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Abstract. In real-world scenarios, detecting out-of-distribution
(OOD) action is important when deploying a deep learning-based
human action recognition (HAR) model. However, HAR models are
easily biased to static information in the video (e.g., background),
which can lead to performance degradation of OOD detection meth-
ods. In this paper, we propose a simple debiasing framework for out-
of-distribution detection in human action recognition. Specifically,
our framework eliminates patches with static bias in video using at-
tention maps extracted from the video vision transformer model. Ex-
perimental results show that our framework achieves consistent per-
formance improvement on multiple OOD action detection methods
and challenging benchmarks. Furthermore, we introduce two new
OOD action detection tasks, Kinetics-400 vs. Kinetics-600 exclusive
and Kinetics-400 vs. Kinetics-700 exclusive, to validate our method
in a setting close to the real-world scenario. With extensive experi-
ments, we demonstrate the effectiveness of our attention-based mask-
ing, and in-depth analysis validates the effect of static bias on OOD
action detection. The source code and supplementary materials are
available at: https://github.com/Simcs/attention-masking

1 Introduction

Recent advances in deep learning-based human action recognition
(HAR) models [17, 31, 9, 3] have shown considerable performance
in challenging action recognition datasets [27, 18, 36], which require
models to understand the characteristics of hundred-scale action la-
bels of videos. However, in real-world scenarios, people can perform
actions that do not exist in the training dataset. From the model per-
spective, such actions are considered as out-of-distribution (OOD)
and should be rejected at test time. Therefore, determining whether
an input action belongs to OOD is necessary for the safe deployment
of HAR models.

The task of OOD detection was initially formalized in [14], and
existing studies have proposed various methods [28, 26, 6, 4] to im-
prove the OOD detection performance in HAR. However, as pointed
out in [4], the static biased cues (e.g., background or scene context)
in the video can cause the degradation of OOD detection perfor-
mance in the HAR. For example, as shown in Figure 1, a model
trained on Kinetics-400 [18] can classify the video from Mimet-
ics [36] with the same ground-truth label as OOD, since the model
is biased towards the static information (e.g., grass or sky). In order
to improve the capability of recognizing human action labels cor-
rectly, recent studies have attempted to alleviate the static bias prob-
lem by introducing a debiasing algorithm [8], a simple video rep-
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Figure 1. Static bias in human action recognition. A HAR model trained
on Kinectics-400 cannot recognize the action label of ‘Golf driving’ in
Mimetics because the model is biased toward static parts of the action, such as
grass or sky. Such biases can induce degraded OOD detection performance.

resentation learning [34], synthesized sets of benchmarks [23], or a
spatio-temporal augmentation [19].

However, the effect of static bias on OOD action detection is un-
derexplored. Therefore, in this paper, we aim to improve the OOD
action detection performance by explicitly masking the parts of
the video that are likely to be subject to static bias. In a previous
work [38], data augmentation by masking non-object patches (e.g.,
background) based on the attention map obtained from transformer-
based image encoder [13] has improved the performance on various
image classification benchmarks. Inspired by this, we believe that
attention-based masking can also improve OOD detection perfor-
mance in HAR by removing patches unrelated to the action, which
corresponds to the static bias in the video.

To this end, we propose a simple debiasing framework for OOD in
HAR to encourage OOD detection methods to concentrate on the
non-static biased features of the video input by leveraging an at-
tention map extracted from a pre-trained video encoder model. As
illustrated in Figure 2, the core part of our framework is an OOD
adapter ', which consists of two main steps; (1) frame selection and
(2) patch masking. These two main steps eliminate patches irrelevant
to the action label from the given video clip by utilizing the extracted
attention map. Experimental results show that our method consis-

L The ‘adapter’ term used in this paper is different from the term widely used
for the parameter-efficient transfer learning [16, 33]
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Figure 2. An overview of the simple debiasing framework for out-of-distribution detection in human action recognition. Our framework consists of

three main components; OOD adapter, transformer encoders, and OOD detector. In the OOD adapter, we first select temporally redundant frames based on the

attention values. Next, with the assumption that less attended patches would contain unrelated features to the action, we mask patches with attention values

lower than a certain threshold for each selected frame. In this paper, we leverage ViViT as the transformer-based video encoder.

