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Abstract. We consider a multi-retailer system where the sellers are
connected with each other via a transportation network and the trans-
actions with the consumers happen on a platform. Each consumer is
serviced by only one retailer. Since the demands to the sellers (i.e.,
the retailers on the platform) are stochastic in nature, supplies can
be either in excess or in deficit. Transshipping these items laterally
among the retailers benefits both, the platform and the retailers. For
retailers, excess supply leads to wastage and deficit to a loss of rev-
enue, while via transshipment, they get a better outcome. The plat-
form can also earn some revenue in facilitating this process. How-
ever, only the sellers know their excess (which can be salvaged at
a price or transshipped to another seller) or the deficit (which can
be directly procured from a supplier or transshipped from another
seller), both of which have multiple information that is private. We
propose a model that allows lateral transshipment at a price and de-
sign mechanisms such that the sellers are incentivized to voluntarily
participate and be truthful. Experimenting on different types of net-
work topologies, we find that the sellers at more central locations
in the network get an unfair advantage in the classical mechanism
that aims for economic efficiency. We, therefore, propose a modi-
fied mechanism with tunable parameters which can ensure that the
mechanism is more equitable for non-central retailers. Our synthetic
data experiments show that such mechanisms do not compromise too
much on efficiency, and also reduce budget imbalance.

1 Introduction

Online and in-store inventories are integrated in modern markets,
providing a platform for retail partners and consumers to interact.
Consumers can browse, compare, and purchase products on these
platforms. Each retailer has stores and warehouses at a few specific
geographical locations to service in a limited area. Most of the ware-
houses are legally not permitted to service beyond their jurisdiction.
Due to the uncertainty in demand, these stores order in advance and
keep the supplies in their inventory. After demand realization, the
stores may face stock-out or have excess supplies. If the product is
not consumed and remains on the shelf, the excess inventory results
in increased inventory holding costs, and shortage of supply results
in poor service level and lost revenue.
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For perishable goods like dairy products, seafood, meat [9, 24],
baked goods [12], fruits, flowers, medical supplies [34, 36] etc., the
loss due to excess supply is enormous due to the limited shelf life.
Similarly, for products with expensive downtime costs, like spare
parts, the firms maintain sufficient inventory, thus incurring high in-
ventory handling costs to quickly respond to a breakdown of a system
to avoid lengthy downtime [32]. There exist a variety of such con-
texts, e.g., chemical plants, airline industry, power-generating plants.

In multi-retailer systems, a better planning and collaboration
among the retailers can improve efficiency, alleviate loss, and reduce
inventory management costs. We consider the use of lateral trans-
shipment between strategic parties of the same echelon, e.g., retail-
ers and wholesalers. We use the term transshipment to mean lateral
transshipment. Competitive retailers aim to optimize their objectives,
making collaboration challenging and leading to supply chain inef-
ficiency. Another challenge is to distribute the profit after transship-
ment among the retailers of different firms. The monetary amount
paid by a retailer to the other retailer on the exchange of the trans-
shipped product is known as the transshipment price.

Finding the transshipment plan that maximizes the total value of
the agents requires access to the private information (consisting of
multiple components called the type) of each agent. This makes the
setting a competitive game between the retailers where they may
strategically choose to lie and misreport actual types to maximize
their payoff. Incentivizing competitive retailers to reveal their true
types to the planner is one of the main challenges. Therefore, finding
the allocation that maximizes the total profit is a mechanism design
[4], as well as a multi-agent and distributed planning problem.

If the private information is one-dimensional, standard mechanism
design techniques, such as the popularly known VCG family of mech-
anisms [6, 17, 33], can be applied [31]. However, lateral transship-
ment requires knowing multiple parameters from retailers, e.g., the
quantity of the excess demand or supply for each retailer and the sal-
vation price, which makes it a non-trivial multi-dimensional mech-
anism design problem. Certain impossibility results [13, 27, 29] tell
us that monetary transfers are necessary for revealing private infor-
mation under such settings. Further, the mechanism must ensure that
every retailer always gets a non-negative benefit from participating in
the transshipment process. For trades between the distributed retail-
ers, the more central ones on the transshipment network get an unfair
advantage over those at non-central locations. In this paper, we ex-

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

Please check ArXiv or contact the authors for any appendices or supplementary material mentioned in the paper.

doi:10.3233/FAIA230506

2113



plore ways to find an equitable lateral transshipment, which provides
more equal opportunities to the equal-sized retailers to compete and
survive in the market irrespective of their position on the network.

