
Balancing Fairness and Efficiency in 3D Repeated
Matching in Ridesharing

Garima Shakyaa;* and Makoto Yokooa

aKyushu University, Fukuoka, Japan

Abstract. Ride-hailing services’ main feature is mediating the as-
signment and transactions between drivers and passengers. Essen-
tially, they decide on the quality of passengers’ experience and the
drivers’ workload balancing. To boost the company’s profit, these
services try to maximize the utility for the passengers by optimizing
the matching, resulting in shorter waiting times and better service
availability. Often, in the process of maximizing revenue, drivers’ in-
terests get sidelined. We focus on two objectives: efficiency (min-
imizing total distance traveled by drivers) and fairness (minimiz-
ing the maximum traveled distance by any driver) for shared-mode
rides, where the vehicles’ capacity is two passengers. We theoreti-
cally show the relation between the optimal solutions of both objec-
tives and as the problem is computationally intractable, we propose
a heuristic algorithm to achieve an approximately optimal solution.
We also propose a re-assignment-based algorithm when the aim is
to achieve maximum matching with fairness up to a given threshold,
if that is feasible. The experimental analysis for the proposed algo-
rithms on real-world data from Chicago city shows that our approach
can significantly improve fairness for drivers without losing much
efficiency.

1 Introduction

Ride-hailing and food-delivery services such as Uber, Lyft, Ola,
and Foodora have become essential components in increasing urban
transportation’s sustainability. These services are quickly changing
the urban transportation ecosystem [11]. Due to the flexible work-
ing hours, ride-hailing services are a popular alternative for people
looking for a side job or a new career.

Ridesharing is a ride-sourcing mode in which a vehicle can simul-
taneously service more than one request. We investigate the rideshar-
ing problem in the following setting: at a time instance of a day, there
are a set of available drivers in a city and a set of riding requests
made; each request has a pick-up location and drop-off location;
between any two locations, there is a weight function representing
the length or cost of the shortest route between them. The problem
is to assign maximum requests to the drivers such that each driver
serves at most two requests simultaneously while maximizing effi-
ciency (minimizing the sum of the cost of travel over all the drivers)
and/or while maximizing fairness (minimizing the maximum traveled
distance by any driver). For efficiency, we adopt the ‘minimizing total
cost’ criterion, defined as the sum of traveled distance by the drivers.
For fairness, we adopt the ‘maximize the utility of least advantaged

∗ Corresponding Author. Email: garima@inf.kyushu-u.ac.jp

driver’ criterion based on well-recognized Rawlsian egalitarian jus-
tice [17].

Our ultimate goal is to optimize combined efficiency and fairness.
However, optimizing daily criteria before the end of the day is impos-
sible since we need to know future requests in advance. This is be-
cause the assignment at a time instance affects the drivers’ locations
in the next time instance and so on. Thus, we aim for a compromised
goal. We apply the greedy approximate criterion to minimize the total
cost for each time period separately and balance the workload distri-
bution by minimizing the travel distance of the most traveled driver
until the current time period.

1.1 Motivation

Shared-mode rides reduce the number of automobiles needed by trav-
elers, which leads to long-term social and economic benefits such as
1) reductions in greenhouse gas emissions and energy consumption,
2) congestion mitigation, 3) reduced parking infrastructure demand,
and others. Here are some case studies showing the environmental
benefits of ridesharing in various cities [3, 4, 19, 20].

Ride-hailing services’ main feature is mediating the assignment
and transactions between drivers and passengers. Essentially, they
decide on the quality of passengers’ experience and the drivers’
workloads. To boost the company’s profit, these matching platforms
try to maximize the utility for the passengers by optimizing the
matching that results in shorter waiting time and better service avail-
ability [13]. The main reason might be that the passengers contribute
more directly to the platform’s revenue. In the process of maximiz-
ing revenue, drivers’ interests get sidelined [12]. The solutions may
result in undesirable social outcomes. Some drivers may be assigned
to undesired trips, resulting in an unbalanced workload; therefore, a
loss of fairness from the drivers’ perspective [14].

Recent studies on two-sided matching platforms raise concerns
about the exploitation of employees, including unfair pay, working
conditions and safety [7]. The distribution of drivers’ workload has
yet to get much attention in the algorithm design domain. An inves-
tigation by Bokányi and Hannák [2] shows the effect of algorithm
design decisions on wage inequality in ride-hailing markets and how
small changes in the system parameters can cause large deviations
in the income distributions of identically performing drivers. Our
concern is that the short-term differences may result in long-term
welfare gaps. Nonetheless, ensuring fair workload distribution for
drivers might also prove beneficial in sustaining the business in the
long run. Otherwise, unsatisfied drivers may leave or remain inactive
on the platform. Therefore, fair workload distribution on the drivers’
side should receive more attention.

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230507

2121

The ridesharing platforms make request-to-driver assignments
with a repeated set of drivers and customers where the assignment for
each individual is often for some limited duration in the day. Once
that duration is over, the driver can be assigned to another available
request in the following duration. In line with the current matching
scenarios, we are specifically interested in investigating the repeated
matching between drivers and requests that lead to a fair distribution
of drivers’ daily workload while maintaining efficiency.

