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Abstract. Discrete cake cutting is a fundamental model in fair re-
source allocation where the indivisible resources are located on a
path. It is well motivated that, in reality, each agent is interested in
receiving a contiguous block of items. An important question therein
is to understand the economic efficiency loss by restricting the al-
locations to be fair, which is quantified as price of fairness (PoF).
Informally, PoF is the worst-case ratio between the unconstrained
optimal welfare and the optimal welfare achieved by fair allocations.
Suksompong [Discret. Appl. Math., 2019] has studied this problem,
where fairness is measured by the ideal criteria such as proportion-
ality (PROP). A PROP allocation, however, may not exist in discrete
cake cutting settings. Therefore, in this work, we revisit this problem
and focus on the relaxed notions whose existence is guaranteed. We
study both utilitarian and egalitarian welfare, and our results show
significant differences between the PoF of guaranteed fairness no-
tions and that of the ideal notions.

1 Introduction

The study of cake-cutting problem originated in the fields of eco-
nomics and mathematics [16, 23, 24, 35], and has received increas-
ing more attention from the communities of multi-agent systems and
artificial intelligence over the past two decades [7, 20]. The cake is
often used metaphorically to refer to heterogeneous resources, and
its practical applications often impose constraints on the number of
pieces each agent can receive. For example, when the resource has a
temporal or spatial structure, every agent desires a connected block
of the resource, such as allocating conference sessions to organizers,
time slots in a fitness room to members, offices to research groups,
or roads to districts. Moreover, real-life applications of cake-cutting
are often related to indivisible resources, each of which can only be
allocated to one agent, as shown by the aforementioned examples.
The discrete cake-cutting problem with connectivity constraints can
be alternatively regarded as a model of indivisible items where items
are aligned on a path and the allocation of each agent should form
a contiguous block. This framework has been considered in various
recent papers [13, 28, 30, 31, 36].

Apart from fairness, the social welfare, a measurement of alloca-
tion efficiency, is also a major consideration in resources division,
with the objective of maximizing the utilization of resources. Fair
solutions can be very inefficient, and conversely, socially-optimal al-
locations may disregard fairness considerations. These two extremes
naturally raise the questions of what is the trade-off (if any) between

these two social concepts? How much efficiency needs to be sacri-
ficed in order to ensure fairness? To investigate the fairness and effi-
ciency trade-off, Bertsimas et al. [12] and Caragiannis et al. [17] re-
spectively proposed price of fairness (PoF) to quantify the efficiency
loss under fairness constraints. Thereafter, a line of research estab-
lished the bounds of PoF for the indivisible items allocation without
connectivity constraint [9, 11, 38] and for the divisible cake-cutting
with connectivity constraint [5, 27].

In the setting of discrete cake cutting with connectivity constraint,
Suksompong [36] considers the three ideal fairness criteria: envy-
freeness, proportionality and equitability, which shed light on the
fairness and efficiency trade-off by establishing a sequence of results
regarding the PoF ratio. However, one limitation of this study is that
the ideal fairness notions are not always satisfiable when the items are
not divisible1. To circumvent the non-existence issue, the instances
that do not admit these fair allocations are excluded from consid-
eration. Back to the setting without connectivity constraints, Bei et
al. [11] and Barman et al. [9] observed that neglecting the instances
where ideally fair allocations do not exist can make the established
PoF ratios fail to capture the true picture of the fairness and efficiency
trade-off, and thus pointed out the importance of studying guaranteed
fairness. Following the above line of research, in this work, we revisit
the problem of discrete cake cutting with connectivity constraint and
focus on the relaxations of the ideal fairness notions.

To highlight the differences between the ideal fairness and its re-
laxations and to avoid cumbersome presentation, we restrict our at-
tention to proportional fairness and leave the study for the envy-
freeness and equitability for future research. An allocation is pro-
portional (PROP) if every agent’s value is at least 1

n
, where n is the

number of agents and agents’ valuations are normalized to 1. Two
widely accepted relaxations of proportionality are proportionality up
to one item (PROP1) [8, 21] and maximin share fairness (MMS)
[4, 29], which are known to be satisfiable in the discrete cake-cutting
problem with connectivity constraints [6] [14]. Informally, PROP1
requires the condition of PROP to be satisfied after virtually adding
an item from/to the agent’s bundle. MMS fairness ensures that each
agent’s value is at least her max-min utility if she is to allocate the
items. As for system efficiency, we care about both utilitarian and
egalitarian welfare, where the former is the sum of all agents’ utili-
ties, and the latter of an allocation is the utility of the worst-off agent.
Our main results are summarized in the following subsection.

1 None of them can be satisfied in the example of assigning one valuable item
to two agents.
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1.1 Main results
The main contribution of this work is to bound the price of fairness
for the discrete cake-cutting problem with connectivity constraint,
where fairness is measured by either MMS or PROP1 and welfare
is either utilitarian or egalitarian. For the utilitarian welfare, the PoF
with respect to MMS is at least

√
n
2

and at most 4n, and for PROP1,
the PoF ratio is at least

√
n
2

and at most 2n. For the egalitarian wel-
fare, the PoF regarding MMS is at least n

2
and at most 2n, and the

PoF regarding PROP1 is infinite. We remark that all the upper bounds
are proven by designing polynomial time algorithms that return fair
allocations with the desired efficiency guarantees. The main results
are summarized in Table 1, in which for ease of comparison, known
PoF results regarding PROP are also provided.

