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Abstract. Symbolic knowledge-extraction (SKE) techniques are
becoming of key importance for AI applications since they enable
the explanation of opaque black-box predictors, enhancing trust and
transparency. Among all the available SKE techniques, the best op-
tion for the case at hand should be selected. However, an automatic
comparison between different options can be performed only if an
adequate metric – such as a scoring function resuming all the in-
teresting features of the extractors – is provided. Regrettably, the
literature currently lacks definitions of effective evaluation metrics
for symbolic knowledge extractors. This paper proposes the novel
FiRe score metric, which comprehensively assesses the quality of an
SKE procedure by considering both its predictive performance and
the readability of the extracted knowledge. FiRe is compared to an-
other existing scoring metric and a rigorous mathematical formula-
tion is provided along with several practical examples to highlight its
effectiveness to the end of being exploited inside automatic hyper-
parameter tuning procedures.

1 Introduction

One of the main strengths of machine learning (ML) models is their
ability to deliver highly accurate predictions across a wide range
of application scenarios [21]. Unfortunately, the most powerful ML
predictors – such as deep neural networks, for instance – present a
high price in terms of human interpretability of their outputs. In-
deed, they acquire knowledge during a training phase and store it
in a sub-symbolic way, in the form of internal parameters. This com-
mon opaque behaviour constitutes a real barrier to the exploitation of
such models, named black boxes (BBs), in critical areas, that are all
those real-world applications heavily impacting human lives, e.g., in
terms of safety, health, and wealth.

Different solutions have been proposed by the explainable artificial
intelligence community to combine human interpretability with the
predictive performance of BB models [15]. Amongst the strategies
available in the literature there is the choice of intrinsic explainable
models [22], such as decision trees with a limited amount of internal
nodes and leaves. When this option is not feasible or does not pro-
vide satisfying results, a different research branch suggests extract-
ing the BB acquired knowledge by adhering to some symbolic rep-
resentation, through a reverse-engineering of the BB behaviour [19].
This second strategy is the rationale behind SKE procedures. In the

∗ Corresponding Author. Email: f.sabbatini1@campus.uniurb.it.

years, a plethora of SKE techniques have been proposed in the lit-
erature [1, 3, 4, 6, 8–10, 17, 20, 24, 29, 32–37, for instance]. Given
the amount of available analogous algorithms applicable to the same
tasks, it may be complex to find the most suitable. Furthermore, some
procedures need the fine tuning of a set of hyper-parameters, usually
requiring time and skills to be performed by users.

Comparisons between different instances of the same extractor,
or different extractors, are usually carried out by observing (i) the
predictive performance of the extractor, w.r.t. the underlying BB pre-
dictions and/or the actual data set output variables (i.e., the ground
truth); (ii) the readability of the output human-intelligible knowl-
edge; and (iii) the completeness of the knowledge in providing pre-
dictions [14, 25, 38]. The former can be easily assessed via the same
metrics adopted to measure the predictive performance of the un-
derlying BB (e.g., F1 and accuracy scores for classification tasks
and mean absolute/squared error and R2 score for regression tasks).
Readability may be measured through different indicators, however,
to the best of our knowledge, a well-founded and sound definition
has not yet been formulated. Finally, knowledge completeness may
be calculated as the fraction of queries that the knowledge is able to
predict or the percentage of covered input feature space.

Human comparisons and automated algorithmic comparisons can
surely benefit from a unified scoring function encompassing the con-
cepts of predictive performance, readability and completeness asso-
ciated with the knowledge provided by SKE techniques. The defi-
nition of this kind of scoring function is the fundamental brick for
moving towards automated ML (AutoML) [18]. Accordingly, in this
paper we propose the FiRe score as a compact and expressive met-
ric to evaluate and compare different knowledge extractors, also in
association with automated parameter tuning procedures.

2 Motivations & State-of-the-Art

SKE techniques have been applied in a wide variety of areas [2, 5,
13, 16, 31, to cite some examples]. Comparisons between different
instances of the same extractor, or different extractors, in order to
select the “best extracted knowledge” are usually carried out by ob-
serving i) the extractor’s predictive performance, its ii) completeness
and iii) the corresponding readability in terms of number of rules, by
considering high values of these indices as more desirable. Guidance
on quantifying the three indices is available in Subsection 2.1.