1.2 Related work

Ridesharing systems are widely studied in the literature. Finding an
efficient ridesharing allocation is based on the 2-1 assignment prob-
lem reviewed by Goossens et al. [10]. The 2-1 assignment problem is
as follows: given a set W of m white balls and a set B of 2m black
balls; there is a cost function for every triple combination contain-
ing two balls from B and one ball from W ; the objective is to find a
collection of triple combinations such that the sum of costs of triple
combinations is minimum, while each ball is in precisely one com-
bination. In terms of the ridesharing problem, W and B can be con-
sidered as the set of drivers and passengers’ requests, respectively.
Goossens et al. [10] provide a 4/3 approximation ratio algorithm for
2-1 matching. However, the expression for the cost function in [10]
differs from that in ridesharing settings.

Bei and Zhang [1] studied the maximizing efficiency problem in
ridesharing and proved that finding the most efficient 2-1 matching
is NP-hard, and proposed a polynomial time 2.5 approximation ra-
tio algorithm. Luo and Spieksma [15] investigated the problem of
minimizing total latency along with efficiency and provided two al-
gorithms with approximation ratios 2 and 5/3 for efficiency and total
latency, respectively.

The idea of loss in efficiency in achieving a fair solution is well
explored in many resource allocation settings. However, to the best
of our knowledge, the problem needs to be explored more in the
request-to-driver assignment domain. Mainly due to unique con-
straints (e.g., on pick-up distance) the existing literature for other re-
source allocation problems can not be directly applied to the rideshar-
ing settings. This is due to additional constraints unique to the
ridesharing problem, such as the constraint of pick-up distances.

In line with fairness on ride-hailing platforms, Nanda et al. [16]
examined the rider’s fairness due to drivers’ discriminative cancella-
tions. Xu and Xu [18] construct a bi-objective linear program focused
on profit and fairness on the platform and propose two LP-based pa-
rameterized online algorithms. Our objectives also differ from the lit-
erature mentioned above and traditional resource allocation settings
as we study the problem of achieving a balance of fairness and ef-
ficiency in 3-dimensional request-to-driver matching where two re-
quests can be serviced by a driver simultaneously. The addition of
one more dimension brings more challenges.

An exciting and closely related work by Lesmana et al. [14] pro-
vides a reassignment algorithm to find a balance between the two
objectives while finding one-to-one (2-D) request-to-driver match-
ing. The algorithm in [14] can also be applied to shared ride settings
by assigning one passenger in each repetition of the algorithm. Re-
peating the algorithm provides a greedy solution by looking for the
best solution in each repetition. We are designing an algorithm that
finds a match for the combined input of two repeats for the algorithm
in [14]. This allows the solution set concerning the capacity of the ve-
hicles and opens up the opportunity to find a better solution. Along
with the importance of finding the optimal solution for ridesharing,
we intend to look for the algorithmic question of finding the balanced

solution for multiple objectives in 3-D matching.

1.3 Our contributions

In summary, this paper focuses on the following research questions:
1) How are efficient and fair solutions for 2-1 matching in ridesharing
related? 2) How can we get a balance between efficiency and fairness
in ridesharing? 3) What is the price, in terms of efficiency, for fair
distribution of work and income among drivers?

To answer these questions, this paper contains the following:

1. We provide a theoretical bound on the ‘loss in efficiency’ required
to achieve a fair solution (Theorems 1 and 2).

2. We propose a two-phase algorithm that accounts for the natural
tension between these two objectives (Algorithm 1). We also pro-
pose a re-assignment based algorithm to achieve fairness with re-
spect to a given fairness threshold (Algorithm 2).

3. We experiment on a real world dataset and attempt to answer ques-
tion (3) and analyze the performance of the proposed algorithms
(Figure 4).

2 Model and problem formulation

Consider the city as a weighted connected graph, GC = (L, E, w),
where L is a finite set of locations, E is the edge set s.t. E =
{(l1, l2) | l1, l2 ∈ L} and w : E → R

+ is the edge weight func-
tion. The weight function w can be any metric satisfying (1) non-
negativity w(lx, ly) ≥ 0, (2) symmetry w(lx, ly) = w(ly, lx). Typi-
cally, w can be considered as the distance functions �2, �1, or distance
on a road graph. The weight notation is extended for the path as well.
With slight abuse of notations, the weight of a path (l1, l2, . . . , lx) is
defined as w(l1, l2, . . . , lx) =

∑x−1
i=1 w(li, li+1).

Denote the daily working hours of the ridesharing platform
as T . The platform accumulates the requests entered during
an accumulating time window λ and performs batch assign-
ment of the accumulated requests to the available drivers. Let
(t1, t2, t3, . . . , ti, ti+1, . . . , t|T |) be the sequence of discrete time in-
stants, such that ti+1 − ti = λ. The set of accumulated requests at
t ∈ T are represented by Rt = {r1, r2, r3, . . . }. Each request r
consists of two elements, r = (s, d), where, s, d ∈ L denoting the
source and destination of the request r, respectively.

LetD denote the set of all drivers.1 The set of drivers available at t
are represented as Dt = {v1, v2, v3, . . . vn}. The attributes of each
driver v is represented as a 2-tuple (CLv, DTv), where, CLv ∈ L is
the current location of v, DT t

v ∈ R≥0 is total distance travelled by v
since the beginning of the day. At a time instant t, DT t

v denotes the
total travelled distance by v till the end of t.

