor. Every finite POMDP admits an
equivalent belief-MDP with bt being the state of this new MDP at
time step t. A policy in a POMDP can thus be seen as mapping π
from beliefs to distributions over actions, and we define

vπ(b) , EAt∼π(bt)

[
∞∑
t=0

γtRt | b0 = b

]
. (4)

As in MDPs, the value function associated with an optimal policy
is denoted as v∗ and can be computed using, for example, point-
based approaches [21]. From v∗, the optimal Q-function can now be
computed as

q∗(b, a) =
∑
x∈X

b(x)

[
r(x, a)+

γ
∑
z∈Z

∑
y∈X

P(y | x, a)O(z | y, a)v∗(Bel(b, a, z))

]
,

yielding as optimal any policy π∗ such that π∗(a | b) > 0 only if
a ∈ argmaxa∈A q

∗(b, a).

4 Ad Hoc Teamwork under Partial Observability
We consider a team of N agents engaged in a cooperative task
(henceforth referred as “target task”), described as an MMDP m =
(N,X , {An} , {Pa} , r, γ). One of the agents does not know the
task beforehand but must, nevertheless, engage in ad hoc teamwork
with the remaining agents to complete the unknown task. We refer to
such agent as the “ad hoc agent” and denote it as α, and refer to the
remaining N − 1 agents collectively as the “teammates”. Formally,
we treat the teammates as a “meta-agent” and denote it as −α.

We assume that the teammates all know the target task. The ad
hoc agent, however, may not know the target task nor the teammates’
policies. Instead, it knows only that the combination between target
task and teammate policies is one among K, modeled as an MMDP

mk = (2,Xk,
{
Aα,A−αk

}
, {Pk,a,a ∈ A} , rk, γk). (5)

Note that we require the action space of the ad hoc agent, Aα, to be
the same in all tasks. Other than that, we impose no restrictions on the
state space, dynamics, or reward describing these tasks (in particular,
they may all be different).

Let π−αk denote a teammates policy for mk, k = 1, . . . ,K. We
have

Pk(y | x, aα) , P[Xt+1 = y | Xt = x,Aα = aα,

A−α ∼ π−αk (x),M = mk],
(6)

for x, y ∈ Xk, where we write M = mk to denote the fact that the
transitions in (6) concerns task k.

Let us now suppose that, at each moment, the ad hoc agent can-
not observe the underlying state of the environment. Instead, at each
time step t, the agent can only access an observation Zt. We as-
sume that the observations Zt take values in a (task-independent)
set Z and depend both on the underlying state of the environment
and the previous action of the agent (not the teammates). Specifi-
cally, for each task k = 1, . . . ,K, we assume that there is a fam-
ily of task-dependent observation probability matrices, Ok,aα , k =
1, . . . ,K, aα ∈ Aα, with

Ok(z | x, aα) =
P [Zt = z | Xt = x,Aαt−1 = aα,M = mk] .

(7)

The elements [Ok,aα ]xz are only defined for x ∈ Xk. Thus, from
the ad hoc agent’s perspective, each task k defines a POMDP m̂k

corresponding to the tuple

(Xk,Aα,Z, {Pk,aα , aα ∈ Aα} , {Ok,aα , a
α ∈ Aα} , rk, γk).

We denote the solution to m̂k as π̂k.

4.1 Algorithm

We adopt a Bayesian framework and treat the target task/teammate
model as a random variable, M , taking values in the set of possi-
ble model descriptions, M = {m1, . . . ,mK}. For mk ∈ M, let
p0(mk) denote the ad hoc agent’s prior over M. Additionally, let
Ht denote the random variable corresponding to the history of the
agent up to time step t, defined as

Ht = {aα0 , z1, aα1 , z2, . . . , aαt−1, zt} . (8)

Then, given a history ht, we define

pt(mk) , P [M = mk | Ht = ht] , mk ∈M. (9)
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The distribution pt corresponds to the agent’s belief about the target
model at time step t. The action for the ad hoc agent at time step t
can be computed within our Bayesian setting as