tently improves the performance of various OOD detection meth-
ods on multiple benchmarks while achieving state-of-the-art results.
In addition, to verify the effectiveness of our framework in a set-
ting close to real-world scenarios, we further validate our method on
OOD action detection tasks using Kinetics [18] dataset. With exten-
sive experiments and analyses, we demonstrate that attention-based
masking clearly improves the OOD detection performance in HAR.
In summary, our main contributions are as follows:

e We propose a simple framework for out-of-distribution in human
action recognition to enhance the OOD action detection perfor-
mance by alleviating the static bias problem.

e With attention-based masking, our framework consistently boosts
the performance of various OOD detection methods while achiev-
ing state-of-the-art results on challenging benchmarks.

e Extensive experiments and analyses demonstrate the validity of
our framework and the effect of static bias on OOD detection in
HAR.

2 Related Work

Human Action Recognition. The goal of HAR is to predict the
action label of an individual or a group of people from a video obser-
vation. The convolutional neural network (CNN) based approaches
(e.g., 3D-CNN [17]) have been popular choices for action recogni-
tion. Motivated by the recent success of the transformer architec-
ture, video transformer networks are proposed to capture the long-
range spatiotemporal dependencies (e.g., video vision transformer
(ViViT) [3]). In addition, another line of work focused on mitigat-
ing the static bias in the video data. [8] adopted adversarial loss
on human-masked videos so one cannot infer the scene types based
on the learned representations, and [19] proposed FreqAug, which

stochastically filters frequency components from videos to encour-
age the model to capture essential features. Moreover, various action
recognition datasets were proposed to alleviate representation bias
caused by background and static objects in the video [24, 36].

Out-of-Distribution Detection. The overconfidence problem in
deep learning models motivates the need for the robust detection of
OOD samples [2]. Most previous studies are divided into two cate-
gories depending on whether the OOD samples are utilized in the
training procedure [39]. The OOD detection methods that do not
utilize OOD samples typically use the representations of the model
trained on the in-distribution (ID) dataset. The pioneering work on
OOD detection [14] proposed to use the maximum softmax proba-
bility (MSP) to measure the ID-ness of the input based on the as-
sumption that the model will produce flat distribution over the OOD
sample. [22] proposed to use the minimum Mahalanobis distance to
all class centroids using a Gaussian distribution fitted to the class
conditional embeddings. Recently, [25] proposed a unified frame-
work for OOD detection using an energy score which is applicable
for any pre-trained neural classifier. Another branch of OOD detec-
tion utilizes a set of OOD samples, referred to as outlier exposure.
[15] proposed outlier exposure loss which encourages the model to
produce a flat softmax distribution to the OOD sample. [10] experi-
mented with a few-shot outlier exposure setting where only a handful
of known OOD samples were given and showed that a transformer-
based model could achieve almost full AUROC-level performance in
the OOD image detection domain.

OOD Detection in HAR. In visual OOD detection, most works
have covered OOD image detection, which considers image classifi-
cation as a downstream task, while only a few studies have explored
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OOD detection in HAR. [28] proposed to use the Pearson correlation
coefficient to measure the deviation of real data from predicted data
on the model trained with human activities, and [6] compared var-
ious OOD detection algorithms in HAR with inertial data obtained
from a smartwatch. [26] trained an additional OOD detector mod-
ule from synthesized OOD video features for generalized zero-shot
action recognition. In addition, open set action recognition (OSAR)
essentially tackles the same problem of semantic shift detection in
action classification. [30] proposed ODN that detects open set action
by incrementally adding new classes to the action recognition head,
and [4] proposed DEAR to mitigate overconfident predictions and
static bias problems by uncertainty estimation using evidential deep
learning. To the best of our knowledge, our work is the first to miti-
gate the static bias problem by masking videos based on the attention
map and analyzing its effect on OOD action detection.