In this paper, we assume the capacity of each vehicle is 2. LetMt

denotes the set of all possible 2-to-1 matching for setsRt and Dt. A
matching M ∈ Mt is defined as M = {(vk,Rk) | vk ∈ Dt,Rk ⊆
Rt, |Rk| ≤ 2}, where, R1,R2,R3, . . . ,Rn are mutually disjoint
subset of Rt. Each element (vk,Rk) of M denotes that the driver
vk is assigned to a set of requestsRk. Let M(v) denote the requests
assigned to driver v. And, M(Rk) denote the driver vk assigned to
requests inRk.

We define a function cost : M → R
+ s.t., cost(v,M(v)) is the

minimum distance that needs to be covered by v to service M(v).
If M(v) = {(s1, d1), (s2, d2)}, i.e., two requests are assigned to v,

1 We use the term ‘driver’ to denote a ‘vehicle.’ And, therefore, use both
terms interchangeably.

G. Shakya and M. Yokoo / Balancing Fairness and Efficiency in 3D Repeated Matching in Ridesharing2122

there can be six possible routes, depending on the order of the pick-
up and drop-off of the passengers in M(v). More formally,

cost(v,M(v)) =min(w(CLv, s1, d1, s2, d2),

w(CLv, s1, s2, d1, d2),

w(CLv, s1, s2, d2, d1),

w(CLv, s2, s1, d2, d1),

w(CLv, s2, s1, d1, d2),

w(CLv, s2, d2, s1, d1))

If M(v) = {(s, d)}, i.e., only one request is assigned to v, then
cost(v,M(v)) = w(CLv, s) + w(s, d). The cost of a matching M
is defined as,

cost(M) =
∑

v∈Dt

cost(v,M(v))

We also define cost of servicing a request pair (ri, rj) starting
from source of ri as follows,

c(si, (ri, rj)) = min(w(si, di, sj , dj),

w(si, sj , di, dj),w(si, sj , dj , di))

Similarly, we define c(sj , (ri, rj)) as the length of shortest route to
service (ri, rj) starting from sj . The minimum of both costs is de-
noted as,

c(ri, rj) = min(c(si, (ri, rj)), c(sj , (ri, rj)))

For ri = rj , c(ri, ri) = w(si, di).
Driver’s per day income: The payment scheme to the driver

might differ between service providers and cities. Sometimes, even
the same service provider might rapidly change the pricing scheme
within a city [6]. We omit those calculations and assume that the
drivers get a fixed pre-decided daily wage. As there is some cost of
travel between any two locations, such as fuel cost, the daily utility of
a driver depends on the distance traveled on that day. In other words,
the utility of a driver depends on the shortest distance covered by the
driver to serve the assigned ride. The utility is more if the cost of the
ride is less.

We represent the matching M among the rides and drivers as a
3 dimensional matrix A := [ai,j,k]∀(ri,rj)∈Rt×Rt,∀k∈Dt such that,
ai,j,k = 1 if i �= j, M(vk) = Rk and Rk = {ri, rj}, otherwise,
ai,j,k = 0, and ai,i,k = 1 if M(vk) = Rk and Rk = {ri}, other-
wise, ai,i,k = 0.

2.1 Desired properties

We focus on multiple objectives defined as follows:

DEFINITION 1 (Maximum matching) Given (Rt,Dt), a matching
M ∈Mt is a maximum matching if,

M = argmax
∑

vk∈Dt

∑

(ri,rj)∈Rt×Rt

ai,j,k

If ri and rj are matched with driver vk then aijk = 1, otherwise
aijk = 0. And, for ri = rj , aiik = 1 if ri is assigned for a solo ride
to vk, else aiik = 0. In Definition 1, we maximize the sum of aijk

over all (ri, rj) ride pairs and all drivers vk. Hence the shared ride is
counted as 2 (once of (ri, rj) and then again for (rj , ri)) and a solo
ride as 1 (for (ri, ri)) which incentivizes to assign more shared mode

rides but keeps the option for solo rides if shared mode matching is
not feasible.

In other words, given (Rt,Dt), maximum matching M consists
of a maximum number of assignments among Rt and Dt. This ob-
jective ensures that we assign a maximum number of requests to the
drivers for each t ∈ T , which reduces the overall waiting time of the
passengers. LetM∗

t denote a set of all maximum matchings inMt.
The matching applied at time t affects the problem solved at time

t+1, and so on. Ideally, for efficiency, we want to minimize the total
cost, we want to find M = (M1, ...,M|T |) such that it minimizes∑

t∈T cost(Mt). However, optimizing this criterion is impossible
since we do not know future requests in advance. Thus, we apply a
greedy approach and desire to minimize the cost for each time period
separately.

DEFINITION 2 (Efficient Maximum Matching) Given (Rt,Dt), a
maximum matching M ∈ M∗

t is an efficient (maximum) matching if
there does not exist a maximum matching M ′ ∈M∗

t such that,
∑

v∈Dt

cost(v,M ′(v)) <
∑

v∈Dt

cost(v,M(v))

We desire to reduce the total traveled distance by drivers that reduce
the total emission of greenhouse gases and overall traffic congestion.
Our objective is to get an efficient matching and hence to find an
M ∈M∗

t that has a minimum cost.
Based on the difference principle in the seminal work on the theory

of justice by John Rawls in [17], we defined the unfairness (UF) of a
matching M for given (Rt,Dt) as,

UF (M) = max
v∈Dt

(cost(v,M(v)) +DT t−1
v)

Ideally, we want to minimize the total travel distance within a day
for the most traveled driver. Since this is also impossible as we do
not know future requests in advance, we consider an approximate
criterion, in which we try to minimize the travel distance of the most
traveled driver until the current time period.

