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Abstract. Judgment summaries are beneficial for legal practition-
ers to comprehend and retrieve case law efficiently. Unlike sum-
maries in general domains, e.g., news, judgment summaries often
require a clear structure. Such a structure helps readers grasp the in-
formation contained in the summary and reduces information loss.
To the best of our knowledge, none of the existing text summariz-
ers can generate summaries aligned with the summary structure in
the legal domain. Inspired by this observation, this paper introduces
a Summary Structure-Enhanced (SSE) method to synthesize struc-
tured summaries for legal documents. SSE can easily be incorporated
into the Encoder-Decoder framework, which is commonly adopted
in state-of-the-art text summarizers. Experiments on the datasets of
New Zealand and Chinese judgments show that the proposed method
consistently improves the performance of state-of-the-art summariz-
ers in terms of Rouge scores.

1 Introduction

In the legal domain, judgment summaries help legal experts quickly
understand the case information and search for case law to support
their claims. Meanwhile, text summarization models have been de-
veloped to automate the generation of summaries [18, 28, 23]. Ex-
isting text summarization methods are typically categorized into ex-
tractive and abstractive methods. Extractive methods summarize a
document by selecting several representative sentences from the doc-
ument. Abstractive methods process the source document and gener-
ate a concise text to summarize the document.

When applied to legal judgments, existing text summarizers ig-
nore the structure features from summaries. It leads to generated
summary information loss. Specifically, they concentrate too much
on specific aspects in judgments, such as facts, while ignoring the
others, like decision reasons. For instance, Figure 1 shows a legal
judgment summary written by a legal expert versus the summaries
generated by the state-of-the-art extractive [27] and abstractive [13]
methods. The expert-written summary follows a clear structure that
contains three key parts, namely Decision, Facts, and Reasons. We
can observe that neither the extractive summary nor the abstractive
summary is close to the human-generated summary. Specifically, the
extractive summary is incomplete and excessive – it does not con-
tain the crucial information relating to the alleged breach of law in
the Facts component, and it has no Reasons component while offer-
ing too much information in the Decision component. Similarly, the

Figure 1. Example summaries produced by human, the state-of-the-art
extractive summarizer ExtSum-LG [27] and abstractive summarizer

BART [13]. Sentences annotated by , [ ], and { } represent the Decision,
Facts, and Reasons components, respectively.

abstractive summary does not include the Facts component and the
key information on Reasons. We believe that the lack of a summary
structure in the existing models is the main reason for information
loss in the resulting summaries.

We argue that summary structure is important for generating high-
quality summaries in the legal domain. Some recent works in the
general domain noticed that structured information is helpful for
summarization, but they focus on either the source document struc-
ture [27, 15] or sentence relations [1]. Yet, summaries generated us-
ing these approaches do not follow any summary structure. Gidio-
tis et al. [9] propose a one-to-one mapping between the document
sections with summary sections and generates each summary sec-
tion from the corresponding document section. However, legal judg-
ments vary case by case and judge by judge, with no explicit structure
that aligns with the expert-generated summaries. In the legal domain
Elaraby et al. [6] propose a supervised learning method called Ar-
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gLegalSumm to mine the argumentative structure of the source docu-
ment and classify the sentences into three predefined groups for judg-
ments of various countries: Issues, Reasons and Conclusions. Experts
often follow particular summary structures, which may vary across
jurisdictions (See Section 3.1). With a predefined structure, ArgLe-
galSumm cannot cater to the various requirements of the summary
structures in different regions. Moreover, the strong assumption that
one sentence must belong to one of these parts in legal judgments is
difficult to establish [3, 2]. For instance, comments on the facts may
relate to both Facts and Reasons.