Such a comparison in the literature is always done manually and
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just by looking at the three indices separately. The comparison is
therefore subjective: if knowledge Ka is compared with another
knowledge Kb having the same readability and completeness but a
smaller degree of predictive accuracy, then it is trivial to consider
Ka as the best one. Conversely, if Ka has the same completeness
and predictive accuracy as Kb, but a smaller readability extent, then
the best knowledge is Kb. It is also trivial to select the best knowl-
edge if Ka has at the same time all three indices with smaller val-
ues than knowledge Kb, which in this case would result as the best.
The main challenge is to decide which is the best output amongst
all those provided by SKE techniques when there is no knowledge
maximising the three indices contemporaneously. Multiple optimum
outputs can be highlighted, each corresponding to a specific eval-
uating criterion. However, when comparing slight improvements in
predictive performance against minor losses in human readability,
the process becomes subjective and dependent on human judgment.
Consequently, the identification of a single, ultimate knowledge may
be influenced by subjective biases in the selection process.

We believe that the formulation of a standardised, compact scoring
function encompassing multiple indices may lead to a more impar-
tial knowledge quality assessment than the human comparison per-
formed separately for each available evaluating criterion. Further-
more, from an AutoML perspective, incorporating multiple indices
into a unified metric enables the design and implementation of hyper-
parameter tuning algorithms for SKE techniques while considering
all relevant evaluating criteria. For instance, such a knowledge qual-
ity evaluation metric would be invaluable in enhancing the robustness
of the PEDRO procedure [24], an automated tool for identifying
optimal parameter values in the GridEx and GridREx knowledge-
extraction algorithms [24, 29].

To the best of our knowledge, the existing literature lacks both
an automated evaluation approach and a formal definition of met-
rics that synergistically combine predictive performance and read-
ability to provide a comprehensive and unified indicator for mea-
suring the quality of extracted knowledge. A notable exception is
presented in [25], where the authors propose a scoring function that
incorporates predictive performance, readability, and completeness.
In their approach, the authors introduce a multiplicative metric with
three terms representing specific indices, each expressed as loss (i.e.,
predictive loss, readability loss, and coverage loss). For high-quality
knowledge, these losses should be minimised. Consequently, the
overall scoring function, obtained by multiplying the three losses,
becomes smaller, signifying better knowledge quality. This scoring
function enables automatic assignment of scores to extractors’ out-
puts and facilitates comparisons within algorithmic parameter tun-
ing routines. Besides this proposal, the literature lacks a more com-
prehensive automated evaluation approach that incorporates multiple
criteria and enables the assignment of weights to each criterion.

FiRe differs from the existing metric in two significant ways.
Firstly, FiRe does not incorporate the coverage index in its calcu-
lation of the overall score, relying solely on the concepts of pre-
dictive and readability losses. The motivation for this choice stems
from the fact that, in certain applications, the primary focus is on se-
lecting knowledge extracted by an extractor with superior predictive
performance and readability. Completeness may be less important,
especially for prediction and decision-making tasks where missing
less relevant information has minimal impact. Additionally, priori-
tising accuracy and readability allows for the removal of less valu-
able knowledge and ensures retention of the most crucial and reli-
able information, especially in knowledge bases where noise or irrel-
evant data may be present. Secondly, FiRe introduces the option for

users to input a parameter that determines the weight given to pre-
dictive loss compared to readability loss. This flexibility is crucial
as it allows the scoring function to adapt to users’ preferences. For
instance, users may prioritise knowledge with minimal predictive er-
ror over highly readable knowledge that might have larger errors. By
incorporating this parameter, FiRe accommodates a broader range of
user needs and preferences, making it a versatile tool for automated
knowledge evaluation.

2.1 Three Evaluation Indices: How to Quantify

In general, the predictive performance of the extracted knowledge
may be assessed w.r.t. two different dimensions by using the same
scoring function adopted for the underlying BB. These dimensions
are: (i) the mimicking capabilities w.r.t. the underlying model pre-
dictions, usually called fidelity; and (ii) the predictive performance
w.r.t. the data set output features.

Straightforward measurements of coverage and coverage loss are
the rates of provided and missed predictions, respectively, w.r.t. the
total amount of instances for which the knowledge has been queried.
Alternatively, it is possible to calculate the percentage of covered
and uncovered regions of the input feature space, respectively. Cov-
erage is trivially equal to 1.0 for exhaustive knowledge-extraction
algorithms, for instance, those based on decision trees.