πt(a
α | ht) =

K∑
k=1

π̂k(a
α | bk,t)pt(mk),

where

bk,t(x) , P [Xt = x | Ht = ht,M = mk] , (10)

for x ∈ Xk. Upon selecting an action aαt and making a new observa-
tion zt+1, we can update pt by noting that

pt+1(mk) =
1

ρ
pt(mk)

· P [Aαt = aαt , Zt+1 = zt+1 |M = mk, Ht = ht] ,

where ρ is some normalization constant. Moreover,

P [Aαt = aαt , Zt+1 = zt+1 |M = mk, Ht = ht]

=
∑
y∈Xk

Ok(zt+1 | y, aαt )πt(aα | ht)

· P [Xt+1 = y | Aαt = aαt , Ht = ht,M = mk] ,

where the last equality follows from the fact that the agent’s action
selection given the history does not depend on the model M . There-
fore,

P [Aαt = aαt , Zt+1 = zt+1 |M = mk, Ht = ht]

=
∑

x,y∈Xk

Ok(zt+1 | y, aαt )Pk(y | x, aαt )bk,t(x)πt(aα | ht).

Putting everything together, we get

pt+1(mk) =
1

ρ

∑
x,y∈Xk

Ok(zt+1 | y, aαt )Pk(y | x, aαt )

· bk,t(x)πt(aα | ht)pt(mk),

(11)

with

ρ =

K∑
k=1

∑
x,y∈Xk

Ok(zt+1 | y, aαt )Pk(y | x, aαt )

· bk,t(x)πt(aα | ht)pt(mk).

Note that the update (11) requires the ad hoc agent to keep track of
the beliefs bk,t for the different POMDPs m̂k. In other words, at each
time step t, upon executing its individual action aαt and observing
zt+1, the agent updates each belief bk,t using (3), yielding

bk,t+1(y) =
1

ρ

∑
x∈Xk

bt,k(x)Pk(y | x, aαt )Ok(zt+1 | y, aαt ), (12)

where ρ is the corresponding normalization constant. Since some of
the computations in the update (11) are common to the update (12),
some computational savings can be achieved by caching the interme-
diate values.

Finally, at each time step t, we define the loss for selecting an
action aα ∈ Aα when the target model is mk to be

`t(a
α | mk) = vπ̂k (bk,t)− qπ̂k (bk,t, aα), (13)

where π̂k is the solution to the POMDP m̂k.
It is important to note that both vπ̂k (bk,t) and qπ̂k (bk,t, aα) can

be computed from v̂π̂k at runtime, while the latter can be computed
offline when solving the POMDP m̂k. A bound on `t(aα | mk) can
be found in Section A of the Appendix. Note also that `t(aα | mk) ≥
0 for all aα, and `t(aα | mk) = 0 only if π̂k(aα | bk,t) > 0.

5 Evaluation

We setup the ad hoc evaluation method from Stone et al. [26]. A
single trial therefore consists on running an agent α0 (representing
the ad hoc agent) with an agent α1 (representing the teammate) in
an environment which is modeled as a POMDP. We then register the
total accumulated reward in order to assess the overall team’s perfor-
mance. Since the assumption that there is no available reward signal
nor visible teammate’s action has never been explored, we compare
our approach, ATPO, against five other agents which take on the role
of α0:

• Value Iteration (non-ad hoc; full observability): an agent which is
able to perfectly observe the state of the environment and knows
the underlying MMDP’s optimal policy. Performance reference
not as baseline, but as an ‘oracle’ approach for the best theoretical
performance in each domain;

• Perseus (non-ad hoc; partial observability): an agent, which like
ATPO, is only able to observe a partial observation of the environ-
ment, but unlike ATPO, knows the task it is performing and the
teammate’s behavior;

• Random-Picker (ad hoc, partial observability): an agent which,
like ATPO, also has the library of models and Perseus solutions
but selects one randomly in each step (allowing an evaluation of
the similarity between possible models;

• BOPA (ad hoc; full observability): the current state-of-the-art in
ad hoc teamwork which relies on the state of the environment;

• Random (non-ad hoc): an agent which selects its action randomly
in every step. Reference as the worst possible behavior in each
domain;

We then ask three main research questions:

1. Is ATPO effective in assisting the teammates in completing the
tasks?

2. Is ATPO robust in scaling to POMDPs with large state spaces?
3. Is ATPO robust in scaling to large sets of POMDPs?

5.1 Domains

In order to answer all three research questions, we setup a total of 70
POMDPs from 11 different domains. Further details regarding each
domain can be found in Appendix . Table 1 summarizes the char-
acteristics of all POMDPs from each of the eleven domains. Some
domains allow for different teammates (varying in POMDP’s transi-
tion probabilities P, which incorporate the policy of the teammate
π1), others for different task goals (by varying the reward function
r), and others for both. One domain (abandoned power plant) even
allows for different state spaces between different tasks (varying both
r and X ).

5.1.1 Gridworld

The gridworld domain represents a standard multi-agent navigation
problem. In the gridworld domain, N agents must reach N static
destination (goal cells). Goal cells are fixed and not encoded in the
state, only in the reward. Different possible configurations for the
goals thus correspond to the different tasks inM.

B
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5.1.2 Pursuit

The pursuit domain used in our work is a modification of the origi-
nal Pursuit domain where we add partial state observability. In it, N
agents (N = 2 in our experiments) must capture a single moving
prey by surrounding it in a coordinated way.

5.1.3 Abandoned Power Plant

The abandoned power plant domain models a scenario where two
agents—a robot and a human—must cooperate in order to secure an
abandoned power plant with six rooms, where three are yet to be ex-
plored and two are filled with toxic waste. The ad hoc agent takes
in the role of the robot and the teammate the role of the human.
In this domain, there are two possible tasks which the human may
be performing—charting the entire plant (exploring the three unex-
plored rooms) and securing the entire plant (by cleaning the two dirty
rooms of all available toxic material). Each task has different mod-
elling requirements, and as such, even though both are modeled as
POMDPs, they have different state spaces.

5.1.4 NTU, ISR, MIT, Pentagon and CIT

The ntu, isr, mit, pentagon and cit domains [16, 19] all model navi-
gation tasks where two agents—α0 and α1 are spawned in random
location of a map and must reach two destinations. Unlike the grid-
world domain, which models an open gridworld, the ntu, isr, mit,
pentagon and cit domains all model close quarters gridworlds, with
walls and collision between the agents. The domains abide by the
same base rules yet differ in terms of the map layout (with some be-
ing smaller and easier to navigate and others being larger and harder
to navigate). They therefore have different state spaces, however,
with states modeled the same way.

5.1.5 Overcooked

The Overcooked domain [7] models a scenario where two agents, a
helper and a cook, are required to cooperate in order to cook soups. In
this case, tasks represent different teammates which the ad hoc agent
must (i) identify; and (ii) adapt to, in order to cook soups. Our ad hoc
agent plays the role of the helper, which has the goal of providing
the cook with onions and plates, placing them on a kitchen counter
and the teammate plays the role of the cook, which has the goal of
cooking a soup using three onions and serving it in a plate (which is
then dispatched through a window).

Given that we are evaluating a total of six agents in the role of
α0 and three of them (ATPO, Perseus, and Random-Picker) require
the approximate solutions to the POMDPs, we solve all 70 POMDPs
from each domain using the Perseus algorithm [25]. Hyperparame-
ters for the Perseus algorithm can be found in Table 5 of the Ap-
pendix and the times it takes to both setup and solve each POMDP
can be found in Table 2.

5.2 Results

We run, for all 11 environments, 32 independent trials for each of the
six agents in the role of α0. In each trial, we randomly select one of
the possible POMDPs m ∈ M and run the interaction for a hori-
zon of h timesteps (the same horizon used for the Perseus algorithm,
which can be found in Table 5 of the Appendix). We then compare
the average accumulated reward over the h timesteps and 32 trials
for all agents. Table 3 displays the obtained results.

At first glance, we may from these results conclude which domains
are easier and which domains are harder. This can be seen by looking
at the performance obtained by the Random Agent. Domains such as
ntu and abandoned power plant, in which the Random Agent was
able to achieve its highest possible results, are also the domains with
the smallest state space. On the other hand, domains like cit and mit,
where the Random Agent obtained its worst results, are also the do-
mains with the highest number of possible states, showcasing that
the problem difficulty is associated with the number of states in the
POMDP.