To the best of our knowledge, the existing structured summariz-
ers all have strong assumptions on the source document structure,
which do not hold in the legal domain. This work aims to propose
a new approach to generating summaries by following a given sum-
mary structure without specific assumptions on the source document
structure. One straightforward solution is to train a separate summa-
rizer for each part of the summary structure. Each summarizer takes
the whole source document as input and generates the summary for
a specific part of the summary, e.g., facts. However, using a summa-
rizer for each part is costly in terms of memory and training time.
Furthermore, this straightforward solution, which separates out each
part summarizer, discards the relations among different parts.

Based on these, we design a novel Summary Structure-Enhanced
(SSE) method that can be incorporated into the Encoder-Decoder
framework for generating structured summaries for judgments. With
a pre-defined summary structure containing several key parts (e.g.,
Decision) for a specific jurisdiction’s requirement, SSE maintains
a latent space for each summary part and calculates a document-
specific part representation for each summary part by projecting the
document representation (output from the encoder) into various la-
tent spaces, each corresponding to a summary part. The projected
representations indicate the content to be covered in each part. Then,
we use the document-specific part representation to align words or
sentences to the summary parts and compute a word-specific or
sentence-specific part representation, which is passed to the decoder
for producing the summary. In this way, the resulting summary cov-
ers the information of different parts to produce a comprehensive
and balanced summary. The proposed SSE method has two salient
features: (1) It can be integrated into the existing state-of-the-art
text summarizers with the Encoder-Decoder framework; (2) A single
summarizer with SSE can output summaries for all summary parts
at the same time, thus saving memory and training time compared to
the straightforward solution. Our main contributions include:

• This work is the first to study the structured summary generation
problem on legal judgments with no specific document structure.
We propose a straightforward solution to solve the problem.

• To reduce the memory usage and training time cost, we further
propose a novel Summary Structure-Enhanced (SSE) method to
align the information of the source document with different sum-
mary parts. SSE can be applied to existing summarizers with the
Encoder-Decoder framework.

• We evaluate the proposed methods on two judgment datasets from
different countries. Results show that the proposed methods can
improve the summarization quality.

2 Related Work

2.1 Extractive Summarization

Extractive summarization selects words or sentences that capture the
most important content in a document to form a summary. Sum-

maRuNNer [21], one of the earliest methods to utilize an Encoder-
Decoder structure, adopts two GRU-RNN layers as the encoder
to obtain a vector representation of each sentence. A classifier is
adopted as the decoder to decide which sentence to be selected as
part of the summary using the sentence representations. ExtSum-
LG [27] extends the sentence-level encoder of SummaRuNNer to ob-
tain multi-level representations, including sentence, document, and
section representations. The following research change the RNN En-
coder to a Transformer encoder [24, 29] or BERT encoder [25, 17].
In addition, some research adopt separate encoders to obtain the
sentence-level and document-level representations [17, 29], while
some work use randomly initialized trainable sentence and document
representations [24]. Furthermore, Memsum [11] introduces a rein-
forcement learning method for considering the selection history to
reduce the redundancy of generated summaries.

2.2 Abstractive Summarization

Abstractive summarization generates a summary word-by-word.
The Encoder-Decoder framework is mostly adopted in this task.
The decoder has a similar structure to the encoder. BERT [5]
and BART [22], two famous language models, utilize the Trans-
former Encoder-Decoder structure to obtain summaries. Based on
the structure, previous research introduce Entity Aggregation [10],
Key Phrases Detection [14], Sentence Structure Relations [1], and
Time Content Selection [4] to generate summaries.

2.3 Legal Document Summarization

Legal documents are different from many other types of docu-
ments because they are typically lengthy and require specific domain
knowledge to understand. Legal knowledge, legal documents cited
history [7], legal sentence syntactic knowledge [12], etc., are used
in extractive summarizers to improve the relatedness of selected sen-
tences. Most existing abstractive summarizers apply pre-trained lan-
guage models, which have a length restriction. Since legal documents
are naturally longer, Se3 [20] cuts the document into several chunks
to improve the quality of summaries. ArgLegalSumm [6] introduces
the argumentative structure of documents and groups sentences into
different arguments using a classifier. The argument label and rep-
resentation of each sentence are then passed to an Encoder-Decoder
model for generating the summary.