The literature commonly assesses readability by comparing the
number of extracted items, where algorithms with fewer extracted
rules or shallower decision trees are considered more readable than
those with larger numbers [11]. However, such an evaluation, solely
based on this criterion, may be considered superficial as a compre-
hensive assessment demands a broader range of indicators [23]. To
achieve a more thorough evaluation, a readability metric should en-
compass additional factors, including: (i) the shape of the extracted
knowledge, e.g., list or trees of rules, decision tables, etc.; and (ii) the
readability of individual atoms within the knowledge, such as how
individual rules, tree nodes, and leaves are constructed. While these
aspects are crucial for a comprehensive evaluation, their formalisa-
tion and numerical assessment require further investigation, which is
beyond the scope of this current work. Akin to comparisons made
by humans in the literature, FiRe considers knowledge size as the
readability measure, similarly to the approach in [25].

3 The FiRe score

The FiRe (FIdelity vs. REadability) scoring metric formulated for
measuring the quality of the knowledge extracted via SKE considers
both the knowledge’s predictive performance and its readability, in-
tended as human interpretability w.r.t. the amount of extracted rules.
The FiRe score is thus a multivariate function defined as follows:

FiRe : (R>0 × R≥0 × R≥1) �→ R≥0, (1)

FiRe(ψ, p, r) = p

⌈
r

ψ

⌉
r0.05, (2)

where �·� is the ceiling function, ψ is the fidelity/readability trade-
off extent, p is a measure of the predictive loss of the extractor and r
is a measure of its readability loss.

3.1 Variables and parameters

As for the predictive loss p, a good measure in regression tasks is
the mean absolute error (MAE) of the extractor’s predictions w.r.t.

F. Sabbatini and R. Calegari / Symbolic Knowledge-Extraction Evaluation Metrics: The FiRe Score2034



10 20 30

Readability loss (# of rules)

0

5

10

15

20

P
re

di
ct

iv
e

lo
ss

(M
A

E
)

0
75
150
225
300
375
450
525
600
675

1-FiRe

(a) 1-FiRe.

10 20 30

Readability loss (# of rules)

0

5

10

15

20

P
re

di
ct

iv
e

lo
ss

(M
A

E
)

0
25
50
75
100
125
150
175
200
225

3-FiRe

(b) 3-FiRe.

10 20 30

Readability loss (# of rules)

0

5

10

15

20

P
re

di
ct

iv
e

lo
ss

(M
A

E
)

0
15
30
45
60
75
90
105
120
135

5-FiRe

(c) 5-FiRe.

10 20 30

Readability loss (# of rules)

0

5

10

15

20

P
re

di
ct

iv
e

lo
ss

(M
A

E
)

0

8

16

24

32

40

48

56

64

10-FiRe

(d) 10-FiRe.

Figure 1: Graphs of different ψ-FiRe scoring functions.

the underlying BB predictions or the data set outputs, depending on
the need. For classification tasks, it is possible to use metrics anti-
correlated with the accuracy score, e.g., 1−accuracy. The presented
examples adopt the mean absolute error metric for regression, but it
may be substituted with the mean squared error without substantial
differences since both of them are generally correlated. Analogously,
metrics inversely proportional to the R2 index may be also exploited.

As for the readability loss r, the total amount of output rules is a
suitable metric and thus it is the one adopted to calculate the FiRe
score. More complex options will be evaluated in the future, e.g., by
taking into account the complexity of individual rules.

Finally, the ψ parameter – the only user-defined parameter – de-
scribes how much the predictive loss can be penalised w.r.t. the read-
ability loss. It is important because, depending on the task at hand,
the two losses may have different weights. In particular, ψ = 1 as-
signs the same importance to both losses. Growing ψ values tend to
neglect the readability loss impact. In other words, given the afore-
mentioned FiRe score formulation and by assuming to have extracted
m rules, if users setψ = n the FiRe score will consider only m

n
rules,

rounded up to the nearest integer.

3.2 Function domain

The function domain is explained by the following observations.

• The ψ parameter is a positive real value by design. Limiting the
admissible ψ values to N may be also reasonable, but an extension
to R>0 makes the FiRe score more flexible.

• On the other hand, the p parameter is a measurement of a predic-
tive error, so it may be equal to 0 in the best case, or arbitrarily
larger otherwise since there is no upper bound to the predictive
error of a model.

• Finally, r is an integer number greater or equal to 1 since it rep-
resents the number of extracted rules, that is a discrete quantity
equal to 1 (in the best case) or larger (otherwise). However, the ad-
missible values for this parameter have been extended to R≥1 for
the sake of flexibility, analogously to the range for ψ. This choice
enables, for instance, the FiRe score calculation for averaged sets
of extractors trained with the same hyper-parameters, resulting in
a more robust score.
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Figure 2: Projections of several ψ-FiRe functions.