DEFINITION 3 (Fair Maximum Matching) Given (Rt,Dt), a
matching M ∈ M∗

t is fair if there does not exist a maximum
matching M ′ ∈M∗

t such that,

UF (M ′) < UF (M).

We aim to maximize fairness and hence to find an M that minimizes
the distance traveled by the driver who has traveled the most. In other
words, we aim to maximize the utility of the least advantaged driver.

We summarize our objectives as follows:

DEFINITION 4 (OBJ1: Efficient Maximum Matching) Given
an instance (Rt,Dt), find maximum matching M ∈ M∗

t , s.t.∑
v∈Dt cost(v,M(v)) is minimum.

DEFINITION 5 (OBJ2: Fair Maximum Matching) Given an in-
stance (Rt,Dt), find maximum matching M ∈ M∗

t , s.t.,
maxv∈Dt DT t

v is minimum. Mathematically,

argmin
M∈M∗

t

UF (M)

3 Relation between efficient and fair solutions

In this section, we analyze the loss in efficiency and the gain in fair-
ness in terms of each other. Due to uncertainty in future requests

G. Shakya and M. Yokoo / Balancing Fairness and Efficiency in 3D Repeated Matching in Ridesharing 2123

and driver locations, we limit the analysis for a single accumulated
window (|T | = 1) where, initially, DT 0

v = 0 ∀v ∈ D. Unless men-
tioned otherwise, all the results in this section consider this assump-
tion. Therefore, we omit the superscript t to denote the single window
notations, e.g., DT t

v is denoted as DTv .
There exists a case where we cannot optimize both objectives si-

multaneously, as shown in Example 1.

EXAMPLE 1 Consider two drivers D = {v1, v2} with capacity 2,
DTv1 = DTv2 and located at A ∈ L. There are four requests
R = {r1, r2, r3, r4} such that, ∀ri ∈ R, si = A. And the destina-
tion locations for r1, r2, r3, and r4 are B,C,D and E, respectively
(Figure 1). The edges and weights in Figure 1 show the connectivity
and the cost of travel between any two locations. One of the opti-
mal solution for OBJ1 is M∗

1 = {(v1, (r1, r2)), (v2, (r3, r4))}with
OBJ1(M∗

1) = 3.5+8.5 = 12. However, M∗
1 is not an optimal solu-

tion for OBJ2 as OBJ2(M∗
1) = 8.5 and there exist another match-

ing M∗
2 = {(v1, (r1, r3)), (v2, (r2, r4))} with increased fairness;

OBJ2(M∗
2) = 6.5, but also increased cost, OBJ1(M∗

2) = 13.

A

B C

DE

A

B C

DE

Input instance

A

B C

DE

Figure 1: Example 1 with |D| = 2 and |R| = 4.

Let M∗
1 and M∗

2 denote optimal matchings according to OBJ1
and OBJ2, respectively. Let Δ denote the loss in efficiency in
achieving a fair solution, i.e.,

Δ = OBJ1(M∗
2)−OBJ1(M∗

1).

Similarly, let Γ denote the loss in fairness in achieving an efficient
solution, i.e.,

Γ = OBJ2(M∗
1)−OBJ2(M∗

2).

The lower bound for Δ and Γ is 0, as there exists a case where the
efficient matching is also fair, as shown in the example below.

EXAMPLE 2 Consider the example 1 with a change in the edge
weight as shown in Figure 2. One of the optimal solution for OBJ1
is M∗

1 = {(v1, (r1, r3)), (v2, (r2, r4))} with OBJ1(M∗
1) = 11.

Nevertheless, M∗
1 is an optimal solution for OBJ2 as well with

OBJ2(M∗
1) = 5.5 and there exist no another maximum matching

M
′
2 with increased fairness.

Next, we show that the loss in efficiency to get a fair matching can
not be more than n times the fairness in the efficient matching.

Theorem 1 If M∗
1 and M∗

2 are optimal solutions for OBJ1 and
OBJ2, respectively, then Δ ≤ n ·OBJ2(M∗

1).

PROOF 1 Suppose the above statement is not true and there exists a
scenario where (OBJ1(M∗

2) − OBJ1(M∗
1)) > n · OBJ2(M∗

1).
As cost(.) is always non-negative, we get, OBJ1(M∗

2) > n ·
OBJ2(M∗

1). This implies, n·OBJ2(M∗
2) > n·OBJ2(M∗

1), which
leads to contradiction that M∗

2 is an optimal solution for OBJ2.

A

B C

DE

A

B C

DE

Input instance

Figure 2: Example 2 with |D| = 2 and |R| = 4.

Next, we show a lower upper bound for Δ (loss in efficiency to get a
fair matching) in terms of fairness in the fair matching, OBJ2(M∗

1).

Theorem 2 If M∗
1 and M∗

2 are optimal solutions for OBJ1 and
OBJ2, respectively, then there exists an input instance, where Δ =
Ω((n− 1)OBJ2(M∗

1)) for |R| = 2n and |D| = n.