3 Proposed Method

In this section, we propose an adapter-based framework for out-of-
distribution detection in human action recognition. As illustrated in
Figure 2, the key idea of our framework is to mitigate the effects
of static bias of the video clip through two main debiasing steps:
(1) frame selection and (2) patch masking. Importantly, all steps are
entirely based on the video attention map obtained from the large-
scale pre-trained video encoder, such as ViViT [3].

3.1 Extracting Video Attention Map

In order to extract a video attention map from a given video clip, we
need a pure-transformer-based video model f(-). In this work, we
leverage ViViT [3] model as f(-). Specifically, among several ver-
sions of transformer architectures introduced in the original ViViT
paper, we utilize a factorized encoder with separate spatial and tem-
poral transformer encoders and fine-tune it on the ID training dataset
such as Kinetics-400. To fit the input shape of ViViT, we map the
input video clip V. e RT*HXWXC jnto a sequence of tokens
z e RT*% % %4 where (T, H, W, C') denote time, height, width,
and channel of the video clip, and p and d indicate the patch size
and the length of patch embedding, respectively. The intermediate
attention weights for each transformer layer /; is computed as:

A(ls) = Qi) - K(1:)T (D

where Q(l;) and K (I;) denote query and key of the transformer
layer, respectively. The attention weights indicate how each token
attends to every other token, i.e., A(l;) = {a;] 7 =1,2,--- , (L +
1)?}, where L can be varied to either the number of patches or the
number of frames in the video clip, depending on the type of f(-).
Note that the attention map ranges from O to 1 due to the normaliza-
tion of attention weights in each transformer layer. Then, following
the similar scheme of attention rollout [1], we multiply every atten-
tion weights of transformer layers in the f(-) as:

A=[aa) @

where n; denotes the number of layers in the f(-). By multiplying ev-
ery attention weights, we expect only patches or frames with high at-
tention values to be activated. Finally, the attention map of the trans-
former encoder f(-) is obtained by taking only the parts related to
the cls token from the rollout attention weights A. We called the

(b) Image Mask

(a) Attention Map (c) Masked Image
Figure 3. An example of patch masking. We illustrate each step of the
patch masking process. (a) visualizes the importance of patches in terms of
the model perspective. (b) presents the image mask, which is generated by
selecting patches based on the thresholding of attention values. (c) shows the
final masked image. The patch in (b) is the patch to be masked in (c).
attention maps extracted from the spatial and temporal transformer
encoder of ViViT as spatial attention map and A, temporal attention
map Ay, respectively.

3.2 Adapter-based Video Masking

To reduce the static bias of the given video clip, we adopt a two-
stage video masking adapter consisting of frame selection and patch
masking. The adapter works in a coarse-to-fine manner, first selecting
frames from the entire video clip and then performing fine-grained
patch masking on each selected frame.

Frame Selection. Based on the existing literature on temporal
redundancy [12] that not every video frame equally contributes to
video recognition, we selectively perform masking on a few frames.
For this, we utilize the temporal attention map A,. To select the
frames with static bias, we exploit the inductive bias that less at-
tended frames would have a low possibility of containing action-
related features. Therefore, we select frames with attention values
lower than a certain threshold, which we call /t-threshold strategy.
Consequently, we obtain an index set of masked frames F' as:

F = It-threshold(A¢, ;) 3)

where ~; represents the temporal threshold parameter for the It-
threshold method.