As we can see from Table 1, for egalitarian welfare, when the fair-
ness notions are changed from PROP to MMS and PROP1, the PoF
changes significantly. This result seems to be contradictory at first
glance since any PROP allocation must be MMS/PROP1. As we have
discussed, this counter-intuitive result is due to the fact that the in-
stance in which no PROP allocation exists is neglected when study-
ing PROP, but the welfare maximizing solution of this instance can
be unfair. As shown by Suksompong [36], achieving proportionality
(if such an allocation exists) does not cause any loss of egalitarian
welfare since every agent has utility at least 1

n
in a PROP allocation

and an allocation with higher egalitarian welfare must also be PROP.
However, when the instance does not admit a PROP allocation and
the fairness notions are changed to MMS or PROP1, a significant
amount of egalitarian welfare has to be sacrificed. This result shows
that the ignored instances are actually critical for quantifying wel-
fare loss under fairness constraints and thus exhibits the importance
of studying the fairness notions with guaranteed existence.

Although the bounds of PoF regarding utilitarian welfare do not
show significant difference, we have extra challenges. Actually,
given any PROP allocation (if any), it is straightforward that if the
valuations are normalized, every agent has a value at least n

2
, which

is sufficient to achieve the tight bound of Θ(n) since the optimal
utilitarian welfare is at most n. However, this argument does not
carry over to the notions of MMS and PROP1. To find the MMS and
PROP1 allocations with the best possible efficiency guarantee, we
propose two parametric subroutines to balance the individual agent’s
value and the economic welfare. The first one is a matching pro-
cedure, where some items are very valuable for some agents so it
suffices for us to allocate each such agent one of her valuable items.
We need to be careful at this step since unallocated items on the left
and right of the matched item cannot be allocated together to a sin-
gle agent later due to the connectivity constraint. The second sub-
routine is motivated by the moving knife algorithm, where we stand
at the very left and collect items until the first time that there ex-
ist agents who are satisfied regarding the designed parameters. By
carefully integrating the two subroutines into algorithm design and
properly choosing the parameters, we obtain the upper bound results
as shown in Table 1. The lower bounds are proven by identifying hard
instances where the welfare is inevitably sacrificed by enforcing the
allocations to be fair.

Besides studying the general case with arbitrary number of agents,
we are also interested in the two-agent model – a simple but impor-
tant special case that has been widely investigated in the literature
[1, 2]. We provide tight analyses for all settings, and the results coin-
cide with those regarding PROP proven in [36]. Specifically, we show
that the price of fairness is 3

2
for utilitarian welfare and 1 for egalitar-

ian welfare, no matter what fairness notions we have. Interestingly,
we show that there exists a single allocation that is simultaneously

MMS and PROP1 and achieves the corresponding optimal ratios.

1.2 Other Related Works

The traditional research on fair division is centered around allocat-
ing a divisible resource, denoted by the real interval [0, 1], among
a set of heterogeneous agents, i.e., cake cutting problem. It is well
known that an envy-free (and thus proportional) allocation always
exists [16] and can be found in finite steps [7]. Su [24] considered
the case where it is required that every agent receives a contiguous
piece, and Aumann and Dombb [5] analyzed the resulting price of
fairness. However, when the items become indivisible, it is a differ-
ent story. On one hand, people want to understand how to achieve ap-
proximate envy-freeness and proportionality for both unconstrained
settings and the settings when there are restrictions on the alloca-
tions [32, 33, 34]. On the other hand, a line of research focuses on
investigating how to achieve maximal efficiency while ensuring fair-
ness [11, 17]. Besides the price of fairness, the compatibility between
Pareto optimality and fairness is also widely studied [3, 10, 18]. In
a recent couple of years, motivated by real-world applications, con-
straints have been investigated in the company with fair division; we
refer the readers to the survey by Suksompong [37]. One of the most
frequently studied constraints is connectivity, where the items are as-
sumed to be distributed on a graph [13, 14, 19] and each agent should
receive a connected subgraph. Line structure as we considered in this
work is an important special case which admits some interesting pos-
itive results. Finally, besides the study of goods, Höhne and van Stee
[28] considered the same problem for chores, i.e., undesirable cake.

2 Preliminaries

Denote by [k] = {1, . . . , k} for any positive integer k. A fair division
instance I = 〈N,E,V〉 is composed of n agents N = {1, . . . , n}
and m indivisible items E = {e1, . . . , em}. The items are placed
on a path in the order e1, . . . , em from the left to the right. For sim-
plicity, denote by L(k) = L(ek) = {e1, . . . , ek} the items on the
left of ek including ek and by R(k) = R(ek) = {ek, . . . , em} the
items on the right of ek including ek. A feasible allocation assigns
each agent a contiguous bundle of items. Let S be the set of all con-
tiguous bundles. Each agent i is associated with a valuation func-
tion vi : S → R+ ∪ {0} and V = {vi}i∈N . For simplicity, we
use vi(ej) to represent vi({ej}). The valuations are additive, i.e.,
vi(S) =

∑
e∈S vi(e) for any S ∈ S. It is assumed that the valua-

tions are normalized, i.e., for all i ∈ N , vi(∅) = 0, and vi(E) = 1.
A feasible allocation A = (A1, . . . , An) is an n-partition of E

where every bundle is contiguous, i.e., Ai ∩ Aj = ∅ for any i 	=
j, ∪i∈NAi = E and Ai ∈ S for each i ∈ N . If not explicitly
stated otherwise, all the allocations in this paper are assumed to be
contiguous. For any bundle S and any positive integer k, denote by
Πk(S) the set of all k-contiguous partitions of S, and by |S| the
number of items in S. Given an allocation A, the utilitarian welfare
(UW) of A is UW(A) =

∑
i∈N vi(Ai), and the egalitarian welfare

(EW) of A is EW(A) = mini∈N vi(Ai).

2.1 Fairness Notions

We next introduce the solution concepts. Note that the original def-
initions do not have any constraints, but to adapt to our setting, all
allocations are required to be contiguous.

An allocation A = (A1, . . . , An) of a given instance I is propor-
tional (PROP) if for any i ∈ N , vi(Ai) ≥ 1

n
.
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General n PROP MMS PROP1

PoF
Θ(n) LB: Ω(

√
n) UB: O(n) (Theorems 4 and 14) Utilitarian

1 Θ(n) (Theorem 10) ∞ (Theorem 17) Egalitarian

Table 1. The price of fairness regarding PROP, MMS, PROP1. The ratios for PROP are proved in [36].