As a result of the observations above, the FiRe score is defined as
a continuous (yet non-differentiable) function in the aforementioned
domain and it may assume any non-negative value. Therefore, the
score is a function bounded from below by 0.

3.3 Score meaning

In the following, we use the notation ψ-FiRe(p, r) as alias of FiRe(ψ,
p, r) and we consider w.l.o.g. the ψ-FiRe(·) function as a bivariate
function, by assuming the ψ parameter fixed a priori.

The FiRe score has been formulated to assign low scores to de-
sirable extractors. It assumes that a good extractor should exhibit a
low predictive loss and a low readability loss. For this reason, it is a
multiplicative score between the two parameters and, therefore, it is
sufficient that only one amongst the predictive or the readability loss
is high to bring the FiRe score towards high values corresponding to
low-quality knowledge.

The ceiling function appearing as the second factor of the score has
the purpose to give a step-function shape to the FiRe score. The exact
shape of the steps is regulated through the ψ parameter, acting as a
user-defined sensitivity threshold and thus appearing as the denomi-
nator in the second term of the score formulation. The core idea be-
hind ψ is to minimise distinctions between extractors or knowledge
with identical predictive loss and similar readability loss by flatten-
ing the FiRe isolines. This flattening is accomplished by adopting a
step-like shape for the isolines, ensuring that all extractors sharing
the same step also possess the same FiRe score. As ψ increases, the
step width widens, leading to a higher tolerance for the presence of
readability loss. By setting ψ = n, users impose these steps to have
a length equal to n. Since a flat step would assign the same ψ-FiRe
score to extractors having the same predictive loss and a different but
similar readability loss (e.g., r = 1 and 2, respectively, and ψ = 10),
a third factor is queued to the score definition to establish rankings
within individual steps and thus discern amongst the extractors lying
on the same step which one has to be considered the best. We found
that an exponent equal to 0.05 allows the scoring function to preserve
all its peculiarities, at the same time adding the desired increasing
trend to the step function (monotonicity). In this way, the FiRe score
keeps the step-function shape but becomes an increasing monotonic
function (for any p > 0, since ψ-FiRe(0, r) = 0, ∀r, ∀ψ). We stress
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here that p = 0 is a theoretically possible scenario, but it is practi-
cally impossible to obtain a model having no predictive error. Exam-
ples of ψ-FiRe graphs are reported in Figure 1, for different values
of ψ, p and r.

3.4 Properties

The monotonicity of the ψ-FiRe score is ensured by:

monotonicity w.r.t. the projection of p (cf. Figure 2a)

r1 < r2 ⇐⇒ ψ-FiRe(p, r1) < ψ-FiRe(p, r2),

∀p ∈ R>0, ∀r1, r2 ∈ R≥1

(3)

monotonicity w.r.t. the projection of r (cf. Figure 2c)

p1 < p2 ⇐⇒ ψ-FiRe(p1, r) < ψ-FiRe(p2, r),

∀r ∈ R≥1, ∀p1, p2 ∈ R>0

(4)

Equations 3 and 4 can be substituted by the following condition:

monotonicity w.r.t. a partial order on the domain

(p1 < p2) ∧ (r1 < r2) ⇐⇒
⇐⇒ ψ-FiRe(p1, r1) < ψ-FiRe(p2, r2),

∀p1, p2 ∈ R>0, ∀r1, r2 ∈ R≥1

(5)

Equations 3, 4 and 5 also hold by substituting < with >.
The increasing trend of the score may be observed in Figure 2 and

it is demonstrated through its partial derivatives. Equations 3, 4 and
5 hold for any possible ψ > 0 that may be assigned to the ψ-FiRe
score, as it is possible to notice from Figures 2b and 2d.

The partial derivative w.r.t. p is the following:

∂ψ-FiRe
∂p

=

⌈
r

ψ

⌉
r0.05 (6)

always positive and defined in the whole domain. The partial deriva-
tive w.r.t. r is the following:

∂ψ-FiRe
∂r

=
0.05p

⌈
r
ψ

⌉
r0.95

(7)

always positive for p > 0 and defined in the whole domain except
for r

ψ
∈ Z. The derivative is 0 for p = 0, indeed in this case the

ψ-FiRe score is always 0 regardless of the values of ψ and r.

4 On the practical use of FiRe

This section discusses practical applications of the FiRe score. Sub-
section 4.1 provides examples demonstrating the FiRe score’s appli-
cation, along with relevant observations. Subsection 4.2 presents an
analytical study of the balance between parameters representing pre-
dictive and readability losses. Lastly, Subsection 4.3 offers insights
into tuning the ψ parameter from a practical perspective.