The main objectives of this paper is to model the lateral transship-
ment problem in a strategic environment and find a mechanism to
compute the transshipment plan (allocation and pricing) such that:
(a) the agents have the incentive to report their private information
truthfully (Strategyproofness), (b) the agents always prefer to par-
ticipate in the transshipment (Individual Rationality), (c) the mecha-
nism requires minimum amount of resources to compute the outcome
(Computational Tractability), (d) the collaborative valuation is maxi-
mum (Efficiency), and (e) the agents are treated equitably (Equitabil-
ity). Achieving equitability and efficiency is hard to satisfy together
[5, 14]. Hence we aim to get more equitable solutions that do not lead
to a significant loss of efficiency.

1.1 Our contributions

This paper provides a model for the modern online market. Moti-
vated by the interaction between the retailers and the consumers, we
consider a platform where consumers select the product and place
an order from a retailer. We propose a game-theoretic model for the
single-shot interaction of retailers. The retailers individually estimate
the demand, decide the amount of inventory to order, and privately
place the order from outside sources. Due to uncertainty in consumer
demand, the retailers may face excess or shortage of the products.
We propose the Weighted Value Transshipment (WVT) mechanism
that has a pre-defined and publicly known contract for allocation and
profit distribution in the single-shot interaction. The platform asks
the retailers to announce their multi-dimensional types and decides
the transshipment allocation and price using the WVT mechanism.
The main contributions of this paper are as follows:

• We show that the WVT mechanism incentivizes the retailers to re-
port their multi-dimensional private information truthfully (Theo-
rem 1).

• WVT mechanism ensures that the retailer can never get worse off
by participating in the transshipment hence guarantees their vol-
untary participation (Theorem 2).

• We prove that there exists a strongly polynomial-time algorithm
for the WVT mechanism to compute the transshipment allocation
and pricing (Theorem 3).

• The experimental analysis on a classical mechanism for truth-
ful resource allocation considering different network topologies
as the transshipment network shows that the classical mechanism
leads to an unfair advantage to more central retailers in the trans-
shipment network (Figure 2).

• The WVT mechanism has tunable parameters that can ensure a
more equitable outcome for smaller or non-central retailers, as
shown in the experiments (Figure 3(b)).

• We experimentally compare the outcomes of WVT with that of
VCG on synthetic data. The results show that the WVT mechanism
does not compromise too much on efficiency (Figure 3(a)) and
reduces the budget imbalance (Figure 3(c)).

The literature on transshipment is rich and extensive. In the following
subsection, we review only those works that are closely related.

1.2 Related work

Researchers have considered transshipment allocation and profit dis-
tribution between multiple retailers under a parent firm as a coopera-

tive game and proposed the effective use of profit distribution meth-
ods such as the Shapley value, the nucleolus, and the τ -value from
cooperative game theory [20, 21].

The setting with two non-cooperative retailers is well studied [30],
and there exist solution for optimal transshipment [18, 28]. In a set-
ting with more than two retailers, Anupindi, Bassok, and Zemel [2]
gave a two-stage framework where in the first stage, the players are
non-cooperative and decide the number of items to order individu-
ally. Assuming that each retailer’s actual residual supply and demand
is complete knowledge, [2] provide a dual price allocation for trans-
shipments and prove that the solution is in the core1. In a following
work, Granot and Sošić [15] proposed a three-stage model, where
each retailer has the opportunity to decide how much of her residual
supply/demand she would like to share with others and strategically
reports the residuals before the allocation is determined. They show
an impossibility result that says, for transshipment games, there are
no allocation rules based on dual prices that can ensure complete
sharing of the residuals. Yan and Zhao [35] proposed a model and
mechanism for coordination among the manufacturer and retailers.
At first, each retailer decides whether to participate in the transship-
ment in the future and pays a participation fee accordingly. After
demand realization, the retailers strategically choose and report the
amount of the residual they want to share. Next, the efficient alloca-
tion is computed, and the net profit is given to both the parties instead
of distributing it among both of them. The mechanism leads to only
a grand coalition inducing complete residual sharing with an appro-
priately set participation fee.

To make a moral decision concerning the distribution of residuals,
one way is to consider the well-known Aristotle’s principle of dis-
tributive justice [22], “Equals should be treated equally, and unequals
unequally, in proportion to the relevant similarities and differences.”
Hornibrook, Fearne, and Lazzarin [19] developed a behavioral theo-
retical approach to fill the gap between equitability, justice, and the
supply chain relationships between the buyers and sellers to achieve
a fair allocation of resources such as time, effort, and money. A study
by Fearne et al. [10] measures fairness in supply chain trading rela-
tionships and shows the importance of understanding equitability in
sustainable supply chains.