PROOF 2 We construct an input instance to prove the above state-
ment. Consider n drivers v1, v2, . . . , vn with CLv = X,DTv = 0,
and 2n ride requests each with source location X . The destination
location of half of the rides, say r1 to rn are A1, A2, . . . , An and
for rides rn+1, rn+2, . . . , r2n are B1, B2, . . . , Bn, respectively. All
these locations and their cost of travel between them are shown in
Figure 3. The notations in edge weights are as follows: x, ε, δ > 0,
ε < δ/2 and ε + δ < x. The most expensive edge is (X,A1) with
cost x− ε.

One of the efficient maximum matching M∗
1 is

{(vi, (ri, rn+i)) for 1 < i < n} with OBJ1(M∗
1) = x+2ε(n−1).

The matching M∗
1 has OBJ2(M∗

1) = x. There exists a different
matching M∗

2 = {(vi, (ri+1, rn+i)) for 1 ≤ i < n, (vn, (rn, r1))}
with OBJ2(M∗

2) = x− δ + ε. However, the efficiency is decreased
in M∗

2 as the OBJ1(M∗
2) = n(x− δ + ε) + ε.

The difference in the efficiency in the two matching Δ

= n(x− δ + ε) + 2ε− (x+ 2ε(n− 1))

with ε, δ 	 x,

= Ω((n− 1)x)

= Ω((n− 1)OBJ2(M∗
1))

Edge weights

Figure 3: Problem instance for Theorem 2.

4 Proposed algorithms

Finding the efficient maximum matching is equivalent to finding a
3-dimensional perfect matching (3DM), known to be NP-hard [1, 9].

G. Shakya and M. Yokoo / Balancing Fairness and Efficiency in 3D Repeated Matching in Ridesharing2124

Algorithm 1 Efficient-match Fair-assign
Algorithm (EMFAA)(Rt,Dt, t)

1: Construct a weighted graph G1 := (Rt, E1,W1) such that,
E1 := {(ri, rj) | ∀ri, rj ∈ Rt, ri �= rj}, W1(ri, rj) :=
c(ri, rj) ∀(ri, rj) ∈ E1.

2: Find minimum weight matching M1 for G1.
3: SM1 := Sorted elements (ride pairs and unmatched rides) in

M1 in increasing order of their cost c(·).
4: SDt := Sorted Dt in decreasing order of DT t−1

vk .
5: Construct an unweighted bipartite graph G2 := (M1, D

t, E2)
such that, E2 := {((ri, rj), ∀vk) | ∀(ri, rj) ∈M1, vk ∈ Dt}.

6: Find a matching M2 on G2 by assigning the unallocated ele-
ments in SM1 with the maximum cost c(.) to the unmatched
driver vk in SDt with the minimum value of DT t−1

vk , and so on.
7: return M2 as the batch assignment for t.

We believe that finding an optimal solution for OBJ2 is also compu-
tationally intractable as the objective is similar to finding the optimal
solution of minimum makespan scheduling, which is known to be
NP-hard [9], with an additional constraint. The additional constraint
is over the maximum number of jobs that can be allocated to a ma-
chine, where the processing time of a job on a machine depends also
on the other jobs assigned to that machine.

4.1 Two-phase algorithm

We are looking for a computationally inexpensive algorithm that can
provide close-to-optimal solutions. There are two major decisions
to be made to achieve a 2-to-1 matching. First, to find the request
pairs; second, to assign a driver to each request pair. To find a balance
between the two objectives, we propose a two-phase heuristic algo-
rithm (Algorithm 1) that focuses on the objectives individually. More
specifically, Algorithm 1 finds the assignment at the end of each ac-
cumulated window. At each time interval t, the algorithm has two
phases. In the first phase, the algorithm matches two requests (with-
out considering drivers) based on their combined travel time. Then,
in the second phase, it assigns the matched request pairs with the
available drivers considering fairness. Thus, the algorithm focuses
on efficiency in the first phase, while it focuses on fairness in the sec-
ond phase, in the hope that the obtained result strikes a good balance
between efficiency and fairness. The algorithm resembles the bi-level
optimization where we partially optimize OBJ1 and OBJ2 at the
lower and upper levels, respectively.

Remarks: (a) A minimum matching in a weighted graph of m
vertices can be computed in time O(m3) [8]. Therefore, Algorithm
1 runs in O(n3) time.
(b) The step (6) results in the maximum possible assignments by
considering the number of available drivers and the number of
request pairs found in step (2). Hence, Algorithm 1 finds a maximum
matching from the set of feasible matching. (c) In Step (2), if |Rt|
is odd, one request cannot be matched. If ri is not matched, we as-
sume ri is matched to itself, and the cost of this matching is c(ri, ri).