4.1 Comparing algorithms with FiRe

Given all the aforementioned properties, we exemplify here some ap-
plicative scenarios from a theoretical point of view. Let us assume to
have an extraction procedure providing as output knowledge a single
human-interpretable rule. The mean absolute error associated with
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Figure 3: Graphical representation of the boundaries identified by the
1-FiRe score (isoline for 1-FiRe = 40.0).

this rule is equal to 40.0 and we chose to adopt ψ = 1. As a conse-
quence, 1-FiRe(40.0, 1) = 40.0.

In Figure 3 the isoline corresponding to an 1-FiRe score equal to
40.0 is shown in red. Readability loss and predictive loss are reported
on the x-axis and y-axis, respectively, as the number of extracted
rules and mean absolute error. The described extractor, with 1 rule
and a predictive error equal to 40.0, lies on the red isoline. The same
condition holds for all extractors having the same 1-FiRe score value.
This is the case, for example, of extractors providing 2, 4, 6 and 8
rules associated with MAE of 19.3, 9.3, 6.1 and 4.5, respectively. All
these models are equivalent on the basis of the 1-FiRe score.

Conversely, a model able to extract 4 rules with a predictive
error of 5.0 is considered better, since it has a smaller 1-FiRe
score so it lies in the graph under the red isoline. More precisely,
1-FiRe(5.0, 4) = 21.4. An extractor providing 6 rules with MAE
= 12.0 is worse since its 1-FiRe score is greater than 40.0 and thus
it graphically lies above the red isoline. Indeed, 1-FiRe(12.0, 6) =
78.7. These two latter examples have the purpose of demonstrating
that the FiRe score is still effective even if only one amongst the pre-
dictive or readability losses is subject to changes.

Figure 3 clearly highlights how the FiRe score identifies an exact
boundary separating, w.r.t. a given extractor, the sets of equivalent,
worse and better extractors. Furthermore, the isoline depicts the fi-
delity/readability trade-off correlated to ψ = 1. By observing the
red isoline it is noticeable how a doubling of the readability loss
(e.g., from 2 to 4) is accepted only if it is approximately balanced
with a halving of the predictive loss. The curve can be also read in
the opposite sense, e.g., a doubling of the predictive loss is accepted
only when (approximately) compensated by a readability loss halv-
ing. With this reading key, it is possible to exploit the FiRe isolines
to analytically study better and worse extraction procedures w.r.t. a
fixed one, by taking into consideration both increases and decreases
of the predictive loss and/or of the readability loss.

Finally, we exploit the same figure to stress the fact that the iso-
line presents an asymptotic trend when the p and r parameters tend
to infinity. This behaviour reflects the actual quality of the knowl-
edge provided by SKE techniques. Indeed, when the number of rules
and/or the predictive error are very high, the evaluated knowledge has
low quality and it is no more a relevant task to have a fine-grained
measure of how a loss should be compensated by the other.

4.2 Predictive and readability loss equilibrium

Given the ability of the FiRe score in providing the notion of knowl-
edge equivalence according to more than one index, SKE techniques’
users have the possibility to perform analytical investigations on
the knowledge quality to understand (i) the predictive loss decrease
(resp. increase) exactly annihilating a readability loss increase (resp.
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decrease); and (ii) the predictive loss decrease (resp. increase) having
the same effect as a readability loss decrease (resp. increase). This
enables not only knowledge evaluation and best knowledge selection
but also a pairwise comparison based on predictive and readability
loss alteration.

In the first case, the aim is to balance predictive loss and readabil-
ity loss, despite their opposite variations. This allows users to spot
a set of equivalent knowledge and to analytically observe the corre-
sponding FiRe isolines, understanding how to set the ψ parameter.

In the second case, the focus is on studying the effects of individual
decreases or increases in the losses to find equivalent pairs. Thanks
to this, users highlight the effect of the fidelity/readability ψ trade-off
and thus they may discover that it may be sufficient a small enhance-
ment in one loss rather than big efforts on the other to achieve better
knowledge quality.

In order to find the equilibrium between predictive and readability
losses, the relationship to be satisfied can be expressed by the follow-
ing equivalence, where α and β are two unknown constants:

ψ-FiRe(p, r) = ψ-FiRe(αp, βr), (8)

that is equivalent to:

p

⌈
r

ψ

⌉
r0.05 = αp

⌈
βr

ψ

⌉
(βr)0.05. (9)

By resolving w.r.t. α we obtain:

α =

⌈
r
ψ

⌉
⌈

βr
ψ

⌉
β0.05

. (10)

These equations demonstrate that an extracted knowledge with a
predictive loss p and readability loss r has the same quality as another
knowledge having predictive loss αp and readability loss βr if and
only if Equation 10 is satisfied.