It is worth noting that there is a dearth of models in the extant
literature that can simultaneously consider the efficiency and profit
distribution goals in transshipment allocation between multiple non-
cooperative retailers. Some of the literature assumes that the retailers
share their complete private information and then examine methods
for a cooperative game to find transshipment allocation and price dis-
tribution between the retailers, e.g., [2]. The other kind of literature
considers additional participation fees, e.g., [35], which may result in
a negative payoff for retailers and, therefore, retailers’ lack of inter-
est in participating in transshipment. We describe our problem setting
and contributions in the following section.

2 Model Descriptions and Assumptions

Define R = {1, 2, · · · , n} to be the set of retailers of a product2

available on the platform. The minimum trade volume is referred to
as one unit. We consider a single-shot interaction of the retailers.
The retailers are myopic and want to maximize their payoff. Each

1 An allocation is said to be in core if it is efficient and provides coalitional
rationality, which means no group of retailers can collude and get more
benefit than that in the given allocation [8].

2 This model easily generalizes to multiple products with additive valuations
for the retailer.
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retailer independently estimates the future demand that she will re-
ceive, checks the stock she has, and decides the quantity of product
to buy from the manufacturers. Retailer i ∈ R orders Qi units from
a manufacturer at per unit cost bi. Each consumer submits their de-
mand to one of the retailers. Each retailer i ∈ R receives the demand
Di on the platform and sells the product at per unit selling price pi to
the consumers. After satisfying demand with her inventory, each re-
tailer strategically decides how much of her excess supply she wants
to share with others. If a retailer faces stock-out due to excess de-
mand, she strategically decides how much of the excess demand she
wants to report to the platform. The platform computes the alloca-
tion of the residuals by transshipment among retailers. Each retailer
i faces a per unit penalty cost ρi if it has unmet demand. If there are
unsold products in i’s inventory, they can be monetized at a salvage
value of si per unit.

The order quantity Qi, buying cost bi, and the salvage value si are
the private information of the retailer i and are represented as a tuple
Zi = (Qi, bi, si), which we call the type of i. Let Z = [Zi]i∈R
denote the vector of the agents’ types. The set of all possible private
information of an agent i is denoted by Θi. The tuple containing Θi

of each i ∈ R is denoted by Θ = ×i∈NΘi, where Θ−i denotes
the set of all type profiles excluding the type of i. The tuple Zi is
unknown to the platform and the other retailers in R. As the interac-
tion with the customers happens on the platform, the platform knows
the realized demands Dis and selling prices pis. We assume that the
platform also knows the penalty costs ρi for all i ∈ R, and the loca-
tions of the retailers on the transshipment network, hence the per unit
transportation costs between them. We represent the per unit trans-
portation cost between retailers i and k as τik. Let A be the set of all
possible transshipment allocations for a product. The transshipment
allocation, A ∈ A can be represented as a matrix [aik] for i, k ∈ R,
s.t., aik ∈ R�0 is the quantity of products to be transshipped from
retailer i to k. The retailer k earns pk by selling one unit of product
transshipped from i to her and satisfying the previously unmet de-
mand. The platform computes the share of transshipment profit, pik
paid by k to i, for each unit of transshipment from i to k. We assume
that the receiving retailer k pays τik per unit as the transportation
cost. Each i ∈ R has a value vi for the transshipment allocation,
representing the revenue she gets after the transshipment happens.3

The value vi is the total earning through transshipment from and to
i plus the total salvage value i gets from unsold inventory minus the
total penalty cost for the unmet demand. Mathematically,

vi(A, p,Zi) =
∑

k∈R\{i}
aikpik +

∑
l∈R\{i}

ali(pi − pli − τli)+

(
(Qi −Di)

+ −
∑
l∈R
l�=i

aik

)
si −

(
(Di −Qi)

+ −
∑
l∈R
l �=i

ali

)
ρi

(1)

The total revenue i gets is the sum of the direct revenue (before trans-
shipment) and her valuations for a given allocation and transshipment
prices (A, p), Revenuei(A, p,Zi) = (min{Di, Qi} pi − biQi) +
vi(A, p,Zi). All the notations are summarized in a table in the ap-
pendix.

In the settings where the agents’ valuations are private, and the
mechanism does not have any additional structures (e.g., payments
in our context), only dictatorial mechanisms are truthful [13, 29].

3 The valuation of a retailer for different products is independent. The total
valuation for all products is assumed to be the sum of the values of each
product.