Algorithm 1 Matching(I,α)

Input: Instance I = 〈N,E,V〉 and vector α = (αi)i∈N .
Output: A partial allocation A′ where each agent is allocated at

most one item.
1: Construct a weighted bipartite graph G = (N ∪ E,N × E)

where agents are vertices on one side and items are vertices on
the other side. For each i ∈ N and j ∈ E, there is an edge (i, j)
with weight vi(ej) if vi(ej) ≥ αi.

2: Compute a maximum weighted matching μ of G. For every agent
i ∈ N , denote by μ(i) the item matched to i and set A′

i ←
{μ(i)}; If i is unmatched, A′

i ← ∅.
3: return A′ = (A′

1, . . . , A
′
n).

Definition 1 (PROP1) A contiguous allocation A = (A1, . . . , An)
is proportional up to one item (PROP1) if for any i ∈ N , there exists
e ∈ E \Ai such that Ai ∪ {e} ∈ S and vi(Ai ∪ {e}) ≥ 1

n
.

An alternative relaxation of PROP is maximin share (MMS) fair-
ness. Given an instance I, the maximin share (MMS) of agent i ∈ N
is the maximum value she can guarantee if she partitions E into n
contiguous bundles but receives the smallest one. Formally,

MMSi(E, n) = max
X∈Πn(E)

min
j∈N

vi(Xj).

If the instance I is clear from the context, we write MMSi(I) or
MMSi for simplicity. Moreover, it is not hard to verify that for any
instance I, MMSi(I) ≤ 1

n
. For any agent i and a contiguous n-

partition A = (A1, . . . , An), if vi(Aj) ≥ MMSi for all j, A is
called an MMSi-defining partition. Note that although the computa-
tion of MMS values without connectivity constraints is NP-hard [39],
in our setting, it can be computed efficiently [14].

Definition 2 (MMS) An allocation A = (A1, . . . , An) is maximin
share (MMS) fair if vi(Ai) ≥ MMSi(I) for any i ∈ N .

2.2 Price of Fairness

The price of fairness (PoF) is the supremum ratio over all instances
between the maximum welfare of all allocations and maximum wel-
fare of all fair allocations. Formally, given an instance I and a wel-
fare function W ∈ {EW,UW}, denote by OPTW (I) the maximum
welfare with respect to W among all allocations of I. For simplic-
ity, if the instance is clear from the context, we write OPTE and
OPTU to refer to OPTEW (I) and OPTUW (I), respectively. Let-
ting F ∈ {PROP1, MMS} be a fairness criterion, denote by F (I)
the set of all allocations satisfying F . Since we have different welfare
and fairness notions, we sometimes use W | F to denote the specific
setting, where W is either egalitarian or utilitarian welfare, and F is
either MMS or PROP1.

Definition 3 (PoF) The price of fairness with respect to fairness cri-
terion F and welfare function W is

PoF(W | F ) = sup
I

min
A∈F (I)

OPTW (I)
W (A)

.

If the setting W | F is clear from the context, we simply write PoF.

We remark that if no fair allocations can achieve non-zero welfare,
the PoF is infinity. The PoF with respect to fairness criterion F is also
called price of F , i.e., price of MMS or price of PROP1.

3 Price of MMS for Indivisible Goods

We start with MMS fairness in this section. We first introduce two
subroutines that will be used to design fair allocation algorithms with
high welfare in Section 3.1, and then prove our main results in Sec-
tions 3.2 and 3.3.

3.1 Useful Subroutines in the Algorithms

We first design the subroutines, Matching and MovingKnife, as
shown in Algorithms 1 and 2. Intuitively, given an instance I,
Matching(I,α) uses a threshold vector α = (α1, . . . , αn) to iden-
tify a set of valuable items for each agent, and then uses a max-
imum matching to assign large items to the agents so that each
agent gets at most one item. Particularly, if αi ≥ MMSi, then the
agents who get allocated by Matching are happy with MMS fairness.
MovingKnife(I,A′,α) is motivated by the moving-knife algorithm
[22], where we stand at the left-end of all unallocated items and find
the closest item such that there exists an agent who is happy (regard-
ing the parameters αi’s) with the contiguous block between left-end
and this item. As we will see, MovingKnife can ensure MMS fair-
ness by setting αi = MMSi(I), but may produce low utilitarian and
egalitarian welfare. We can adjust αi’s to increase the welfare guar-
antee, however, we need to be careful since if αi’s are too large, we
may not find a contiguous allocation to satisfy all agents. In the fol-
lowing sections, we show how to properly choose the parameters and
combine Matching and MovingKnife so that the returned contiguous
allocations meet the fairness criteria and satisfy the desired welfare
guarantee, simultaneously.

Algorithm 2 MovingKnife(I,A′,α)

Input: Instance I = 〈N,E,V〉, partial allocation A′ of Q ⊆ E on
P ⊆ N with |P | = |Q| < n, and vector α = (αi)i∈N\P .

Output: A complete allocation A.
1: Initialize N̄ ← N \ P , Ē ← E \Q, p0 ← 0;
2: while |N̄ | ≥ 1 & Ē 	= ∅ do

3: Find the smallest index p > p0 such that there is an agent i ∈
N̄ and a contiguous bundle S ⊆ L(p) ∩ Ē with vi(S) ≥ αi.
If there are multiple agents, choose the one with the largest
value on S. If no such p is found, break and return “Error”.

4: Set Ai ← S and update N̄ ← N̄ \{i}, Ē ← Ē \Ai, p0 ← p.
5: end while

6: return A = (A1, . . . , An).