4.2 Match and re-assign algorithm

Next, we describe an alternative algorithm (Algorithm 2), which first
obtains a matching considering OBJ1 only, then gradually improves
its fairness by re-assigning requests. More specifically, within this
algorithm, we repeatedly solve a problem defined as follows: given

a fairness factor κ, find an allocation M∗, such that UF (M∗) ≤ κ.
We add the following notation in this section,

X (v,M) = cost(vk,M(v)) +DT t−1
vk

The algorithm begins with a 2-1 approximately efficient matching
given by a slight variant of a state-of-the-art approximate algorithm
proposed by [1] (steps (1-4) in Algorithm 2). We begin re-assignment
greedily by picking edges (vk, (ri, rj)) such that X (v,M) > κ,
and check whether the re-assignment with (v′k, (r

′
i, r

′
j)) minimizes

UF (.), where (r′i, r
′
j) has the minimum c(·). If so, we re-assign,

else we check for another possible re-assignment. The algorithm re-
sults in the matching, which cannot be improved any further by re-
assignment.

Algorithm 2 Match and Re-assign Algorithm (MRAA)
(Rt,Dt, κ, t)

1: Construct a weighted graph G1 := (Rt, E1,W1) such that,
E1 := {(ri, rj) | ∀ri, rj ∈ Rt, ri �= rj}, W1(ri, rj) :=
c(ri, rj) ∀(ri, rj) ∈ E1.

2: Find minimum weight matching M1 for G1.
3: Construct a weighted bipartite graph G2 := (M1,Dt, E2,W2)

such that, E2 := {((ri, rj), vk) | ∀(ri, rj) ∈ M1, vk ∈ Dt},
W2((ri, rj), vk) := cost(vk, (ri, rj)) ∀(ri, rj) ∈ M1, vk ∈
Dt.

4: M2 := minimum weighted bipartite matching for G2.
5: Mnew = M2. � = 1. z = 1.
6: while ∃(vk, (ri, rj)) ∈Mnew s.t. X (v,Mnew) > κ do

7: Pick (vk, (ri, rj)) which has zth maximumX (v,Mnew) with
X (v,Mnew) > κ.

8: Pick (r
′
i , r

′
j) with �th minimum c(.) among {Mnew(v) | v ∈

Dt}.
9: v

′
k := Mnew(r

′
i , r

′
j).

10: m2= Fair maximum 2-1 matching for sets
{ri, rj , r′

i , r
′
j}, {v

′
k, v

′
k}. {Find best among the six pos-

sible solutions.}
11: if m2 = {(v′

k, (r
′
i , r

′
j)), (vk, (ri, rj))} then

12: if � < |Mnew| then

13: � = � + 1. Go to step 8. {Check re-assignment for vk
with next least c(.) ride pair.}

14: else

15: if z < |Mnew| then

16: z = z+ 1. � = 1. Goto step (6).
17: else

18: There does not exist any 2-1 maximum matching M∗

s.t. UF (M∗) < κ . Goto step (22).
19: else

20: Mnew = Mnew ∪m2 − {(v′
k, (r

′
i , r

′
j)), (vk, (ri, rj))}.

21: z = 1. � = 1.
22: return Mnew as the assignment for t.

Remarks: The Algorithm 2 finds a maximum matching from the
set of feasible matching. At first, the Algorithm 2 finds maximum
2-1 matching then, the re-assignments step (20) allocates rides up
vehicles’ maximum capacity.

5 Experimental analysis

We experiment on a real-world dataset to analyze the behavior of
Algorithm 1 concerning fairness and efficiency.

G. Shakya and M. Yokoo / Balancing Fairness and Efficiency in 3D Repeated Matching in Ridesharing 2125

5.1 Framework

The details of the dataset and values of the parameters used for the
experiments are as follows.

Trip Dataset: We use the publicly available dataset of taxi trips
(solo rides) in Chicago city [5]. The dataset contains all the taxi trips,
starting January 2013, reported to the City of Chicago. We extracted
the dataset during the busy three hours in the morning (8 − 11AM)
on ‘April 4, 2022’ (Monday). The dataset includes a unique identifier
for each taxi and some essential attributes about trips, e.g., the source
and destination locations and time of the trip. We choose this day
arbitrarily, and we strongly believe the results will have a similar
pattern on other parts of the dataset.

Although our experiments were conducted using only solo rides,
the Chicago dataset satisfied all other requirements of our model,
including trip source, destination, and timings. Due to the impact
of Covid-19, the occurrence of shared mode rides decreased signifi-
cantly, making it difficult to gather enough data for our experiments.
By focusing on solo rides, we were able to observe the actual demand
and supply situation without any concerns about the algorithms used
by taxi service providers to match ride requests for shared rides in
the dataset.

Accumulating window (λ): In the dataset, the trip start and end
time are rounded to the nearest 15-minute interval to preserve the
passengers’ privacy. We consider λ=15 minutes and divide all the
trips into 15-minute intervals depending on their start time. We ran-
domly pick 30 requests in each 15-minute interval from the dataset.

Drivers: The dataset does not contain the location of drivers be-
fore the trips are assigned to them. Therefore, the data points for
drivers are generated synthetically. We fix |D| = 50. Randomly cho-
sen 50 locations on the Chicago city map are fixed as CLv . Initially,
DTv = 0 ∀v ∈ D.

Fairness threshold (κ) for Algorithm 2: In each iteration, we
fix κ = 0.6 × maxv∈Dt(X (v,M2)). We try to reduce the existing
unfairness by 0.6 times.