This negative result holds irrespective of whether agents’ preferences
are ordinal (representable as an order relation over the outcomes) or
cardinal (agents have a real number to represent the intensity of the
preference). Note that in our setup, the agents’ preferences are car-
dinal. A complementary analysis by Roberts [27, Thm 7.2] shows
that a dictatorship result reappears under certain mild conditions in a
quasi-linear setting (which is our current setting) unless transfers (of
utility) are allowed. Therefore, the use of transfers in some form is in-
evitable to ensure truthfulness of the agents. In this paper, the mech-
anism decides the allocation A, the transshipment price p, which di-
rectly affects the valuations of retailers; and determines payments or
transfers P = (Pi, i ∈ R) for each of the retailers. We assume that
every retailer wants to maximize their valuation and also wants to
pay less. The net payoff or utility4 of a retailer is assumed to follow
a standard quasi-linear form [31]:

ui((A, p,P),Zi) = vi(A, p,Zi)− Pi. (2)

As the utility function depends on Zi, which is the private informa-
tion of the retailer i, the platform needs the retailers to report the Zis
to the mechanism designer who decides the allocation to achieve a
certain objective. This leaves an opportunity for a retailer to misre-
port her private information and get a better allocation. A mechanism
designer needs to carefully design the allocations and payments in
the face of such strategic behavior of the retailers. We use the nota-
tion X to denote the pair (A, p) and the set of all possible X as X.
To distinguish, we denote Ẑi as the announced information and Zi

as the true information of i. Therefore, a mechanism in this setting is
defined as a function formally defined as follows.

DEFINITION 1 (Transshipment Mechanism) A Transshipment
Mechanism (TM) is a mapping f : Θ → X × R

n that maps the
reported type vector to an allocation, transshipment price and
payment for each retailer. Hence, f(Z) = (X (Z),P(Z)), where X
is the function which computes the allocation and the transshipment
price, and P is the payment function.5

The TM defines two payments as its output: the transshipment price
indicating the price at which the transaction between the source and
destination retailers happen, and the payment indicating the side-
payment to satisfy other desirable properties, e.g., truthfulness, in-
dividual rationality (defined in the next section). We use vi(X (Z))
or vi(X ) as a shorthand for vi(X (Z),Zi) when the arguments are
obvious from the context. In the supplementary material, we formally
define the desirable properties namely, efficiency, truthfulness and in-
dividual rationality of a TM.

3 The Proposed Mechanism

Equitability among retailers can be addressed in many ways. We con-
sider the setting where each agent i is given a potentially different
weight wi, which can be based on externalities (e.g., their position
in the network). We use the notation w to denote the weight vector,
w = [wi]i∈R. The allocation and payment decisions in the proposed
mechanism resemble the affine maximizer rule [27]. However, due
to the multi-dimensional types of the agents, the computational com-
plexity of the transshipment allocation, and the transshipment pric-
ing, the proposed mechanism becomes significantly different in the

4 We will only consider the valuation component of the revenue in the utility
of the agent since the direct revenue (min{Di, Qi} pi − biQi) is insen-
sitive to the mechanism, which decides the allocation and payments.

5 We overload the notation X and P to denote both functions and values of
those functions, since their use will be clear from the context.
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current setup than the classical affine maximizer. We describe the
distinctions after we present the proposed mechanism.

Allocation function: The allocation function is a weighted utili-
tarian function, with the objective to maximize the weighted sum of
valuations given by the following optimization problem (OP).

argmax
X=(A,p)∈X

∑
i∈R

wi vi(X ,Zi)

s.t.
∑

k∈R\{i}
aik � (Qi −Di)

+ ∀i ∈ R
∑

l∈R\{i}
ali � (Di −Qi)

+ ∀i ∈ R

si � pik � pk + ρk − τik, aik � 0, ∀i, k ∈ R,

(3)

The operator (.)+ denotes max(., 0). The first set of constraints in
(3) ensures that the total transshipment from every retailer i to others
is not more than the excess supply (Qi−Di)

+. Similarly, the second
set of constraints ensures that the total transshipment to i from other
retailers is not more than the unmet demand (Di −Qi)

+. The third
set of constraints bound the transshipment price pik to make sure that
it is beneficial to every i and k. For every unit of the transshipment
from i to k, k does not face the unmet demand and hence is not
charged with the penalty cost ρk, which would have been charged
in the absence of transshipment. Retailer k also earns pk from the
sale of the transshipped product, but pays the transportation cost τik.
Hence k earns a total profit of pk + ρk − τik from per unit aik. The
third set of constraints ensures that pik is not more than the profit
earned by k if the transshipment happens; otherwise, it is better for
her not to buy this unit of transshipment. At the same time, every
retailer i gets pik from the transshipment, which is at least as much
as she earns if the transshipment did not happen. As i gets per unit
salvage value si in the absence of transshipment, the lower bound for
pik is si. Note that OP (3) is solved by the mechanism designer who
can only access the reported types Ẑ . Denote the optimal solution of
OP (3) by X ∗(Ẑ) and the solution of a similar optimization problem
when i does not participate in the transshipment by X−i