A. Sun and B. Li / On the Price of Fairness in the Connected Discrete Cake Cutting Problem2244



3.2 Price of MMS with Utilitarian Welfare

We first design an algorithm (as shown in Algorithm 3) to com-
pute an MMS fair allocation that ensures constant utilitarian wel-
fare, which implies the O(n) upper bound since the valuations are
normalized so that the utilitarian welfare of any allocation is no
more than n. Our first failed attempt is to run MovingKnife by set-
ting αi = max{MMSi,

1
4n

} for all agents i and A′ = {∅}, so
that every agent is satisfied regarding MMS fairness and has value
at least 1

4n
(and hence O(n) approximation). However, by setting

αi = max{MMSi,
1
4n

}, MovingKnife itself may fail to return a fea-
sible allocation. For example, consider an instance with N = {1, 2},
E = {e1, e2}, and both agents have value ε � 1

8
for e1 and 1−ε for

e2. Since MMSi = ε and αi = 1
8

, MovingKnife allocates both e1
and e2 to one of the agents and the other agent gets nothing. The fail-
ure of this attempt is because there is one item, i.e., e2 in the example,
having very value for the agents so that if such an item together with
some items on its left are assigned to one agent, the remaining items
may not be sufficient to ensure MMS values for the rest agents.

Algorithm 3 Utilitarian | MMS
Input: Instance I = 〈N,E,V〉.
Output: A contiguous allocation A.

1: Run Matching(I,α) with αi = max{MMSi(I), 1
4n

} and ob-
tain a partial allocation A′ on agents N0 ⊆ N and items
E0 ⊆ E. Let N ′ = N \N0, E′ = E \ E0.

2: if UW(A′) ≥ 1
4

then

3: Run MovingKnife(I,A′,α) with αi = MMSi(I) for i ∈
N ′ and obtain allocation A.

4: else

5: Letting αi = max{MMSi(I), 1
4n

} for i ∈ N ′, run
MovingKnife(I,A′,α) and obtain allocation A.

6: end if

7: If there are still items remaining, arbitrarily assign them to the
agent whose bundle forms a contiguous block with them. (The
remaining items must be a set of contiguous blocks.)

8: return A

Therefore, in Algorithm 3, we first use Matching to allocate
large items by setting each αi = max{MMSi(I), 1

4n
}. Note that

if the partial utilitarian welfare of the agents who get allocated by
Matching is already at least 1

4
, then it suffices to ensure solely MMS

values for the remaining agents and MovingKnife with αi = MMSi

is able to find such an allocation. If the welfare from Matching is
smaller than 1

4
, to ensure constant total utilitarian welfare, we turn to

feed αi = max{MMSi,
1
4n

} to MovingKnife so that every agent’s
value is at least 1

4n
, which implies constant welfare as well. Fortu-

nately, given the welfare from MovingKnife being smaller than 1
4

,
we manage to prove that the previous failure will not happen and are
able to allocate each remaining agent a contiguous block with value
no smaller than max{MMSi,

1
4n

}.
In summary, we have the following theorem.

Theorem 4 For Utilitarian welfare and MMS fairness, the price of
fairness is at least Ω(

√
n) and at most O(n).

The upper bound in Theorem 4 relies on the following Lemmas
5 and 7 which show that Algorithm 3 can always return a feasible
allocation with utilitarian welfare at least 1

4
.

Lemma 5 For any instance I = 〈N,E,V〉, if the allocation A re-
turned by Algorithm 3 is constructed in Step 3, then A is contiguous
and vi(Ai) ≥ MMSi for agent i ∈ N .

Proof. By the design of the algorithm, Ai is contiguous for all i. For
the MMS fairness, we first present Claim 6 which states that if we
remove an (arbitrary) agent and a contiguous block of items whose
value is small for every remaining agent, in the reduced instance the
MMS value of each remaining agent does not decrease.

Claim 6 Let pi ≤ m be the smallest index such that vi(L(pi)) ≥
MMSi(I), then MMSi(E \X,n−1) ≥ MMSi(I) for X ⊆ L(pi).

Proof of Claim 6. It suffices to show MMSi(E \ L(pi), n − 1) ≥
MMSi(I). Consider an arbitrary MMSi(I)-partition (X1, . . . , Xn)
for agent i, where the bundles are ordered from left to right. Then
vi(Xj) ≥ MMSi(I) holds for any bundle Xj . The condition of
pi being the smallest index such that vi(L(pi)) ≥ MMSi(I) im-
plies that L(pi) ⊆ X1 and hence E \ L(pi) ⊇ ⋃n

j=2 Xj . Note that
(X2, . . . , Xn) is one (n− 1)-partition of

⋃n
j=2 Xj , and thus

MMSi(E \ L(p), n− 1) ≥ MMSi(
n⋃

j=2

Xj , n− 1) ≥ MMSi(I),

which completes the proof of the claim.
Since the assignment in Step 7 does not reduce agents’ values,

we can without loss of generality assume that all items are assigned
before Step 7. In Step 1, for every matched agent i ∈ N0, we
have vi(Ai) ≥ MMSi. We then focus on i ∈ N ′. Suppose that
A1, . . . , An are ordered from left to right, and let agent k be the one
receiving the right-most block assigned by Step 3. Then, it suffices
to show vk(Ak) ≥ MMSk(I). For every j ∈ [k − 1], denote by
Ij the reduced instance right after removing agent j and bundle Aj ,
and let I0 = I. Then, for j ∈ [k − 1], we have either Aj acts as
a bundle of MMSk(Ij−1)-defining partition (when Aj is found by
Step 1) or vk(Aj) ≤ MMSk(Ij−1) (when Aj is found by Step 3).
Then according to Claim 6, MMSk(Ij) ≥ MMSk(Ij−1) holds. By
induction, we have MMSk(Ik−1) ≥ MMSk(I0) = MMSk(I). In
the reduced instance Ik−1, there exist n − k + 1 agents and a set
of items composed by bundle Ak and a number n − k of individual
items (each of them is at the right of Ak). Note that in Ik−1 if an item
e∗ has value no less than MMSk(Ik−1), then in the MMSk(Ik−1)-
defining partition, e∗ solely forms a contiguous bundle. As a conse-
quence, it must hold that vk(Ak) ≥ MMSk(Ik−1), and therefore,
vk(Ak) ≥ MMSk(I).