To summarize, the Encoder-Decoder framework is the most com-
mon model architecture among the existing works in text summariza-
tion. However, previous works ignore the summary structure adopted
by human experts when they summarize documents.

Table 1. Summary structure for New Zealand judgments

Part Description Example
Decision What the

court decides
unsuccessful application by r for
leave to commence proceeding.

Fact Essential
factual infor-
mation of the
case

r a vexatious litigant; r seeking to
commence proceeding seek ’ex-
emplary damage ’ of ’ $ 900 tril-
lion ’ against the high court for al-
legedly fail to process an applica-
tion for leave to appeal a judgment
from 2013.

Reason Reason for
the decision

Held, proposed proceeding
frivolous and vexatious.
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Table 2. Summary structure for Chinese judgments

Part Detail Sample
Type Category of

case
The case is a dispute over a loan
contract.

Plaintiff’s
Claims

Claims from
plaintiff(s)

The plaintiff filed a claim for re-
turn of the principal amount of a
loan together with normal interest
and penalty interest.

Defendant’s
Response

Response
from defen-
dant(s)

The defendant admitted that the
loan was genuine and agreed to re-
turn it.

Reasons Why make
the decision

The court found: 1. there existed
a the loan contractual relationship;
2. the defendant was late in return-
ing the loan.

Decision What the
court decides

According to Section 206 and 207
of the Contract Law, the defendant
is to return the principal and pay
interest on the loan.

3 Structured Summarization

3.1 Motivation

Referring to the example in Figure 1, we observe that a summary
of a New Zealand judgment often contains three main components:
(1) Decision that describes the case outcome; (2) Facts between lit-
igation participants, which are the essential information of the rel-
evant cases; (3) Reasons that explain why the court made the rele-
vant decision. Table 1 shows the summary structure for New Zealand
judgments.

We extend our observation to the Chinese judgment dataset,
2020CAIL-SFZY [8]. Similarly, there is a summary structure with
five parts: (1) Type of the case; (2) Plaintiff’s Claims; (3) Defen-

dant’s Response; (4) Reasons, and (5) Decision, as illustrated in
Table 2.

We observe that different jurisdictions’ judgment summaries have
different structures because the legal litigants may focus on differ-
ent information. For instance, the Type part of summaries is essen-
tial for Chinese legal experts to quickly understand, within over 400
categories under the Chinese civil law, which category the relevant
case falls into [26]. Although different jurisdictions focus on differ-
ent information in the law leading to summaries differences, clear
structures can always be observed.

Motivated by the observations above, we propose the research
problem of generating structured summaries by following a given
summary structure. In the next subsections, we first introduce the
Encoder-Decoder framework used in most recent summarizers (Sec-
tion 3.2). Then, we discuss a straightforward solution of utilizing
existing summarizers to generate structured summaries and its limi-
tations in memory and training time cost and learning cross-part re-
lations (Section 3.3). In Section 3.4, we elaborate on the proposed
Summary Structure Enhanced (SSE) method to leverage the sum-
mary part information and reduce the memory requirement and train-
ing time.

3.2 Text Summarizers with the Encoder-Decoder
Framework

As discussed in Section 2, most recent text summarizers adopt the
Encoder-Decoder framework. The top of Figure 2 shows the architec-

Figure 2. Summarizer architectures. The top is a vanilla summarizer with
the Encoder-Decoder framework. The bottom is the proposed

Encoder-SSE-Decoder framework that incorporates the proposed SSE block.

ture of a vanilla summarizer. Under both extractive methods and ab-
stractive methods, the encoder has the same purpose of understand-
ing source documents. Specifically, the encoder takes the document,
which is represented by a sequence of tokens {t1, ..., tn}, as input and
outputs a vector representation hti for each token ti. For extractive
methods, sentences or words can be regarded as input tokens, while
for abstractive methods, words are typically regarded as input tokens.
The token representations can be used in a decoder for producing
summaries.