∗(Ẑ−i).
Payment function: For every agent i, the payment computed by the
mechanism is as follows,

Pi :=

⎧⎪⎨
⎪⎩

1
wi

(
∑
�∈R
� �=i

w�v�(X−i
∗)− ∑

�∈R
� �=i

w�v�(X ∗)) wi > 0

0 wi = 0

(4)

Assume that each agent i reveals her Zi truthfully. If wi �= 0, the
second term of Pi is paid to i and is the sum of weighted values of
each agent except i for the allocation given by Eq. (3). The first term
is paid by i, the sum of weighted values of each agent except i for
the allocation by Eq. (3) that would have been made if i would not
have been present. Thus, i has to pay the difference in the values of
the objective function when i is present and absent, concerning wi.
Notice that, similar to vis, the Pis can be negative as well. If so, the
platform pays Pi to i. We discuss the budget imbalance in Section
5.3. The mechanism is succinctly presented in Algorithm 1.

Two significant observations make the proposed mechanism dif-
ferent in the current setup.

• The allocation decision here considers not only the volume of the
item transshipped but also the price at which the transshipment
occurs - each of which has its own constraints to be satisfied.

• The types of agents in the classic affine maximizer rule are single-
dimensional, i.e., the value of that agent. In our setting, the type of

Algorithm 1 Weighted Value Transshipment (WVT) Mechanism for a
single-shot interaction of the retailers

1: Every retailer i ∈ R reports her type Ẑi to the platform, where
Zi = (Qi, bi, si).

2: Using the realized demand D, reported information Ẑ ,
and weights w, the platform computes the TM f(Ẑ) =
(X ∗(Ẑ),P∗(Ẑ)) where X ∗ and P∗ are given by Equation 3
and (4) respectively.

3: Output: X ∗(Ẑ) and the payment vector P∗.

the agent i has three components: ordered quantity Qi, purchase
price bi, and salvage price si. Hence, to show that properties truth-
fulness and individual rationality hold in such a multidimensional
setting is a non-trivial exercise [7, 31].

From the first two constraints in OP (3), the mechanism ensures that
no retailer is asked to transship more than the residuals she reports to
the platform. We assume that the platform can verify the sale of the
product and the selling price for each retailer as these transactions are
performed on the platform. So, we assume that the mechanism can
be implemented as a contract between the platform and the retailers,
which they cannot break. This implies:

1. If the mechanism assigns a transshipment, then both the sender
and receiver retailers are bound to follow it. Suppose the retailer i
had initially misreported her type information and does not have
the product in her inventory to sell to k. In that case, the retailer
will have to buy the product from the outside market (assumed to
be at a much higher price) to fulfill the commitment.

2. At the end of the transshipment, the platform can verify if the
receiving retailer sells the transshipped units of the products or
not. If not, then it is assumed that she has violated the contract.

4 Theoretical Guarantees

In this section, we summarize the theoretical guarantees of WVT. Due
to paucity of space, the proofs are deferred to the appendix.

Theorem 1 The WVT mechanism is dominant strategy truthful.

Theorem 1 shows that reporting private information truthfully max-
imizes a retailer’s utility, regardless of what other retailers report.
Next result proves that retailers are motivated to join the mechanism
on their own.

Theorem 2 The WVT mechanism is individually rational.

The forthcoming results show that WVT is strongly polynomial. To
show this, we reduce OP (Equation 3) to the b-matching problem,
which is known to be strongly polynomial [1].

DEFINITION 2 (b-Matching Problem [1]) Consider a graph G =
(V,E), where V is the set of nodes and E is the set of undirected
edges. Each edge eu,v ∈ E between any two nodes u, v ∈ V , has a
cost cu,v . Let b = (b1, b2, . . . , b|V |). A b-matching problem for G is
to find the non-negative integer edge weights yu,v which maximises
the total cost,

∑
u,v∈V cu,v yu,v where the sum of weight on edges

connected to a node u is no more than bu, ∀u ∈ V . The b-matching
problem can be written as follows.

argmax
y

∑
u,v∈V

cu,v yu,v

s.t.
∑

v∈V \{u}
yu,v � bu ∀u ∈ V, yu,v � 0, ∀u, v ∈ V

(5)
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Theorem 3 There exists a strongly polynomial algorithm for com-
puting transshipment allocation and pricing in WVT.