Procedure in every iteration: We assume each drivers’ average
speed is 27 miles/hr. For each iteration, we pick a 15-minutes chunk
of trips to be allocated asRt. Each driver vk ∈ D is checked whether
vk is already busy in providing service to the ride assigned to it in
previous iterations or the driver is free. This we do by comparing the
time passed since the ride was given to v in previous iterations, as-
suming the speed is 27 miles/hr. If v ∈ D has already completed the
service or is free, it is added toDt. Hence, we getDt consisting of all
the available drivers for t. We apply algorithms with input (Rt,Dt).
The procedure in every iteration is summarized in Algorithm 3.

Algorithm 3 Procedure in each iteration

1: Pick a 15-minutes chunk of trips to be allocated asRt.
2: Add the unmatched rides fromRt−1 toRt.
3: for ∀v ∈ D do

4: Check whether v is busy in providing service.
5: if already completed the service then

6: Add v to Dt.
7: Apply Algorithm 1(or, Algorithm 2) for (Rt,Dt).
8: Find the unmatched rides inRt.
9: Update v = (CLv, DTv), ∀v ∈ D.

State-of-the-art algorithm for comparison: We apply the pro-
cedure on the algorithm (we call, BZ) proposed by Bei and Zhang [1]
for OBJ1. BZ guarantees to achieve a 2.5 approximate solution for
OBJ1 in polynomial time.

5.2 Comparison metrics

We compare BZ, EMFAA, and MRAA based on the following metrics:
Cumulative cost: Comparing cumulative costs by the algorithms

over the iterations reveals the behavior of the algorithms for effi-
ciency over the long run.

Increase in fairness: We compare maxv∈D DT t
v as unfairness

after every iteration, corresponding to the allocations by EMFAA,
MRAA, and BZ.

Price of fairness: We call the loss in efficiency for aiming for fair-
ness the ‘price for fairness’ achieved. Finding the most efficient 3-D
assignments is computationally expensive, therefore, for comparison
with EMFAA and MRAA, we consider lower bound (LB) for OBJ1
in each iteration. LB is computed as the sum of the cost of mini-
mum weighted matching among the nodes Rt and that of minimum
weighted perfect bipartite matching betweenRt andDt. For EMFAA
and MRAA, the lower bound of efficiency might be different (denoted
by LB-E and LB-R, respectively) for every t > 1. This is because
CLv for v ∈ Dt for EMFAA and MRAA depends on the outcome by
these algorithms in previous iterations (1, . . . , t− 1).

5.3 Results

The results after comparing EMFAA, MRAA, and BZ are summarized
in Figure 4. Figure 4a shows that the cumulative costs by EMFAA
and MRAA follow a similar pattern as that by BZ. Moreover, at the
end of three hours duration, BZ results in less total cost than others.
Although BZ only aims for OBJ1, sometimes (9-10 AM) BZ is worse
than MRAA. This is because BZ is optimizing only for each time step,
which can be suboptimal for the cumulative costs.

Figure 4b shows the ‘gain in fairness’ for the matching by EMFAA
and MRAA in comparison with that by BZ. In initial iterations, none
of the three algorithms is consistently better than the others. How-
ever, over the long run, we see EMFAA and MRAA perform better
than BZ. This is because they consider the unfairness in past alloca-
tions as well. The allocation in iteration t by an algorithm is depen-
dent on the allocation in previous iterations. Therefore, comparing
maxv∈Dt DT t

v for a particular iteration by any two algorithms may
not be a better way to analyze their performance. However, over time
increase in maxv∈Dt DT t

v hints us the increase in unfairness. Figure
4b shows that the increase in maxv∈Dt DT t

v is slower by EMFAA
and MRAA than BZ which leads to improved fairness at the end of the
three-hour interval.

Figure 4c shows ‘loss in efficiency’ in matching given by EMFAA
and MRAA in each iteration, comparing with their respective LB of
the efficiency. The approximation factor concerning the LB is at most
1.2, which means the efficiency by EMFAA and MRAA is at most 2.2
times their LB. This hints that the matching provided by EMFAA and
MRAA does not lose much efficiency. Notice that BZ provides at most
2.5 approximation factor for efficiency.

Comparing the running time, EMFAA is faster than BZ, and MRAA
is most expensive. For instance, in a particular iteration for |Dt| =
50, |Rt| = 30, EMFAA, BZ, and MRAA took around 57, 89, 168 min-
utes, respectively.

In summary, Figure 4 shows that a little attention to fairness can
bring significantly fair allocation for drivers while not losing much
efficiency.

6 Conclusion

From the theoretical analysis in the paper, we conclude that simulta-
neously achieving efficiency and fairness is infeasible or challenging.

G. Shakya and M. Yokoo / Balancing Fairness and Efficiency in 3D Repeated Matching in Ridesharing2126

(a) Cumulative cost by EMFAA, MRAA, and BZ.

(b) Gain in fairness by EMFAA and MRAA.

(c) Loss in efficiency by EMFAA and MRAA.

Figure 4: Results on dataset for trips between 8-11 AM on April 4,
2022 in Chicago city.

However, from the experimental analysis on proposed algorithms, we
conclude that a bit of consideration towards fairness while aiming
for efficiency can result in a fine balance between the two objectives.
Theoretical analysis of the approximation factor given by the pro-
posed algorithms is an exciting direction to follow. In the future, we
plan to run experiments on new, and variants of the proposed algo-
rithms on a more extensive data set. We expect the experiment results
for a more extensive data set will have a similar pattern.