Furthermore, Equation 10 highlights that the p parameter is not
relevant in finding a pair of compensating α and β multiplicative
constants for the losses involved in the FiRe score calculation, differ-
ently to r and ψ that play a role in the pair determination. This is not
surprising, given that the FiRe score is directly proportional to the
predictive loss and therefore the increasing score (denoting a quality
worsening) due to a predictive loss increase is not dependent on the
actual value of the loss before or after the increase. Conversely, how
a readability loss increase affects the FiRe score is strictly dependent
on the ψ parameter and the loss value itself.

When altering the predictive and readability losses in the FiRe
score, given the monotonicity properties of the scoring function, intu-
itively we may have predictive loss increases compensated by read-
ability loss decreases or, vice versa, readability loss increases bal-
anced by predictive loss decreases. Equation 10 confirms this intu-
ition. Indeed, readability loss increases are represented with β > 1

values. This implies that β0.05 > 1 and that
⌈

r
ψ

⌉
≤

⌈
βr
ψ

⌉
. Thus,

if β > 1 then α < 1. Conversely, if β < 1 then β0.05 < 1 and⌈
r
ψ

⌉
≥

⌈
βr
ψ

⌉
. Therefore, if β < 1 then α > 1. Obviously, if β = 1

then α = 1.
All these relationships may be traced in Figure 4. In the figure, the

relationship between the α and β values are shown for different val-
ues of the threshold parameter ψ and the readability loss r, given that
α depends also on them other than β. It is possible to notice that with
a fixed β and for growing values of ψ the effects of β are more and

Figure 4: Equilibrium between α and β for different values of the
readability loss r and the ψ parameter.

Figure 5: Boundaries associated to the 2-FiRe and 6-FiRe scores.

more neglected, whereas for growing values of r they are more pro-
nounced. As a consequence, when β > 1 increasing ψ or decreasing
r implies increasing α. Conversely, when β < 1 increasing ψ as well
as decreasing r induces to decrease α values.

To conclude the analysis of the entanglement between the predic-
tive and readability losses, we point out that in order to find equiv-
alent pairs of increases/decreases in the predictive and readability
losses it is sufficient to modify Equation 8 as follows:

ψ-FiRe(αp, r) = ψ-FiRe(p, βr). (11)

Developing the equation similarly to the equilibrium case we find:

α =

⌈
βr
ψ

⌉
β0.05

⌈
r
ψ

⌉ . (12)

By applying the same considerations as before, we find that in this
case α and β are both = 1, < 1, or > 1.

4.3 Tuning the ψ parameter

It is of fundamental importance to carefully choose the ψ parame-
ter of FiRe. Figure 2b already showed that larger values of ψ reduce
the impact of the readability loss. However, it is important to know
that different ψ values may lead to opposite results when applied to
compare the same extractors. This peculiarity is depicted in Figure
5, representing the separating boundaries identified by the isolines
obtained via the 2-FiRe and 6-FiRe scores w.r.t. a given extractor
described in the following. The boundaries associated with the two
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Algorithm Accuracy Coverage Extracted Predictive Coverage Qs ψ-FiRe
rules (r) loss (p) loss (c) ψ = 1 ψ = 2 ψ = 3

9-NN 0.97 - - - - - - - -

CART 0.95 1.00 3 0.05 1.00 0.15 0.16 0.11 0.05
ITER 0.94 1.00 3 0.06 1.00 0.18 0.19 0.13 0.06

CREEPY (2 features) 0.97 1.00 3 0.03 1.00 0.09 0.10 0.06 0.03
CREEPY (1 feature) 0.93 1.00 3 0.07 1.00 0.21 0.22 0.15 0.07

GridEx (3 rules) 0.96 0.95 3 0.04 1.05 0.13 0.13 0.08 0.04
GridEx (4 rules) 0.87 1.00 4 0.13 1.00 0.52 0.56 0.28 0.28
GridEx (6 rules) 0.98 0.43 6 0.02 1.57 0.19 0.13 0.07 0.04

Table 1: Quality assessments for the knowledge extracted by different SKE algorithms from a 9-NN for the Iris data set.

scoring functions are represented as green and red isolines, respec-
tively. The hatched area below each isoline highlights the parameter
space region denoting “more desirable” extractors, providing knowl-
edge with better quality w.r.t. extractors lying on the isoline.