Patch Masking. After selecting which frames to mask, we apply
a fine-grained patch masking based on the attention map over the
spatial axis. An example of the patch masking process is shown in
Figure 3. For each selected frame, we compute the spatial attention
map A from the spatial transformer encoder of the ViViT. With the
assumption that image patches with the static bias adversely affect
OOD detection performance, we masked less attended video patches
using the It-threshold strategy again. As a result, we obtain an index

H w
set of masked patches .J; and binary mask M; € R» *» for each
selected ¢-th video frame as:

Ji = lt-threshold(As, 7s) “)
Jti
M, L?Jvad(Jtia p)| =1 ®)

where ;s represents spatial threshold parameter for the 1t-threshold
strategy and |-] and mod(-) denote floor operation and the mod-
ulo operation, respectively. Finally, we apply the resulting binary
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video masks to the original video clip. Here, we followed the mask-
ing scheme similar to [37] and replaced the patch embedding corre-
sponding to the target mask patch with a zero vector. Consequently,
by applying masks to each selected frame embedding, we obtain a
masked sequence of tokens Z.

3.3 OOD Detection with Masked Video Clip

After masking is done, we use the masked video clip Z to determine
whether a given input x belongs to ID or OOD. For this, we compute
the uncertainty score U(x), which indicates the degree to which a
given input belongs to OOD, using the OOD detector introduced in
Figure 2. Also, it is worth noting that our framework is applicable to
arbitrary OOD detection methods that produce an uncertainty score.
Finally, following the OOD detection framework introduced in [25],
we consider examples with higher uncertainty scores as OOD inputs:

0 ifU(x;f) <

=T,

1 ifUX; f) >, ©

G(x;7, f) —{

where f denotes the proposed framework and 7 indicates the OOD
detection threshold. In practice, the threshold parameter can be se-
lected using the statistics obtained from ID data so that the majority
of the ID samples can be determined as ID.

4 Experiments
4.1 Experimental Setting

OOD Action Detection Tasks. Inspired by similar open set action

recognition tasks proposed by [4], we evaluate the proposed frame-
work using three commonly used video classification datasets: UCF-
101 [32], HMDB-51 [21], and MiT-v2 [27]. Following the experi-
mental setting in [4], we conduct experiments on two OOD action
detection tasks which set UCF-101 as ID and HMDB-51 and MiT-
v2 as OOD, which we referred to as UCF-101 (in) vs. HMDB-51
(out) and UCF-101 (in) vs. MiT-v2 (out) detection, respectively. In
addition, to further validate our method in a setting close to the real-
world scenario, we adopt the Kinetics [18] dataset, which contains
hundreds of action labels. Following the convention of mainstream
OOD detection tasks that focus on semantic shifts where ID labels
and OOD labels do not overlap [39, 10], we create two new datasets:
Kinetics-600 exclusive and Kinetics-700 exclusive from Kinetics-
600 and Kinetics-700 by removing samples with the same label as
Kinetics-400. The statistics for each dataset are shown in Table 1, and
the details are specified in the appendix. Subsequently, we validate
our framework on two OOD action detection tasks: Kinetics-400 (in)
vs. Kinetics-600 exclusive (out) and Kinetics-400 (in) vs. Kinetics-
700 exclusive (out), which set Kinetics-400 as ID as Kinetics-600
exclusive and Kinetics-700 exclusive as OOD, respectively.

Evaluation Metrics. For each experiment, we measured three fre-
quently used metrics in the OOD detection domain: AUROC, AUPR,
and FPR@TPRz. The Area Under the ROC curve (AUROC) and
Area Under the PR curve (AUPR) are threshold-independent per-
formance evaluation metrics for binary classification tasks and can
be interpreted as the probability of a positive sample having a supe-
rior detector score than a negative sample. Another commonly used
metric, FPR@TPRz, measures the false-positive rate (FPR) at the
true-positive rate (TPR) . The lower value indicates that the method
can maintain a low level of FPR even under a high TPR situation,

Table 1. Statistics of datasets. We include the statistics of the original
Kinetics-400, 600, and 700 and created Kinetics-600 exclusive and Kinetics-
700 exclusive datasets for the OOD detection task. Note that K400, K600, and
K700 denotes Kinetics-400, Kinetics-600, and Kinetics-700, respectively.