For extractive methods, the decoder is a classifier that outputs the
probability gi of selecting each sentence (or word) [27]. For abstrac-
tive methods, the decoder is usually a sequence model with RNNs
or a Transformer, and it can generate each word gi sequentially. For
generalization purposes, we use the same notation gi to denote the
i-th output of the decoder for both extractive or abstractive summa-
rizers.

3.3 Independent part summarizer

Next, we proceed to present a straightforward method for the struc-
tured summarization problem using existing summarizers. We name
this method Independent Part Summarizer (IPS). This method trains
several independent sub-summarizers for the same structure. The in-
put to all sub-summarizers is the same sequence of tokens {t1, ..., tn}
of a given document. Each sub-summarizer is responsible for gen-
erating a summary for each summary part. The outputs of the sub-
summarizers are concatenated to obtain the complete summary.

While IPS is a straightforward method to incorporate the structure
summary information, it has two shortcomings: (1) Since IPS needs
to train a separate summarizer for each summary part, the memory
consumption and training time increase with the number of parts; (2)
Each sentence or word in a judgment may be related to multiple sum-
mary parts [3, 2]. The sub-summarizers are optimized independently
and thus may select or generate the same words and sentences for
different parts, resulting in redundancy.

3.4 Summary Structure Enhanced Summarizer

To address the shortcomings of IPS, we propose a Summary Struc-
ture Enhanced (SSE) method. The proposed SSE method can be ap-
plied to existing models with the Encoder-Decoder framework. Sum-
marizers with SSE not only utilize the information of a given sum-
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mary structure but also keep memory size and training time as small
as possible.

3.4.1 Overall Architecture

The bottom of Figure 2 shows the architecture of the summarizer
with SSE. Compared to the Encoder-Decoder structure (the top part
of Figure 2), SSE can be inserted between the encoder and decoder.
Compared to the IPS summarizer, the SSE method only needs one
encoder and one decoder. The Summary Structure Enhanced (SSE)
block contains three modules: (1) Document-specific Part Encod-
ing (DPEnc); (2) Token-specific Part Encoding (TPEnc); (3) Fusion
layer. Given a document and a pre-defined summary structure, SSE
will utilize the DPEnc module to learn a latent representation for
each summary part, which implies the content that the summary part
should cover. Then, the TPEnc module aligns the tokens to each part
according to the similarity between the token and part representa-
tions. In this way, tokens that are unrelated to a specific summary
part are less likely to be selected. The fusion layer is to combine
the token representation and token-specific part representation ob-
tained from the encoder and the TPEnc module, respectively. The
fused representations of the tokens are then passed to the decoder for
generating part-specific summaries.

3.4.2 Document-specific Part Encoding (DPEnc)

Since the content of each summary part depends on the document to
be summarized, the DPEnc module computes part representations
from the document representation. Specifically, given the encoder
output, i.e., the token encodings (ht1 , ht2 , ..., htn ), the DPEnc mod-
ule takes two steps. In the first step, it applies Multi-head Pooling
(MHP) [16] to learn the document representation hd from the en-
coder output, which captures the content information of the docu-
ment. In the second step, it defines a latent space for each part and
projects the document representation to different part spaces. The
projected representation encodes the content information for a spe-
cific part and thus is used to represent the content information to be
covered in part. The projected representation of the j-th summary
part for a document d is:

p j
d = W

j
phd , (1)

where W
j
p is a learnable weight matrix for the j-th part, which

projects the document representation to the j-th summary part.

3.4.3 Token-specific Part Encoding (TPEnc)

With the document-specific part representation, the TPEnc module
aligns the tokens in the source document to each summary part.
Unlike ArgLegalSumm [6], we do not assume each sentence must
belong to only one summary part. This is because a sentence or
word in a judgment may contain information that belongs to several
parts [3, 2].