Proof : To prove the above statement, we construct a graph and show
that finding an optimal b-matching in that graph is computationally
equivalent to finding the optimal solution for OP in equation 3.

Construct an edge-weighted bipartite graph G = (H, J,E), where
H and J are two sets of vertices such as H = J = R. Let the cost
of every edge ei,j ∈ E is ci,j . Set ci,j = wi(pij − si) + wj(pj −
pij − τij + ρj). Define b as, bi = (Qi −Di)

+ for every i ∈ H , and
bj = (Dj − Qj)

+ for every j ∈ J . The objective function of the
b-matching problem of G (as shown in Figure 1), can be written as

argmax
y

∑
i∈H

∑
j∈J

ci,j yi,j (6)

Notice that, a retailer can either have excess supply or excess

Figure 1: Constructed edge-weighted bipartite graph G = (H, J,E)
and b

demand, which means at least one of b-values (Dj − Qj)
+ and

(Qi − Di)
+ is equal to zero. Therefore, yi,i = 0, for all i ∈ R.

Mathematically, the b-matching problem can be written as follows.

argmax
y

(∑
i∈H

∑
j∈J\{i}

wiyi,j(pij − si)

+
∑
i∈H

∑
j∈J\{i}

wjyi,j(pj − pij − τij + ρj)

)

s.t.
∑
i∈H

∑
j∈J\{i}

yi,j ≤ (Qi −Di)
+ ∀i ∈ H

∑
i∈H\{j}

yi,j ≤ (Dj −Qj)
+, yi,j � 0 ∀i ∈ H, j ∈ J

(7)

Finding optimal solution (say y∗) of OP (Equation 7) is computa-
tionally equivalent to finding optimal allocation (say a∗ij) for WVT in
the following form.

argmax
A∈A

(∑
i∈R

∑
k∈R\{i}

wiaik(pik − si)

+
∑
i∈R

∑
l∈R\{i}

wiali(pi − pli − τli + ρi)

)

s.t.
∑

k∈R\{i}
aik � (Qi −Di)

+ ∀i ∈ R
∑

l∈R\{i}
ali � (Di −Qi)

+, aik � 0, ∀i, k ∈ R

(8)

Hence, Theorem 3 is proved. �

The following section considers the performance of WVT for cer-
tain metrics that are not captured theoretically.

5 Experimental Results

The theoretical results ensure truthfulness and participation guaran-
tees of WVT. However, other social welfare metrics, e.g., equitability,
surplus in the budget, and efficiency, have not been theoretically cap-
tured. We carry out an experimental study using synthetic data to
understand how the WVT performs on those metrics.

Our first experiment shows the need to choose appropriate weights
in WVT.

5.1 Network position effect on utility

When we discuss the weights in the WVT, a natural question arises:
“why do we need different weights?". To answer this, we consider the
average utility of the retailers partitioned w.r.t. their network central-
ity measure. Consider the particular case when the weight for every
retailer is unity. It reduces WVT to the VCG mechanism [6, 17, 33]
which provides an allocatively efficient (one that maximizes the sum
of the valuations of all agents) transshipment allocation.

We consider an Erdős–Rényi (ER) graph with 10 retailers hav-
ing the edge forming probability of 0.7 to emulate the transshipment
network. We consider the closeness centrality [3] as the measure of
the retailers’ positional impact on the network. The retailers in the
network are partitioned into bins based on the closeness centrality,
and the average value of the utilities of the retailers in each bin is
computed.

For every i ∈ R, we chose the following parameters: bi = 15,
pi = 30, τik = 15, ρi = 10, si = 10. We generate Di and Qi from
Normal distribution with mean (μ) = 500 and standard deviation
(σ) = 50, which shows the uncertainty in demand, and the estimated
quantity of products to order from the manufacturer.

We randomly generate 1200 ER networks, and for each network,
generate 200 instances of Di and Qi for every retailer i. Figure 2
shows the average utility plot w.r.t. the centers of the centrality bins.
Notice that the utility increases with closeness centrality even though
all the retailers have identical statistical and parametric properties
(plots with other centrality measures are also similar). This experi-

Figure 2: Utility vs centrality plot under VCG.

ment clearly shows the inequality introduced in the net payoff of the
retailers due to their network positions and serves as the motivation
for the design of the weights. The weights need to be decreasing in
the network centrality so that the utilities earned by the retailers hav-
ing identical statistical and parametric properties are more equalized.
This implies that the equal retailers are treated more equally.