Let us assume to have an extractor able to obtain 4 rules from a BB
model with a mean absolute error equal to 1.0 (blue cross in Figure
5). The ψ-FiRe scores associated with this model are:

2-FiRe(1.0, 4) = 2.14, 6-FiRe(1.0, 4) = 1.07.

An SKE algorithm extracting 8 rules with MAE = 0.5 (orange cross)
has the same FiRe scores for both values of ψ. The models are thus
equivalent according to both of the considered scoring functions.
Analogously, by assuming two extractors providing 2 and 3 output
rules with predictive errors equal to 0.5 and 2.0, respectively (fuchsia
and purple cross in the figure), both scores are unanimous in evalu-
ating the former as a better extraction procedure and in considering
worse the latter.

Different behaviours can be observed, for instance, by selecting
an extracted knowledge composed of a single rule with MAE = 1.5
(green cross). In this case, the scores are evaluated as follows:

2-FiRe(1.5, 1) = 1.5 < 2.14 = 2-FiRe(1.0, 4),

6-FiRe(1.5, 1) = 1.5 > 1.07 = 6-FiRe(1.0, 4),

and their interpretation leads to opposite conclusions. In particular,
the single-ruled knowledge is considered better than the others lying
on the isoline if considering ψ = 2. It is worse if considering ψ = 6.
The dual situation can be encountered with knowledge having 5 rules
and MAE = 0.8 (red cross). In this case, the knowledge quality is
considered better when evaluated through the 6-FiRe score and worse
with the 2-FiRe score.

Considering these remarks, we recommend choosing the most
suitable value for ψ by observing the corresponding isolines.

5 Experiments and discussion

The effectiveness of the FiRe score in evaluating and comparing the
quality of SKE techniques’ extracted knowledge has been assessed
by running several experiments. The PSYKE framework1 [7, 27, 28,
30] has been used to train a BB predictor and a set of extractors on the
well-known Iris data set2 [12]. Using a simple data set allows easy
depiction of decision boundaries and facilitates visual comparisons
of resulting knowledge. The adopted extractors are the following:
CART [6], ITER [17], CREEPY [26] and GridEx [29]. All these tech-
niques have been applied to a k-nearest neighbour (k-NN) classifier,
having k = 9. Since all the extractors are model-agnostic algorithms,

1 https://github.com/psykei/psyke-python
2 https://archive.ics.uci.edu/ml/datasets/iris

the provided output knowledge has been extracted only by observing
the input/output response of the 9-NN.

The FiRe score relies on predictive and readability loss concepts,
making it applicable to any model with expressible predictive and
readability losses. It remains effective across various model and data
set complexities without sacrificing generalisation.

To better understand the example, we recall that CART induces
a decision tree classifier on the 9-NN predictions and it has been
executed with the default parameters of the PSYKE implementa-
tion (maximum 3 leaves). On the other hand, ITER, CREEPY and
GridEx produce a hypercubic partitioning of the input feature space
according to different strategies. ITER creates and expands cubes in
a bottom-up iterative fashion. It relies on 4 hyper-parameters: (i) the
number of starting cubes, set to 1; (ii) the minimum amount of in-
stances to consider inside each cube, set to 75; (iii) the size of cube
updates, set to 7% of each input feature range interval; (iv) the max-
imum number of iterations to be performed, set to 600.

GridEx partitions the input feature space in a top-down recursive
and symmetric manner, starting from the whole space. It relies on 4
hyper-parameters: (i) the maximum depth of the recursive splitting;
(ii) the minimum amount of instances to consider inside each cube,
set to 1; (iii) the number of slices to perform at each iteration; (iv) the
error threshold to decide if a hypercubic region should be further
partitioned, set to 0.1. An error threshold equal to 0.1 means that
all cubes having an accuracy smaller than 0.9 are further split. The
number of slices to perform has been adaptively chosen. In particular,
our experiments, resumed in Table 1, consider 3 GridEx instances.
The first and the second perform 8 and 2 slices, respectively, only
along the most relevant input feature. The third performs 4 slices on
the 2 most relevant input dimensions. As for the maximum depth, the
first instance has a value equal to 1, and the others equal to 2.

CREEPY adopts an underlying clustering technique to divide the
input space into hypercubic hierarchical regions. We set equal to 2
the maximum depth parameter and equal to 0.1 the error threshold,
which has the same semantics as that of GridEx. For our experiments,
we trained 2 CREEPY instances, one considering the most relevant
input feature and the other considering also the second one.