From these results we are able to observe that all domains were
effectively solved by the Perseus algorithm, providing a solid foun-
dation for ATPO’s library. In one domain (abandoned power plant,
one of the easiest), the agent which knows the task and teammate
behavior, but is unable to observe the state of the environment and
therefore resorts the Perseus policy (Perseus agent), was even able to,
on average, slightly outperform the Value Iteration agent (although
an insignificant difference).

Given that ATPO is required to identify, within its library M,
the POMDP which best models the environment (unlike the Perseus
agent which already knows which one it is), we expected it to un-
derperform the Perseus agent. In all domains this phenomenon was
observed, further showcasing that our testbed is, in fact, a fair testbed
for ATPO’s evaluation.

We can also compare ATPO against the Random-Picker agent in
order to identify which environments contain the most similar tasks
and teammates. Given that the Random-Picker can be seen as an
instance of ATPO with a constant uniform belief over the possible
models, it is expected in most cases to underperform ATPO, since
Random-Picker will most likely use the wrong policy. In domains
where this doesn’t happen, and Random-Picker is able to obtain sim-
ilar results to ATPO, it means the tasks and teammates are very sim-
ilar. As expected, ATPO outperforms Random-Picker in the differ-
ent environments, showcasing the impact of the task identification
ability of ATPO. In some scenarios, the difference is not very large
(e.g., MIT, NTU), indicating that the task identification component
is not critical to attain a good performance. However, in several other
tasks, the difference is quite significant (e.g., Gridworld, Pentagon,
Pursuit), and clearly shows the advantages of ATPO. As for BOPA,
since the agent has full state observability, it is unsurprising that it
attains better performance than ATPO - the difference attesting, to
some extent, the impact that partial state observability can have in
the ability of the agent to act.

Regarding the impact of the ATPO’s Bayesian inference, our ex-
periments already hint to the impact of model identification in the
performance of ATPO. However, we should note that during our ex-
periments we also keep track of the beliefs over tasks, as ATPO inter-
acts with the environment. By analyzing how the beliefs evolve over
time, we can highlight a couple of more salient aspects. Specifically,
if we look at the average probability associated to the correct model
against that associated with the other tasks, we note that i) the correct
task is identified, in average, after 5 timesteps, ii) in average, after 10
timesteps, the correct task has an associated probability of around
70% and iii) in average, after 20 timesteps, the correct task has an
associated probability of around 90%. These values are not uniform
across domains, but roughly indicate that the proposed approach is
indeed able to effectively “zero-in” on the correct task. Analyzing
this same results in more detail, now considering how the beliefs
evolve for each scenario individually, we can report that, in the most
difficult domains, it takes around 10-15 timesteps for the correct task
to reach the highest probability (becoming the most likely one), and

J.G. Ribeiro et al. / Making Friends in the Dark: Ad Hoc Teamwork Under Partial Observability1958



Table 1: Multi-agent domains used for the ad hoc evaluation. π1 represents whether the domain allows for varying the teammate’s policy, r
represents whether the domain allows for varying the target task, |X |, |A| and |Z| represent the total number of states, actions and observations
per POMDP from each domain (respectively), ε represents the amount of noise used in computing the transition and observation probabilities
for each POMDP, h represents the number of steps in the trajectory horizon during which each POMDP is ran as an environment and, finally,
|M| represents the total number of different setup POMDPs for each domain (which also corresponds to the size of our approach’s model
library).

Environment π1 r |X | |A| |Z| ε h |M|

gridworld non-varying varying 626 5 81 0.20 50 2→ 32
pursuit-task non-varying varying 626 5 81 0.20 75 4
pursuit-teammate varying non-varying 626 5 81 0.15 85 2
pursuit-both varying varying 626 5 81 0.15 85 8
abandoned power plant non-varying varying varying (97, 105) 6 6 0.20 50 2
ntu non-varying varying 241 5 81 0.20 75 4
overcooked varying non-varying 1730 4 1730 0.00 50 4
isr non-varying varying 1807 5 81 0.20 75 3
mit non-varying varying 2163 5 81 0.20 75 3
pentagon non-varying varying 2653 5 81 0.20 75 3
cit non-varying varying 4831 5 81 0.10 85 3

Table 2: Times to setup and solve POMDPs from each domain. Setup times represent the total time it takes to create the data structures of the
POMDP and solve times represent the total time it takes the Perseus algorithm [25] to obtain a policy.