5.2 Equitability and efficiency

Following the definition of egalitarian allocation, where the objec-
tive is to maximize the utility of the most unfortunate individuals in
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(a) Inefficiency Factor (IF) (b) Equitability Factor (EF) (c) Fractional Budget Surplus (FBS)

Figure 3: Performance of WVT under different metrics. Horizontal black lines and the diamond markers inside the boxes denote the median and
the mean, respectively.

society so that every agent gets the same welfare level [23, 26], we
define the inequitability (I) of a TM f for an input instance Z as the
variance6 of the utilities of the retailers. Mathematically,

I(f,Z) = var([ui(f(Z),Zi)]i∈R) (9)

A large value of I indicates that utilities of the retailers are signif-
icantly different from each other, whereas a small I indicates the
opposite. I = 0 means that the retailers get equal utilities.

While it is clear from the discussions in the previous section that
the weights need to decrease with the centrality measures, it is un-
clear how the decreasing function should look. In this section, we
attempt to heuristically choose a function and learn the parameters to
reduce the inequitability (Equation 9) to a certain extent. The prob-
lem of finding an optimal weight vector that minimizes inequitability
remains an open problem. The weight function we choose is

wi = e−αci + β, (10)

where ci is the centrality of retailer i in the network. For the experi-
ments, we consider three widely used centrality measures: closeness,

6 Note that another plausible inequitability notion can be maxi(ui) −
mini(ui). We do not use that notion because in the presence of an outlier
retailer dealing with a very large or very small number of demand/supply,
maxi(ui) − mini(ui) can be a significantly large value, even if all the
other retailers have equal utilities and, therefore, maxi(ui) − mini(ui)
captures less information about the inequity than the variance of the utili-
ties.

betweenness [11], and eigenvector [25]. The mechanisms we con-
sider in the WVT class will use the weights corresponding to these
centralities using Equation (10).

To capture the equitability introduced by a mechanism, we first
define the equitability factor (EF) of a TM f for an input instance Z
as follows.

EF(f,Z) = 1− I(f,Z)

I(VCG,Z)
(11)

A mechanism with a higher value of EF is more equitable.
Since the weights of the WVT mechanisms can be different, it may

not always yield an efficient outcome like the VCG. The following
metric captures the inefficiency factor (IF) of a TM f for an input
instance Z .

IF(f,Z) =

∑
i∈R vi(VCG(Z),Zi)−∑

i∈R vi(f(Z),Zi)∑
i∈R vi(VCG(Z),Zi)

(12)

VCG provides an efficient outcome; therefore IF can never be greater
than zero. A larger negative value will imply that the mechanism is
more inefficient than the VCG. For brevity, we will omit the argu-
ments of the above factors wherever they are clear from the context.

We compare the results given by the above two metrics for three
WVT mechanisms for the choices of weights corresponding to three
centrality measures on four standard network structures, viz., star,
line, complete, and ER networks (with edge forming probability to be
0.5). Figures 3(a) and 3(b) show the IF and EF plots respectively for
different network structures with the increasing number of retailers.
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All the other parameters except the network positions are chosen
identical for every retailer to analyze the effect of network positions.
Therefore, the vertices having the same network position receive sta-
tistically identical utilities. For every retailer i the parameters are
given by: ρi = 10, bi = 20, pi = 50, si = 5. For every edge (i, k)
in the network τik = 10. We generate Di and Qi from N (500, 50).
The line network has the highest diameter amongst any connected
graph. For a sufficiently large number of retailers on a line network
with high edge costs of τik = 10, the number of transshipment is in-
significant. This is because every retailer has very few retailers with
whom the transshipment is beneficial. To allow for the possibility
of sufficient transshipment for analysis in a large line network, we
choose a low transportation cost per edge (τik = 1). The weights
are computed via Equation 10 (with α = 0.5, β = 1) for the three
chosen centrality measures as depicted in Figure 3.

The experiments are repeated 500 times for star, line, and complete
networks, by generating random instances of Di and Qi ∀i ∈ R. For
ER network, we repeat the experiments for 2500 times, by generating
50 (Di, Qi) pairs ∀i ∈ R, and for each such instance generating 50
ER random networks.

From the results of the different number of retailers shown in Fig-
ure 3(b), we find that the WVT reduces the inequitability (from VCG)
by about 60% in star, 50% in line, and 30% in both complete and ER
networks in the case of closeness centrality. The results are similar
for betweenness and eigenvector centralities as well. It is interesting
to note that this does not come at a big sacrifice in efficiency. For the
chosen parameters, only in line networks, WVT compromises up to
2% of the efficiency for eigenvector and betweenness centrality and
no significant loss in case of closeness centrality. For star, complete
and ER networks, WVT makes no compromise in efficiency.