Dataset al Train Validation  Validation
atasets 4355 Videos  Videos Clips
K400 400 246,245 20,000 88,540
K600 600 392,622 30,000 135,318
K600 excl. 213 138,896 10,576 49,315
K700 700 545,317 35,000 142,604
K700 excl. 309 236,768 14,943 63,399

which is important for safety-critical applications. In this paper, we
measured FPROS, which is a shorthand for FPR @TPR9S.

Implementation Details. We used a large-scale pre-trained video
vision transformer (ViViT) as our backbone model throughout the
entire experiment. Specifically, we used a publicly available imple-
mentation of the ViViT-Base model and selected a factorized encoder
type that comprises a separate spatial and temporal transformer en-
coder. Following the concept of late fusion of the factorized encoder
model, we initialized the weights of the spatial transformer encoder
from the ImageNet-21K pre-trained ViT-Base model and randomly
initialized the weights of the temporal transformer encoder. Then,
for each task, we fine-tuned the pre-trained ViViT model on the ID
training set. For example, for OOD action detection tasks that set
UCF-101 as ID, we pre-trained our ViViT model using Kinetics-400
training set for 30 epochs and fine-tuned it on the UCF-101 train-
ing set with 8 batch size and SGD optimizer with a cosine learning
rate scheduler and 0.005 base learning rate. Here, we used a system
with one Intel Xeon Gold 6230R CPU and two NVIDIA A100 GPUs.
Note that the frames per clip and frame size of the ViViT-Base are set
to 16 and 224x224, respectively. After training is done, we compute
uncertainty scores on both ID and OOD test samples using multiple
OOD detectors and evaluate the performance of the proposed frame-
work. In addition, we used grid search to select the best-performing
parameters of our framework. As a result, we set lt-threshold param-
eters 7, = 0.01 and vy = 0.05 throughout the entire experiment,
which were the combinations obtained from the Kinetics dataset.

4.2 Out-of-Distribution Action Detection

In Table 2, we report the results of our framework on two OOD ac-
tion detection tasks: UCF-101 (in) vs. HMDB-51 (out) and UCF-101
(in) vs. MiT-v2 (out) detection. We adopted three commonly used
OOD detection methods as our baseline OOD detectors: MSP [14],
Energy [25], and Mahalanobis distance [22], and observed perfor-
mance before and after applying our masking scheme. Note that for
the energy-based OOD detector, we selected temperature parameter
T = 1.5 since it showed the best performance. The results show
that our method consistently improves the baseline performance of
each OOD detector. In UCF-101 vs. HMDB-51 detection task, our
method was the most effective for the Mahalanobis distance-based
OOD detector, improving its baseline AUROC score by more than
4%. Also, our method significantly improves the FPR9S5 score of the
energy-based OOD detector by about 11.5%. In addition, in Figure 4,
we illustrate the changes in the distributions of ID and OOD sam-
ples as we apply the proposed framework using histogram statistics.
The consistent increase in KL-divergence and the figure show that
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Table 2. Out-of-distribution detection in human action recognition results. We trained the ViViT model on the UCF-101 training set and tested it on two
different OOD datasets, HMDB-51 and MiT-v2. Performances of three widely used OOD detection methods (MSP, Energy-OOD, and Mahalanobis) before and
after applying our framework are computed for each OOD action detection task. For every OOD detection metric, we report the mean and standard deviation of
10 random trials, as well as the difference in the mean score.