Lemma 7 For any instance I = 〈N,E,V〉, if the allocation A re-
turned by Algorithm 3 is constructed in Step 5, then A is contiguous
and vi(Ai) ≥ max{MMSi,

1
4n

} for all i ∈ N .

Proof. According to Matching(I,α) in Step 1 of Algorithm 3, it
holds that vi(Ai) ≥ max{MMSi(I), 1

4n
} for each i ∈ N0. Then,

we show that it is also the case for every i ∈ N \ N0, which is
equivalent to prove that each agent i ∈ N \ N0 is able to receive a
bundle from MovingKnife(I,A′,α) in Step 5 of Algorithm 3.

We now fix i ∈ N \N0. If MMSi ≥ 1
4n

, then by arguments simi-
lar to that in the proof of Lemma 5, one can verify that agent i must
receive a bundle from Step 5 of Algorithm 3 with value vi(Ai) ≥
max{MMSi,

1
4n

}. We can further focus on the case of MMSi <
1
4n

.
For a contradiction, assume that agent i does not receive a bundle
in Step 5. Since agent i is not matched in Matching(I,α), we can
claim vi(e) < 1

4n
for every e ∈ E′. Denote by Ñ the set of agents
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receiving bundles in Step 5, and we have |Ñ | ≤ n − |N0| − 1; oth-
erwise, the statement already holds. For each j ∈ Ñ , let Bj be the
bundle assigned to agent j in Step 5 and ejR ∈ Bj be the right-most
item of Bj . Due to vi(ejR) < 1

4n
and Subroutine MovingKnife in

Step 5, we have vi(Bj) = vi(Bj \{ejR})+vi(ejR) <
1
2n

. We then
present an upper bound of agent i’s value on assigned items. As in
Step 1, Matching(I,α) computes the maximum weighted match-
ing, we have vi(E0) ≤ UW(A′) < 1

4
. Then, agent i values the

assigned items

vi(E0) + vi(∪j∈ ˜NBj) <
1

4
+

n− |N0| − 1

2n
.

Accordingly, agent i has value at least n+2|N0|+2
4n

on the unassigned
items due to normalized valuations. Since there are at most n − 1
agents receiving a bundle, unassigned items are then composed by
at most n contiguous blocks. According to the pigeonhole principle,
agent i values on one of the unassigned contiguous blocks at least
n+2|N0|+2

4n2 > 1
4n

, based on which agent i should receive a bundle in
Step 5, a contradiction.

By Lemmas 5 and 7, the returned allocation A has a utilitarian
welfare at least UW(A) ≥ 1

4
. Since the valuations are normalized,

the utilitarian welfare of any allocation is at most n, and thus, the
price of MMS with respect to utilitarian welfare is at most 4n. The
lower bound in Theorem 4 comes from the following lemma.

Lemma 8 There is an instance in which no contiguous MMS allo-
cation has better than Θ( 1√

n
) of the optimal utilitarian welfare.

Proof. Consider an instance with n agents and a set E =
{e1, . . . , e2n} of goods. For i = 1, . . . ,

√
n, the valuation function

vi(·) is: vi(ej) = 1
2
√

n
for 2(i − 1)

√
n + 1 ≤ j ≤ 2i

√
n and

vi(ej) = 0 for other j. For i ≥ √
n + 1, the valuation functions

is: vi(ej) = 1
2n

for any j ∈ [2n]. One can compute MMSi = 0
for i ≤ √

n and MMSi = 1
n

for i ≥ √
n + 1. In a utilitarian

welfare maximizing allocation O, each agent i ≤ √
n receives all

goods on which she has positive value and agent i >
√
n receives

none. We can compute OPTU = UW(O) =
√
n. But for agent

i ≥ √
n + 1, since vi(Oi) = 0 < MMSi, she violates MMS un-

der allocation O. To make such an agent satisfy MMS fairness, two
adjacent goods must be assigned to her. Thus, in total 2(n − √

n)
goods need to be assigned to the latter n−√

n agents, which makes
that only 2

√
n goods can be assigned to the first

√
n agents in an

MMS allocation. Consequently, for an arbitrary MMS allocation A,
we have UW(A) ≤ 2− 1√

n
and therefore,

PoF ≥
√
n

2− 1√
n

= Ω(
√
n),

which completes the proof of the lemma.
In addition, the proof of Lemma 5 indeed results in a general re-

duction property regarding contiguous MMS allocations, which may
be of independent interest. Informally, if we assign k arbitrary items
to k arbitrary agents, we can still satisfy the remaining n− k agents
with the remaining items.

Corollary 9 For any instance I, any P ⊆ N and Q ⊆ E with
|P | = |Q| = k ≤ n, there exists (Xi)i∈N\P ∈ Πn−k(E \Q) such
that vi(Xi) ≥ MMSi(I) and Xi ∈ S for all i ∈ N \ P .

Note that in the setting without connectivity constraints, both Lemma
1 in Bouveret et al. [15] and Lemma 3.4 in Amanatidis et al. [4] state

that one can remove a single good to an agent without decreasing
the maximin share of other agents on the reduced instance. Corol-
lary 9 generalizes this monotonicity property to the setting where the
connectivity constraint is required.