Environment Avg. Time to Setup (Std. Dev.) Avg. Time to Solve (Std. Dev.)

gridworld 27s 411ms (±668ms) 41m 02s 934ms (±41m 10s 857ms)
pursuit-task 03m 38s 023ms (±02s 316ms) 2h 30m 54s 820ms (±1h 03m 45s 600ms)
pursuit-teammate 03m 21s 236ms (±112ms) 2h 31m 23s 526ms (±14m 45s 856ms)
pursuit-both 03m 31s 369ms (±03s 085ms) 3h 03m 02s 597ms (±1h 16m 14s 350ms)
abandoned power plant 01s 406ms (±136ms) 43s 322ms (±19s 601ms)
ntu 14s 004ms (±502ms) 10m 05s 246ms (±01m 24s 147ms)
overcooked 04m 00s 960ms (±19s 409ms) 05m 22s 543ms (±01m 16s 879ms)
isr 08m 22s 774ms (±19s 985ms) 6h 02m 58s 980ms (±1h 15m 47s 677ms)
mit 11m 41s 286ms (±52s 980ms) 5h 43m 18s 890ms (±4h 20m 11s 880ms)
pentagon 16m 14s 605ms (±13s 107ms) 4h 55m 49s 658ms (±1h 31m 04s 993ms)
cit 51m 45s 357ms (±58s 266ms) 11h 53m 30s 001ms (±5h 06m 50s 992ms)

Table 3: Average accumulated reward for the six agents in the eleven domains over 32 trials. BOPA requires a common state-space, so it cannot
be run in the abandoned power plant scenario.

Environment Value Iteration Perseus ATPO (ours) Random-Picker BOPA Random

gridworld 95.62 (±1.54) 93.44 (±3.13) 86.53 (±9.12) 39.91 (±61.34) 93.38 (±3.14) 5.88 (±64.13)
pursuit-both 90.19 (±8.32) 84.44 (±11.76) 82.72 (±12.81) 35.34 (±63.18) 90.06 (±7.47) 20.72 (±69.47)
pursuit-task 92.72 (±4.87) 88.03 (±7.51) 82.59 (±11.18) 47.59 (±55.46) 92.81 (±3.48) 14.59 (±71.34)
pursuit-teammate 89.88 (±8.38) 86.97 (±12.04) 86.41 (±14.52) 81.34 (±31.56) 91.38 (±6.13) -7.66 (±78.7)
abandoned power plant 94.91 (±1.99) 95.12 (±2.1) 94.75 (±2.35) 93.81 (±4.97) N.A. N.A. 47.44 (±62.31)
ntu 98.00 (±0.0) 97.25 (±0.43) 97.19 (±0.53) 97.28 (±0.51) 98.0 (±0.0) 88.00 (±7.42)
overcooked 39.12 (±60.73) 39.00 (±60.63) 25.31 (±66.43) 27.94 (±64.58) 24.81 (±66.19) -46.75 (±18.1)
isr 92.41 (±2.68) 91.16 (±4.68) 82.62 (±12.19) 60.59 (±59.15) 91.66 (±4.22) -23.31 (±68.05)
mit 84.50 (±0.87) 84.09 (±0.58) 83.72 (±0.57) 83.75 (±0.75) 84.31 (±0.88) -71.41 (±20.01)
pentagon 91.00 (±0.0) 90.62 (±0.6) 81.19 (±11.04) 53.28 (±56.53) 85.5 (±6.71) -45.94 (±55.14)
cit 86.22 (±2.27) 85.09 (±2.53) 75.66 (±9.52) 69.91 (±14.46) 84.88 (±2.94) -81.25 (±20.88)
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Figure 1: Varying the total number of possible POMDPs from the gridworld domain in ATPO’s library. Results correspond to the relative
performance, normalized between the best possible performance (100%, obtained by the Value Iteration agent) and worst possible performance
(0%, obtained by the Random Agent).

by the end of the interaction, ATPO had near 100% certainty it was in
fact the correct one. In the smaller and easier domains, it took only
around 3-4 timesteps for the correct task to be the most likely one
and, by the end of the interaction, ATPO also reached around 100%
certainty that it was the correct one. A visualization of the average
entropy of the beliefs for ATPO and BOPA can be found in Figure 6
in the Appendix.