0OD Deteciton _ UCF-101 (in) + HMDB-51 (out) UCF-101 (in) + MiT-v2 (out)
Methods Metrics — - — -
Original Ours Diff. Original Ours Diff.
AUROC  83.625+0.0005 85.807 4 0.0034  2.181  91.280 £ 0.0011  93.695 + 0.0008  2.415
MSP [14] AUPR 81.561 4+ 0.0005  84.188 + 0.0044 2.626 90.125 + 0.0010  92.660 4 0.0008 2.535
FPR95 58.187 & 0.0214  47.354 +0.0100  10.833  34.843 £+ 0.0064  26.182 + 0.0069 8.660
AUROC  83.937 +0.0052  86.013 £ 0.0037 2.075 91.731 £ 0.0011  94.345 4 0.0008 2.614
Energy [25] AUPR 82.609 £+ 0.0070  85.197 £ 0.0050 2.588 91.355 £ 0.0010  93.950 £ 0.0008 2.595
FPR95 59.049 + 0.0126  47.536 - 0.0108  11.512  34.501 £ 0.0076  25.194 + 0.0064 9.306
AUROC  80.884 £ 0.0058  85.319 &+ 0.0032 4.435 90.560 + 0.0011  93.539 4 0.0009 2.979
Mahalanobis [22] AUPR 78.845 + 0.0083  85.582 4 0.0051 6.736 89.866 4+ 0.0012  92.630 £ 0.0009 2.764
FPR95 77.490 + 0.0109  68.073 £ 0.0088 9.416 37.497 £ 0.0040  26.965 + 0.0051 10.532
AUROC =91.28 AUROC = 93.69 Table 3. Comparison with the existing studies. We report AUROC scores
4 KLD = 1634 4 KLD =2.376 on two different OOD action detection tasks where the OOD samples are
23 > drawn from HMDB-51 and MiT-v2, respectively.
&2 g AUROC (%)
Methods -
1 UCF-101 + HMDB-51  UCF-101 + MiT-v2
% o2 o4 06 o8 10 Do 02 o04 06 08 10 OpenMax [5] 78.76 80.62
’ "~ wmsp uncertéinty . . ’ " msp uncenéinty ' ’ MC DropOUt [11] 75.41 78.49
BNN SVI [20] 74.78 77.39
(a) Original (w/ MSP) (b) Ours (w/ MSP) RPL [7] 74.23 77.42
15 AUROC =91.73 15 AUROC =94.34 DEA,R (4] 82.94 86.99
KLD = 1.687 KLD = 2.560 InternVideo [35] 85.48 91.85
Ours (w/ Energy) 86.01 94.34
210
3 s FPR9S scores of 76.26% and 73.76% in Kinetics-400 vs. Kinetics-
600 exclusive and Kinetics-400 vs. Kinetics-700 exclusive, respec-
tively. After applying a mask generated from our two-stage mask-
% 02 04 06 08 10 % 02 04 06 08 10 ing scheme, we achieved the FPR95 scores of 71.92% and 69.70%,

Energy uncertainty

Energy uncertainty

(c) Original (w/ Energy) (d) Ours (w/ Energy)

Figure 4. Histogram Statistics. For each OOD detector, we show the
change in the distribution before and after applying our method, along with
AUROC and KL-divergence scores. We used UCF-101 as ID (blue) and MiT-
v2 as OOD (red). Uncertainty values are normalized to [0, 1].

our attention-based masking effectively enhances the ID/OOD sepa-
rability. More results can be found in the appendix. In addition, we
compared our method with existing studies on OOD detection and
open set recognition in Table 3. When combined with the energy-
based OOD detector, our method achieved the highest AUROC score
of 86.10% and 94.34% on each OOD action detection task, which
pushes the state-of-the-art results by 0.53% and 2.49%, respectively.
Also, note that the ID classification accuracy on the UCF-101 test
split is changed from 93.49% to 92.81% after applying our frame-
work, which is less than a 1% performance decrease.

To further validate the proposed method in a setting close to real-
world scenarios, we measured the performance of our framework
on Kinetics-based OOD action detection tasks where both ID and
OOD dataset consist of hundreds of action labels, as shown in Ta-
ble 4. Note that we used the Mahalanobis distance-based OOD de-
tector as a baseline, of which our method was the most effective in
the previous tasks. Here, we can see that our method achieved the
highest improvement in terms of FPR95. Before applying our frame-
work to the ViViT fine-tuned on Kinetics-400, we obtained baseline

which is 4.33% and 4.05% higher than the baseline. In addition, we
can observe consistent improvements in AUROC and AUPR as well.
In Kinetics-400 vs. Kinetis-600 exclusive detection task, our frame-
work achieves the AUROC and AUPR score of 74.28% and 71.92%,
which is 2.11% and 1.97% higher than the baseline, respectively.