3.3 Price of MMS with Egalitarian Welfare

Next, we discuss egalitarian welfare. For an instance I, if OPTE

≥ 1
n

, it means that the egalitarian welfare maximizing allocation
guarantees MMS fairness for every agent since MMSi(I) ≤ 1

n
for

all i. Then it suffices to consider the case when OPTE < 1
n

. We
observe that Subroutine MovingKnife alone may result in a poor ap-
proximation. The reason is that the MMS value of an agent can be
negligible in some instances, and when such an agent receives a bun-
dle with value MMS, MovingKnife stops assigning more items to
her. Therefore, in Algorithm 4 we balance fairness and efficiency by
first allocating items of large values to agents whose MMS values
are small via a matching procedure. Particularly, we set αi = +∞
if MMSi(I) ≥ 1

2n
· OPTE and αi = 1

2n
· OPTE otherwise.

We remark that, to improve the value of the worst-off agent, sub-
routine Matching′ is implemented in Step 1 of Algorithm 4. Sub-
routine Matching′ is similar to Matching, with the only difference
being that, instead of maximum weighted matching, Matching′ ap-
plies maximum cardinality matching. Thereafter, Algorithm 4 uses
MovingKnife with proper parameters to allocate the remaining items.
Seemingly we are quite conservative on the selection of the param-
eter 1

2n
· OPTE , but it turns out to induce the (asymptotically) best

possible PoF ratio.

Algorithm 4 Egalitarian | MMS

Input: An instance I = 〈N,E,V〉 with OPTE < 1
n

.
Output: A contiguous allocation A.

1: Run Matching′(I,α) with αi = +∞ if MMSi(I) ≥ 1
2n

·
OPTE and αi = 1

2n
· OPTE otherwise, and obtain a partial

allocation A′ on agents N0 ⊆ N and items E0 ⊆ E. Let N ′ =
N \N0, E′ = E \ E0.

2: Letting αi = max{MMSi(I), 1
2n

OPTE} for i ∈ N ′, run
MovingKnife(I,A′,α) and obtain allocation A.

3: If there are still items remaining, arbitrarily assign them to the
agent whose bundle forms a contiguous block with them.

4: return A

Theorem 10 For Egalitarian welfare and MMS fairness, the price
of fairness is Θ(n).

To prove Theorem 10, we prove Lemmas 11 and 13.

Lemma 11 For any instance I = 〈N,E,V〉, Algorithm 4 returns
an allocation A with vi(Ai) ≥ max{MMSi(I), 1

2n
· OPTE} for

all agents i ∈ N .

Proof. We first prove the following claim.

Claim 12 In Subroutine Matching′(I,α), if agent i’s vertex has de-
gree at least one in G, then i is matched by μ.

Proof. Denote by N̄ the set of agents with a degree at least one
in G. Clearly, MMSi < 1

2n
OPTE holds for every i ∈ N̄ . For the

sake of contradiction, assume the matching μ is not N̄ -perfect. Then
according to Hall’s theorem, there exists a subset N∗ ⊆ N̄ satisfying
|N∗| > |DG(N

∗)| where DG(N
∗) is the neighbourhood of N∗ in
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G. We then focus on the set E \ DG(N
∗) and claim that no subset

P ⊆ E \DḠ(N
∗) is able to bring value vt(P ) ≥ OPTE for some

agent t ∈ N∗. Suppose not, and assume that agent j ∈ N∗ has
value vj(P

∗) ≥ OPTE where P ∗ ⊆ E \ DG(N
∗) is contiguous.

Due to the choice of α, we have vj(e) < 1
2n

OPTE for each e ∈
P ∗. Thus, set P ∗ can be partitioned into n subsets {P ∗

l }nl=1 such
that vj(P ∗

l ) ≥ 1
2n

OPTE for all l, which then leads to MMSj ≥
1
2n

OPTE , a contradiction. Thus, given an agent i ∈ N∗ and a bundle
S ∈ S , vi(S) ≥ OPTE holds if and only if S ∩ DG(N

∗) 	= ∅.
Note that |N∗| > |DG(N

∗)|, then it is impossible to make every
agent in N∗ receive value at least OPTE , a contradiction. Therefore,
matching μ must be N̄ -perfect.

Claim 12 implies that if agent i with MMSi <
1
2n

OPTE values a
single item vi(e) ≥ 1

2n
OPTE , then she will be matched to a single

item in Step 1 of Algorithm 4 and has value

vi(Ai) ≥ vi(μ(i)) ≥ 1

2n
OPTE ≥ MMSi,

where μ is the maximum cardinality matching computed in Subrou-
tine Matching′(I,α). Thus, if N0 = N , the statement is proven,
and we can further assume N0 � N . Fix agent i ∈ N \N0 and split
the proof into two cases.

Case 1: MMSi ≥ 1
2n

OPTE . The proof of this case is similar to
the proof of Lemma 5 and we omit it.

Case 2: MMSi < 1
2n

OPTE . It suffices to show that agent i
receives a bundle in Step 2 of Algorithm 4. Based on Claim 12,
agent i has value vi(e) < 1

2n
OPTE for each e ∈ E, and thus,

vi(μ(j)) < 1
2n

OPTE holds for j ∈ N0 where μ is the matching
computed in Subroutine Matching′. For each j ∈ N \N0 and j 	= i,
denote by Bj (if exists) the bundle received by agent j in Step 2 of
Algorithm 4, and accordingly, vi(Bj) <

1
n
OPTE holds; otherwise,

agent i will receive a bundle at the time when agent j is picked in
Subroutine MovingKnife in Step 2 of Algorithm 4. Therefore, even
after all other n− 1 agents receiving bundles in either Step 1 or Step
2, agent i still has value no less than 1 − OPTE > 1 − 1

n
on the

unassigned items that are composed by at most n contiguous sub-
sets. By the pigeonhole principle, there exists a subset with value at
least n−1

n2 > MMSi for agent i. Hence, agent i receives a bundle Bi

in Subroutine MovingKnife in Step 2 of Algorithm 4 and has value

vi(Ai) ≥ vi(Bi) ≥ max{ 1

2n
OPTE ,MMSi}.