The classification accuracy of each extractor, as well as that of the
9-NN, has been reported in Table 1. The table also shows the number
of extracted rules, representing the readability loss r of the extrac-
tors. Analogously, the predictive loss p is reported as 1− accuracy.
The coverage achieved by the extraction techniques is reported as the
portion of input space covered by the corresponding knowledge, in
percentage. The coverage loss has been calculated as 2− coverage,
according to the definition in [25]. Finally, the last four columns re-
port the quality scores associated with each extractor. Best scores
are highlighted in bold font. We compared the ψ-FiRe scores calcu-
lated for different values of ψ with the quality score (Qs) described
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(a) 9-NN. (b) CART.

(c) ITER. (d) CREEPY (2 features).

(e) CREEPY (1 feature). (f) GridEx (3 rules).

(g) GridEx (4 rules). (h) GridEx (6 rules).

(i) Qs score.

0.00

0.32

0.64

0.96

1.28

1.60

1-FiRe

(j) 1-FiRe.

0.00

0.16

0.32

0.48

0.64

0.80

2-FiRe

(k) 2-FiRe.

0.00

0.12

0.24

0.36

0.48

0.60

3-FiRe

(l) 3-FiRe.

Figure 6: Decision boundaries for the Iris data set obtained with dif-
ferent extractors applied to a 9-NN, corresponding quality score Qs

and 1-FiRe, 2-FiRe and 3-FiRe score isolines.

in [25]3. Data has been averaged upon 5 executions for each extrac-

3 We recall that Qs is calculated by multiplying the predictive loss, the cov-

tor. The results’ standard deviation has been omitted since each algo-
rithm provided very similar outputs at every execution.

Figure 6 shows graphical representations of decision boundaries
for the 9-NN and extractors. The bottom row displays the quality as-
sessments. TheQs score is reported in Figure 6i, whereas Figures 6j,
6k and 6l show the isolines for the ψ-FiRe scores adopted in the ex-
periments. Notably, obtaining fewer than 3 rules is not possible since
the Iris data set has 3 output classes, and the best-case knowledge
includes exactly one rule per distinct class.

Table 1 and Figure 6 show that the CREEPY algorithm with 2 in-
put features excels in terms of coverage, readability, and predictive
performance, making it the top-performing algorithm. Indeed, it has
the lowest Qs and ψ-FiRe scores regardless of the adopted ψ. This
result is true and acceptable since CREEPY is the algorithm provid-
ing the smallest amount of rules with the smallest predictive error.

Different conclusions may be drawn by comparing according to
different quality scores CART, the GridEx instance providing knowl-
edge with 3 rules and the one providing 6 rules. Indeed, according
to the Qs score, the best knowledge amongst these is the one having
3 rules and obtained via GridEx (Qs = 0.13), whereas the GridEx
instance providing 6 rules is the worst choice (Qs = 0.19). CART’s
quality is assessed with Qs = 0.15, representing a middle evalua-
tion between the two GridEx instances. GridEx providing 6 rules is
considered the worst algorithm despite its minimum predictive loss
since it has very high readability and coverage losses w.r.t. CART

and the other GridEx instance. CART is considered slightly worse
than GridEx providing 3 rules despite having the same readability
loss because GridEx has a higher coverage loss that is more than
compensated by a better predictive loss.

The FiRe scores yield diverse conclusions when comparing the
same three algorithms. The FiRe score is based on predictive and
readability losses while neglecting coverage loss. As a result, Both
GridEx instances outperform CART due to CART’s higher predictive
loss without adequate compensation from its lower readability loss,
regardless of the chosen ψ value. The comparison between the two
GridEx instances is influenced by the ψ parameter, which assigns the
same quality score to both instances when ψ = 1 and ψ = 3. Only
in these cases, the fluctuations in predictive and readability losses are
balanced by the user-defined fidelity/readability trade-off value.

6 Conclusions

The paper presents FiRe, a scoring function to evaluate and compare
SKE algorithms. It is a compact score encompassing both a readabil-
ity assessment and a predictive performance evaluation and it may be
exploited to help users choose the best extraction procedure w.r.t. a
specific fidelity/readability trade-off, expressed as a parameter. The
FiRe score may also be applied together with automatic parameter-
tuning procedures. We show here the properties of the scoring func-
tion and a rigorous mathematical formulation is also provided.

Future works will focus on enhancing the FiRe score readability
parameter, with a more expressive formulation than the mere amount
of rules provided as output, e.g., by taking into account the complex-
ity of rules’ atoms in terms of number of constraints, variables, etc.
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