Table 4. OOD action detection results using Kinetics dataset. We report
the performances of our framework on Kinetics-based OOD action detection
tasks equipped with the Mahalanobis distance-based OOD detector.

. K400 + K600 excl. K400 + K700 excl.
Metrics
Original Ours Diff  Original Ours Diff
AUROC  72.172 74287 2.114  74.633 76.335 1.702
AUPR 69.943 71921 1977 72225 73.668  1.442
FPR95 76.250  71.920 4330  73.761 69.701  4.059

4.3 Ablation Studies

Effect of Frame Selection Strategies. When selecting frames to
apply patch masking, we leveraged the inductive bias that less at-
tended frames are less likely to be related to the action. To show
the effectiveness of our attention-based frame selection, we com-
pared the OOD detection performances between various frame selec-
tion strategies while patch masking threshold ~; is fixed to 0.01. We
compared three rule-based frame selection strategies along with our
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method, and the details of each strategy are as follows—(1) All: ap-
plies patch masking to every frame in the video clip, (2) Skip: selects
frame by frame, (3) Random: randomly selects half of the video clip.
In Table 5, we report OOD detection performances on each frame se-
lection strategy. The results show that the attention-based frame se-
lection strategy was the most effective, and applying patch masking
improves OOD action detection performance regardless of the frame
selection strategy. Among the three rule-based strategies, selecting
all frames was the most effective.

Table 5. Effect of frame selection strategies. We compare various frame
selection strategies on Kinetics-400 vs. Kinetics-600 exclusive detection.
Ours indicates selecting less attended frames using an attention map. We mark
the best and second performances in bold and underlined, respectively.

Frame Selection Strategy ~AUROC  AUPR  FPRO95
No Masking 72172 69.943  76.250

All 73429  71.205 73.454

Skip 73224 70.758  73.043

Random 73.297 70.605  73.448

Ours 74.287  71.921 71.920

Effect of Patch Masking Thresholds. Our proposed framework
depends on the threshold parameter used at lt-threshold strategy
when masking patches. We analyzed the effect of the threshold by
comparing the OOD detection performance while adjusting the patch
masking parameter . For this, we measured OOD detection perfor-
mances on Kinetics-400 (in) vs. Kinetics-600 exclusive (out) detec-
tion with various s while fixing the frame selection strategy to All.
The visualization of patch masking on various thresholds and the cor-
responding graph on OOD action detection results are shown in Fig-
ure 5 and Figure 6, respectively. The graph shows that there exists an
optimal point of patch masking threshold in terms of OOD action de-
tection. As we adjusted the spatial masking threshold from O to 0.01,
AUROC rose from 72.22% to 73.17%, and then the performance
steadily decreased as the threshold increased. We remark that this
crossover point in the graph indicates that removing the static bias
to an appropriate level helps detect OOD samples. Finally, further
performance improvement achieved by our video attention masking
tells us that explicitly providing the model with the debiased video
clip with considering temporal dependency was the most effective
for OOD action detection.

4.4  Groupwise Analysis

For a conceptual analysis of the proposed method, we adopted
parent-child groupings of the Kinetics-400 dataset introduced in the
original paper [18]. Figure 7 shows the top/bottom five action groups
for which our framework was successful. To measure the effective-
ness of our method, we calculated the classwise median of the differ-
ence in Mahalanobis distance after applying masking and computed
the per-group average. Here, a negative value indicates that the av-
erage Mahalanobis distance within the group decreased, represent-
ing that our method is effective in the case of the ID dataset. There-
fore, our method was effective for the green group (e.g., golf and
body motions) and not for the red group (e.g., snow ice and swim-
ming). A detailed description of each selected group is included in
the appendix. Here, we found a similar tendency among the group
where our method was effective. The top 5 groups (golf, makeup,
body motions, gymnastics, athletics — jumping) mainly consist of ac-
tions where temporal dynamics of the human motion are essential

(b) 75 = 0.005  (c)~s = 0.01

(d)ys = 0.1

@7vs =0

Figure 5. Comparison examples of various patch masking thresholds.
‘We show examples of masked frames containing different actions in Kinetics-
400 while adjusting the patch masking threshold s from 0 to 0.1.