Therefore, Algorithm 4 outputs an allocation A such that vi(Ai)
≥ max{ 1

2n
OPTE ,MMSi} for each i ∈ N .

Note that Algorithm 4 uses the value of OPTE which is NP-hard
to compute [14].2 To make it run in polynomial time, we adopt the
following technique by guessing the value of OPTE , denoted by o.
If o ≤ OPTE , by Lemma 11, we can find a feasible allocation where
vi(Ai) ≥ max{MMSi(I), 1

2n
· o}. Thus, we can start with a trivial

upper bound of OPTE by setting o = 1, and run Algorithm 4. If
we do not obtain a feasible allocation, we decrease the value of o
by a small constant ε > 0 and repeat Algorithm 4. We stop until
we obtain a feasible allocation regarding o and it is guaranteed that
o ≥ OPTE − ε. To ensure OPTE − ε = Θ( 1

n
) · OPTE for all

agents, the value of ε cannot be too large. One possible way is to set
ε = 1

2
· mini∈N MMSi, since OPTE ≥ mini∈N MMSi and thus

OPTE − ε ≥ 1
2
· OPTE .

2 It is proven in Bouveret et al. [14] that deciding whether an instance admits a
PROP allocation (i.e., whether it admits an allocation with egalitarian wel-
fare no smaller than 1

n
) is NP-hard, which is a special case of our problem.

Lemma 13 There is an instance in which no contiguous MMS allo-
cation achieves better than Θ( 1

n
) of the optimal egalitarian welfare.

4 Price of PROP1 for Indivisible Goods

4.1 Price of PROP1 with Utilitarian Welfare

Theorem 14 For Utilitarian welfare and PROP1 fairness, the price
of fairness is at least Ω(

√
n) and at most O(n).

We first prove that there exists a PROP1 allocation with a utilitar-
ian welfare at least 1

2
. Technically, such a desired PROP1 allocation

is achieved by rounding a contiguous proportional allocation of the
related divisible cake-cutting instance.

Lemma 15 A PROP1 allocation with utilitarian welfare at least 1
2

can be computed efficiently.

Proof. Note that if an agent i has valuation vi(ej)≥ 1/n on good ej ,
then she satisfies PROP1 when she receives empty bundle. Accord-
ingly, we can further focus on the instance I in which vi(ej) < 1/n
holds for any i, j. We then construct a corresponding cake-cutting in-
stance I′ with n agents and the cake being the interval [0,m] where
m = |E|. In I′, the value of interval [a, b] for each agent i is equal
to

∫ b

a
fi(x)dx where fi is agent i’s density function. Each agent i

has a piecewise constant density function fi(x) = vi(ej) on inter-
val [j − 1, j], and thus, agent i has value vi(ej) on piece [j − 1, j].
According to Dubins and Spanier [22], instance I ′ admits a propor-
tional allocation π, in which w.l.o.g, agents 1, . . . , n receive the 1st,
2nd, ..., n-th piece of cake from left to right, and each agent i re-
ceives interval [πi−1, πi]. We then transfer π into allocations of I
that satisfy PROP1 and have an absolute welfare guarantee.

Since each agent i has value at least 1/n on her piece [πi−1, πi],
we claim that [πi−1, πi] /∈ [j − 1, j] for any pair of i, j due to the
property of I. As a result, for each j ∈ [m], interval [j − 1, j] is
either covered by an interval [πp−1, πp] or not covered by a single
interval but intersects with two contiguous pieces received by agents
in π. We then construct two allocations of I. In allocation AL (resp.
AR), each good ej is assigned to agent i if [j − 1, j] ∈ [πi−1, πi],
and ej is assigned to agent p (resp. q) if [j − 1, j] intersects3 with
two contiguous pieces [πp−1, πp], [πq−1, πq] with p < q. In the fol-
lowing, we first show both AL and AR are PROP1 allocations and
then prove that one of them has utilitarian welfare at least 1/2.

The connectivity of AL and AR comes from the connectivity of
π. We then prove the PROP1 of allocation AL and fix an agent i who
receives the piece of cake [πi−1, πi]. If πi−1 ∈ N+, then the bundle
received by agent i is AL

i = {ej | πi−1 ≤ j ≤ �πi�}. Accordingly,
we have the following

vi(A
L
i ) =

∫ �πi�

πi−1

fi(x)dx ≥
∫ πi

πi−1

fi(x)dx ≥ 1

n
,

where the last inequality is due to the proportionality of π. If πi−1 /∈
N+, agent i receives AL

i = {ej | �πi−1� ≤ j ≤ �πi�}. Note that
item AL

i ∪ {e�πi−1	} ∈ S and we have

vi(A
L
i ∪ {e�πi−1	}) =

∫ �πi�

�πi−1	
fi(x)dx ≥

∫ πi

πi−1

fi(x)dx ≥ 1

n
,

3 If the intersection of two intervals is a single point, then we regard their
intersection as an empty set.
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which then implies that agent i also satisfies PROP1. Therefore, we
can conclude that AL satisfies PROP1. By a similar argument, one
can prove that AR is also a PROP1 allocation.

As each item ej of I corresponds to an interval [j−1, j] of I′, then
any contiguous subsets S ⊆ E also corresponds to a subinterval of
[0,m]. For each agent i, denote by [xL

i−1, x
L
i ] and [xR

i−1, x
R
i ] the cor-

responding intervals of AL
i and AR

i , respectively. By the construction
of AL and AR, for each i ∈ [n], we have min{xR

i−1, x
L
i−1} ≤ πi−1

and max{xR
i , x

L
i } ≥ πi. Then, for each i ∈ [n], we have the fol-

lowing inequality

∫ xL
i

xL
i−1

fi(x)dx+

∫ xR
i

xR
i−1

fi(x)dx ≥
∫ πi

πi−1

fi(x)dx,

which then implies

n∑
t=1

∫ xL
t

xL
t−1

ft(x)dx+
n∑

t=1

∫ xR
t

xR
t−1

ft(x)dx ≥
n∑

t=1

∫ πt

πt−1

ft(x)dx.