From these results, we conclude that it is possible to transship
among the retailers reducing the inequitability due to network po-
sitions in a truthful, self-participatory manner without a significant
compromise in the efficiency.

Discussion on the IF plots (Figure 3(a)): It is interesting to note
that the IF is very close to zero, which is an effect of the event
that the social welfare, i.e., the sum of the valuations, was almost
the same in different graphs for most of the random instances. This
happens even though the allocations in WVT and VCG were not the
same always. The different allocations by WVT and VCG (AWVT and
AVCG respectively) do change the individual utilities of the retail-
ers. However, in the experiment with the chosen parameters, we
found that the total quantity of the transshipment, i.e.,

∑
i,k∈R aik

is almost same in AWVT and AVCG. As all the individual parame-
ters (except the transportation costs, which are identical over the
edges) are identical for every retailer in both the allocations, the
difference in the social welfare is only due to the difference in to-
tal transportation cost

∑
i,k∈R τika

WVT
ik and

∑
i,k∈R τika

VCG
ik . Since

these values are insignificant in comparison to the optimal social wel-
fare (

∑
i∈R vi(VCG(Z),Zi)), the IF looks arbitrarily close to zero in

the figure. We could have chosen a larger value of τik, which needs
to be large enough to be comparable to the optimal social welfare.
But such a large value of τik reduces the quantity of transshipment
significantly, making the need of the WVT insignificant. Hence, even
if the allocation by WVT and VCG are very distinct, the change in the
social welfare is insignificant.

5.3 Budget surplus

While the monetary transfers in these mechanisms serve as an in-
strument to ensure truthfulness, it is desirable that the mechanism

designer do not earn a significant surplus of these payments or run
into a large deficit to run the mechanism. Ideally, one would like
to have the sum of all these payments to be zero (which means the
money is only redistributed), and we call such mechanisms to be
budget balanced. However, in mechanisms with monetary transfers,
ensuring both efficiency and budget balance is not generically pos-
sible [16]. In the WVT, there are two components of the monetary
transfer: (a) the transshipment prices computed by WVT, which are
one-to-one transactions between the retailers, and hence, are budget
balanced (

∑
i,k∈R pik = 0) by design, and (b) the side-payments,

Pis, which exist to ensure certain desirable properties of the mech-
anism, e.g., truthfulness. However, in this setup, the positive surplus
of

∑
i∈R Pi has an advantage since it can be easily distributed to

the customers on the platform (who are not the players in this mech-
anism) as gift coupons or monetary discounts and the mechanism
can be budget balanced. If the surplus is negative, i.e., resulting in a
deficit, we need a larger value of

∑
i∈R Pi so that the deficit can be

minimized, for any mechanism f and input instance Z .
Therefore, a larger value of

∑
i∈R Pi is more preferred. We cap-

ture how much a transshipment function f increases the surplus over
VCG using fractional budget surplus (FBS) factor defined as follows.

FBS(f,Z) =

∑
i∈R Pf

i (Z)−∑
i∈R PVCG

i (Z)∑
i∈R vi(VCG(Z),Zi)

(13)

Therefore, an FBS factor of 0.05 implies that the surplus under WVT
increases by 5% of the optimal welfare than that of VCG under the
same instance Z . The optimal welfare in all experiments was al-
ways positive. If the TM is IR (satisfied by both WVT and VCG),
then the payments should always be at most the valuation. Hence
the

∑
i∈N P f

i ≤ ∑
i∈R vi(f(Z),Zi) for any IR TM f . This allows

us to compare them and the ratio FBS in terms of percentage.
Figure 3(c) shows that for star and line networks, the budget sur-

plus increases by 45−52% and 70−100% respectively. For complete
and ER networks, the increase is of 4− 7% and 2− 7% respectively.
The results for the three centrality measures are similar.

6 Conclusions and Future Work

In this paper, we study the excess inventory or unmet demands faced
in the supply chain by the retailers who interact with the consumers
on a shopping platform. The retailers are connected by a transporta-
tion network and have multi-dimensional private information. We
provided a mechanism called WVT that satisfies truthfulness and indi-
vidual rationality. Experimentally, we show that it does not compro-
mise on the efficiency too much and has a better equitability factor
and budget surplus than the classic VCG mechanism. Therefore, the
WVT mechanism provides an engineering solution to almost all desir-
able properties required in a practical multi-retailer supply chain net-
works. Future work includes studying other aspects of fairness such
as reward or compensation, and finding group-strategyproof mecha-
nisms to avoid coalitional deviations.
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