Kinetics-400 (in) vs. Kinetics-600 exclusive (out)
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Figure 6. Effect of patch masking thresholds. We show the performance
of OOD detection corresponding to the value of patch masking parameters
7s on Kinetics-400 (in) vs. Kinetics-600 exclusive (out) across all evaluation
metrics. When the v is 0.01, we achieve the best performance.
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Figure 7. Groupwise analysis on the effectiveness of our framework.
We show the top/bottom five action groups in the Kinetics-400 for which our
method is effective. Since Kinetics-400 is set as ID in our experiments, a
smaller value of difference indicates that our method is more effective.
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Class: “golf driving”
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(a) In-distribution (Kinetics-400) cases
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(b) Out-of-distribution (Kinetics-600 exclusive) cases

Figure 8. Case study. We present examples of ID (Kinetics-400) and OOD (Kinetics-600 exclusive) with the differences in video clips and Mahalanobis
distance before and after applying our framework. The value in parentheses means the difference, red and green indicate negative and positive differences,
respectively. M aha below each video clip denotes the computed Mahalanobis distance, and frame selection threshold «; and patch masking threshold s are

set to 0.05 and 0.01, respectively.

(e.g., golf driving, stretching leg, and parkour). In this case, debias-
ing video clips using our adapter-based video masking framework
significantly improves the OOD action detection performance indi-
cated by the decreased Mahalanobis distances. However, in the case
of groups where our method was ineffective, static bias factors were
closely related to the action label. For example, actions in the snow
ice and swimming groups (e.g., snowboarding and swimming back-
stroke) are highly dependent on the background, such as snow or the
sea, which explains why our method was not effective.

4.5 Case Study

We included the changes in frames and Mahalanobis distances af-
ter applying our video attention masking to the video clips in the ID
(Kinetics-400) and OOD (Kinetics-600 exclusive) datasets as shown
in Figure 8. For ID cases, we selected video clips from golf driv-
ing, stretching leg, and parkour, which are actions included in golf,
body motion, and athletics — jumping groups, respectively. For OOD
cases, we included video clips from head stand, tiptoeing, and base
jumping classes where motion features are essential. Interestingly,
we found that our frame selection strategy is good at finding static
parts in the video. As shown in golf driving and head stand actions in
Figure 8, we can see that our frame selection strategy chose frames
with relatively low motion changes. In addition, our patch mask-
ing clearly recognizes the foreground object and properly masked
non-action-related parts of the video clips (e.g., background). After
masking was done, the Mahalanobis distances of ID samples consis-

tently decreased, while that of OOD samples increased. In addition,
for each pair of video clips in the ID and OOD dataset, we can see
the crossover of Mahalanobis distance after masking. We remark that
these crossovers significantly affect the OOD detection performance.

5 Conclusion

In this paper, we focused on improving the OOD detection method
in the context of HAR by alleviating the effect of static bias. To
deal with complicated video data with spatiotemporal dependencies,
we proposed an attention map-based video masking framework that
consists of two debiasing steps: (1) frame selection and (2) patch
masking. Specifically, we first select frames to perform masking and
mask out patches that are less likely to be related to the action label
with It-threshold strategy. Through extensive experiments and abla-
tion studies, we have validated the effectiveness of our framework
in improving the performance of various OOD detection methods on
multiple benchmarks. In addition, groupwise analysis and case stud-
ies show results supporting our assumption that reducing static bias
is helpful for OOD detection in HAR. As future work, comparing our
attention-based video masking with various image processing algo-
rithms [29, 40] could provide valuable insights into the field.
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