Acknowledgements

We extend our gratitude to the multi-agent laboratory members at
Kyushu University for their insightful discussions and comments.
Shakya is supported by a project funded by Grants-in-Aid for Sci-

entific Research, Japan Society for the Promotion of Science. We
also appreciate Rahul Jain’s valuable feedback and comments.

References

[1] Xiaohui Bei and Shengyu Zhang, ‘Algorithms for trip-vehicle
assignment in ride-sharing’, Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 32(1), (Apr. 2018).

[2] Eszter Bokányi and Anikó Hannák, ‘Understanding inequali-
ties in ride-hailing services through simulations’, Scientific re-
ports, 10(1), 1–11, (2020).

[3] Hua Cai, Xi Wang, Peter Adriaens, and Ming Xu, ‘Environ-
mental benefits of taxi ride sharing in beijing’, Energy, 174,
503–508, (2019).

[4] Brian Caulfield, ‘Estimating the environmental benefits of ride-
sharing: A case study of dublin’, Transportation Research Part
D: Transport and Environment, 14(7), 527–531, (2009).

[5] Chicago Data Portal. Taxi trips. https://data.cityofchicago.org/
Transportation/Taxi-Trips/wrvz-psew, 2022. Accessed: 2022-
09-20.

[6] Nicholas Diakopoulos. How uber surge pricing really works.
https://www.washingtonpost.com/news/wonk/wp/2015/04/
17/how-uber-surge-pricing-really-works/?utm{_}term=
.b16b8c1e885d, 2015. Accessed: 2022-10-15.

[7] Fairwork. Fairwork india ratings 2020: Labour standards in
the platform economy. https://fair.work/en/fw/publications/
fairwork-2020-annual-report/, 2020. Accessed: 2022-10-13.

[8] Harold N Gabow, ‘Data structures for weighted matching and
nearest common ancestors with linking’, in Proceedings of the
first annual ACM-SIAM symposium on Discrete algorithms, pp.
434–443, (1990).

[9] Michael R. Garey and David S. Johnson, Computers and In-
tractability; A Guide to the Theory of NP-Completeness, W. H.
Freeman & Co., USA, 1990.

[10] Dries Goossens, Sergey Polyakovskiy, Frits CR Spieksma, and
Gerhard J Woeginger, ‘Between a rock and a hard place: the
two-to-one assignment problem’, Mathematical methods of op-
erations research, 76(2), 223–237, (2012).

[11] Jonathan V. Hall and Alan B. Krueger, ‘An analysis of the la-
bor market for uber’s driver-partners in the united states’, ILR
Review, 71(3), 705–732, (2018).

[12] Yongzheng Jia, Wei Xu, and Xue Liu, ‘An optimization frame-
work for online ride-sharing markets’, in 2017 IEEE 37th
international conference on distributed computing systems
(ICDCS), pp. 826–835. IEEE, (2017).

[13] Dan Kedmey. This is how uber’s ‘surge pricing’ works. https://
time.com/3633469/uber-surge-pricing/, 2014. Accessed: 2022-
10-13.

[14] Nixie S Lesmana, Xuan Zhang, and Xiaohui Bei, ‘Balanc-
ing efficiency and fairness in on-demand ridesourcing’, in Ad-
vances in Neural Information Processing Systems, eds., H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, volume 32. Curran Associates, Inc., (2019).

[15] Kelin Luo and Frits C. R. Spieksma, ‘Approximation algo-
rithms for car-sharing problems’, in Computing and Combi-
natorics, eds., Donghyun Kim, R. N. Uma, Zhipeng Cai, and
Dong Hoon Lee, pp. 262–273, Cham, (2020). Springer Inter-
national Publishing.

[16] Vedant Nanda, Pan Xu, Karthik Abhinav Sankararaman, John
Dickerson, and Aravind Srinivasan, ‘Balancing the tradeoff be-
tween profit and fairness in rideshare platforms during high-

G. Shakya and M. Yokoo / Balancing Fairness and Efficiency in 3D Repeated Matching in Ridesharing 2127

demand hours’, in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 34, pp. 2210–2217, (2020).

[17] John Rawls, A Theory of Justice, Belknap Press of Harvard Uni-
versity Press, Cambridge, Massachussets, 1 edn., 1971.

[18] Yifan Xu and Pan Xu, ‘Trade the system efficiency for the in-
come equality of drivers in rideshare’, in Proceedings of the
Twenty-Ninth International Joint Conference on Artificial In-
telligence, IJCAI-20, ed., Christian Bessiere, pp. 4199–4205.
International Joint Conferences on Artificial Intelligence Orga-
nization, (7 2020). Main track.

[19] Longxu Yan, Xiao Luo, Rui Zhu, Paolo Santi, Huizi Wang,
De Wang, Shangwu Zhang, and Carlo Ratti, ‘Quantifying and
analyzing traffic emission reductions from ridesharing: A case
study of shanghai’, Transportation Research Part D: Transport
and Environment, 89, 102629, (2020).

[20] Biao Yin, Liu Liu, Nicolas Coulombel, and Vincent Viguié,
‘Appraising the environmental benefits of ride-sharing: The
paris region case study’, Journal of Cleaner Production, 177,
888–898, (2018).

G. Shakya and M. Yokoo / Balancing Fairness and Efficiency in 3D Repeated Matching in Ridesharing2128