Moving on, we can treat the results obtained by the Random Agent
as a lower bound to an agent’s performance and the performance of
the Value Iteration agent (which knows the task being performed, the
behavior of the teammate, and the current state of the environment)
as an upper bound. If we normalize our results into a relative scale
(where 100% corresponds to the performance of the Value Iteration
agent and 0% corresponds to the performance of the Random agent)
we are now able to more effectively evaluate our approach. Table 4
displays the same results from Table 3, but normalized.

Table 4: ATPO’s results from Table 3 normalized between the perfor-
mance obtained by the Value Iteration agent (100%) and performance
obtained by the Random Agent (0%).

Environment ATPO

gridworld 89.87%
pursuit-both 89.25%
pursuit-task 87.03%
pursuit-teammate 96.44%
abandoned power plant 99.66%
ntu 91.90%
overcooked 83.92%
isr 91.54%
mit 99.50%
pentagon 92.84%
cit 93.69%

Having now established a solid evaluation testbed, we can start
looking at our approach’s results (ATPO). Overall, ATPO was able
to obtain above 83.92% performance on all domains (showcasing
its effectiveness). Its worst results were on the overcooked domain
(with 83.92% relative performance) and its best results were on the
abandoned power plant and mit domains (with 99.66% and 99.50%,
respectively). These results therefore showcase that our approach is
effective in assisting unknown teammates in solving unknown tasks
resorting only to a partial observation of the environment, and robust
in adapting to domains with large state spaces.

5.3 Increasing ATPO’s Library

We now evaluate ATPO’s robustness in scaling to larger libraries of
possible POMDPs (our third and final research question). We resort
to a single domain—the gridworld domain—and conduct an experi-
ment where we increase the number of POMDPs in ATPO’s library
|M| from 2 to 32. We then run, per each of the 31 library sizes, 32
independent trials on the environment (adding up to a total of 992
additional trials). Figure 1 reports our obtained relative results (nor-
malized between the best possible performance and worst possible
performance, taken from the results obtained in Table 3 by the Value
Iteration and Random Agent, respectively).

As we can see from these results, as we increase the number
of possible POMDPs in ATPO’s library, its performance follows a
small downward trend. This is expected, given that the more possible
POMDPs there might be to explain the environment, the harder it will
be to identify the correct one. Nevertheless, ATPO’s performance
with up to 32 possible models was always above 70%, strongly show-
casing our approach’s robustness in scaling to a higher number of
possible models.

6 Conclusion

This paper makes three main contributions to the ad hoc teamwork
literature: (i) formalizes the setting of ad hoc teamwork under partial
observability using a Markovian framework, a setting where an ad
hoc agent is unable observe the full state of the environment and the
actions of its teammates, (ii) proposes a first-principled, novel model-
based approach for this setting and (iii) showcases its effectiveness
by conducting an empirical evaluation in a total of 70 POMDPs from
11 different domains. Our results show that our approach (ATPO),
relying only on its model library of possible POMDPs describing the
multi-agent systems and their respective solutions and partial obser-
vations, was able to i) effectively assist unknown teammates in per-
forming unknown tasks, ii) robustly scale to environments with large
state spaces (up to 4831 states), iii) robustly scale to a high num-
ber of possible models (up to 32 possible POMDPs) and iv) identify
which model better describes the environment it is interacting with
alongside its respective teammates.

A logical future line of work will be to expand our approach to
domains with continuous or arbitrarily large state spaces, requiring
ATPO to be adapted using function approximation solutions such as
feedforward recurrent neural networks, combined with model-based
planning approaches such as MuZero [24].
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