The right hand side of the last inequality is the utilitarian welfare
of allocation π and should be at least one because π is a propor-
tional allocation. Furthermore, the left hand side is actually equals to
UW(AL) + UW(AR) due to the construction of the density func-
tion. Consequently, we can conclude one of AL and AR has utilitar-
ian welfare at least 1

2
.

The above-mentioned contiguous proportional cake-cutting solu-
tion π can be found efficiently. Then, this construction proof can be
easily transferred to an efficient algorithm on computing the PROP1
allocation with utilitarian welfare at least 1

2
.

Lemma 16 There is an instance in which no contiguous PROP1 al-
location has better than Θ( 1√

n
) of the optimal utilitarian welfare.

4.2 Price of PROP1 with Egalitarian Welfare

When concerning egalitarian welfare, we have the following infinite
PoF ratio. Recall that the PoF ratio regarding PROP and egalitarian
welfare is proven as 1 in [36], which indicates that some PROP al-
location achieves OPTE , and hence so does PROP1. However, as
the result below turns out, PROP1 cannot provide any guarantee re-
garding egalitarian welfare. This fact confirms that if a certain set
of instances is excluded, the computed PoF ratios fail to capture the
fairness and efficiency trade-off.

Theorem 17 For egalitarian welfare and PROP1 fairness, the price
of fairness is unbounded.

Proof. Consider an instance with n ≥ 3 agents and n + 1 items
E = {e1, . . . , en+1}. Agents have identical valuation functions,
where vi(ej) = 1

n2 for j = 1, . . . , n and vi(en+1) = 1 − 1
n

. It
is straightforward that the optimal egalitarian welfare is at least 1

n2 .
There are three ways to satisfy PROP1 for each agent i: (1) obtaining
en+1 (possibly with some items on its left) so that PROP is satis-
fied, (2) obtaining en (possibly with some items on its left ) so that
vi({en, en+1}) ≥ 1

n
, (3) obtaining nothing so that vi({en+1}) ≥

1
n

. Thus, in any PROP1 allocation, at least n−2 agents receive noth-
ing and achieve PROP1 via (3), which means the egalitarian welfare
is 0 and the price of PROP1 is infinite.

Note that the hard instance designed in the proof of Theorem 17
shows an interesting fact and a significant difference between MMS
and PROP1. If an agent cannot receive items en or en+1, with MMS,

she wants to have one item from {e1, . . . , en−1}; however, with
PROP1, she actually prefers to receive nothing due to the connec-
tivity requirement in the definition of PROP1.

5 Two Agents

In previous sections, we have shown that, for general n, when the
fairness notions are changed from PROP to MMS and PROP1, PoF
ratios change dramatically. Contrarily, in the case of n = 2, an in-
teresting special case that has been widely studied in the literature,
we find that tight PoF ratios on MMS and PROP1 coincide with the
these on PROP proven in [36]. In particular, we first show that there
exists an allocation that simultaneously achieves fairness (MMS and
PROP1) and significant welfare guarantee, and then derives the tight
PoF ratio based on that allocation.

Lemma 18 For any instance with two agents, there is an allocation
that is MMS, PROP1, maximizes egalitarian welfare and achieves
utilitarian welfare at least 1.

Proof sketch. We will consider the allocation O = (O1, . . . , On)
constructed as follows:

• O first maximizes the egalitarian welfare among all allocations; If
there is a tie, O maximizes the number of items allocated to the
agent with smaller value.

We can without loss of generality assume v1(O1) ≤ v2(O2). If
v1(O1) ≥ 1/2, then O satisfies all properties mentioned in the
statement. We can further assume v1(O1) ≤ 1/2. Note that either
v2(O2) < 1/2 or v2(O1) > v1(O1) violates the construction of O,
then we can focus on the case of v2(O1) ≤ v1(O1) <

1
2
≤ v2(O2).

The fact that O achieves maximum egalitarian welfare directly fol-
lows from the construction. Moreover, facts that v2(O1) ≤ v1(O1)
and valuations are normalized to one can imply UW(O) ≥ 1.
For PROP1, we consider another allocation O′ = (O′

1, O
′
2) with

O′
1 = O1 ∪ {e∗} and O′

2 = O2 \ {e∗} where e∗ ∈ O2 is the item
such that O1 ∪ {e∗} ∈ S . We prove v2(O

′
2) <

1
2

and v2(O
′
1) >

1
2

,
which then implies v1(O′

1) > 1/2 as O maximizes egalitarian wel-
fare. Lastly, to prove MMS fairness, we consider T = {T1, T2} the
MMS1-defining partition and analyze the bundle-wise inclusion re-
lationship to O.

By Lemma 18, we have the following result on the price of MMS
and of PROP1.

Theorem 19 When n = 2, PoF = 3
2

for utilitarian welfare, no
matter the fairness notion is MMS or PROP1; and PoF = 1 for
egalitarian welfare, no matter the fairness notion is MMS or PROP1.

6 Conclusion

In this work, we bound the ratios of PoF regarding both utilitarian and
egalitarian welfare, and MMS and PROP1 fairness, for the discrete
cake cutting problem when the agents need to receive contiguous
blocks of items. For both fairness notions, we provide tight ratios re-
garding the egalitarian welfare, but regarding the utilitarian welfare,
there is still a gap. An immediate open problem is to explore the
tight ratio for this setting. There are several future directions. One
can consider alternative fairness notions (and their relaxations) such
as equitability [25, 26] and envy-freeness [30]. We can also extend
the line structure to other graphs, and study the allocation of chores.
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