Instead, we propose to compute part representations for each to-
ken, which encodes the information related to a specific summary
part. This design allows each token to be aligned with multiple parts.
Specifically, we calculate the similarity between the token represen-
tation and the document-specific representation of each part. Then
we obtain the token-specific part representation p̂ j

ti by multiplying

the document-specific part representation of the j-th part with the
similarity between the token:

p̂ j
ti = ati

j p j
d

ati
j = Softmax(hti p

j
d

T
),

(2)

where ati
j is the similarity between given sentences (or words) and

j-th part.

3.4.4 Fusion layer

The token-specific part representation only encodes the information
of summary parts related to the token without capturing the sen-
tence’s content. The fusion layer is to combine the content infor-
mation and part information of a token. Concretely, the fusion layer
concatenates the token encoding hti and the summary part-related
representation p̂ j

ti , and then applies a linear transformation:

p j
ti = Wt [hti‖p̂ j

ti ]. (3)

In Equation 3, Wt represents a learnable weight matrix and [·‖·]
is the concatenation operation. The concatenation operation can be
replaced by other aggregation functions, such as multi-layer percep-
trons. For simplicity, we use concatenation in this paper and leave
the study of different aggregation functions as future work. The out-
put of the Fusion layer p j

ti is the representation of token ti related to
the j-th summary part, which is then fed into the decoder for gen-
erating a summary for each part. Similar to IPS, we concatenate the
summaries for all parts to obtain the complete summary.

3.4.5 Extensions

The proposed SSE block can be easily extended to support addi-
tional information such as document representations [27], selection
history representations [11], sentence structure representations [1],
etc., which are used in some existing summarizers. To achieve this,
one can concatenate the additional information with the content rep-
resentation hti and token-specific part representation p̂ j

ti in the fusion
layer defined in Equation 3.

3.5 Training

The proposed SSE method can be adopted in both extractive and ab-
stractive methods. The parameters in SSE are trained by comparing
the generated summaries and ground-truth (or reference) summaries.
We present the loss functions of two types of summarizers in this
subsection.

Extractive method An extractive summarizer selects some sen-
tences from the source document as a summary. Therefore, the num-
ber of selected sentences is much smaller than the number of sen-
tences in the source document. It leads to an imbalance issue which
means there are many more negative labels than positive labels [16].
Following previous work, we design the weighted negative log-
likelihood for different parts as, w j = #positive j

#negative j . The loss function
is:

L =
m

∑
j∈m

− ∑
(d,yi)∈Dtrain

(w j ∗ yi log p(yi|g j
i ))

+(1− yi) log p(yi|g j
i )),

(4)
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where g j
i is the probability of selecting the i-th sentence for the j-th

summary part, and (d,yi) ∈ Dtrain denotes a training pair of docu-
ment d and the label yi of selecting the i-th sentence for the summary.
If the i-th sentence is selected in the reference summary, then yi = 1,
otherwise, yi = 0.

Abstractive method We follow previous work [13] and extend its
loss function for abstractive summarization to our problem:

L =
m

∑
j∈m

− ∑
(d,zi)∈Dtrain

(zi log p(zi|g j
i )), (5)

where (d,zi) ∈ Dtrain is a training pair of document d and its sum-
mary token label zi.

4 Experiments

We evaluate the effectiveness of the SSE method by addressing the
following research questions:

RQ1. How much is the performance of generated summaries im-
proved with structure summary?

RQ2. What are the memory and training time requirements of the
SSE method compared to IPS?

RQ3. How does the SSE method avoid the generated summary
missing information and information imbalance issues?

RQ4. What are the impacts of the modules of the SSE method on
the summarization performance?

Table 3. Statistics of New Zealand Judgment Dataset and
CAIL2020-SFZY. #, avg., doc., summ., and Sent. represent the Number of,

average, document, summary, and sentences, respectively.

Dataset #avg. doc. #avg. summ.
#Words #Sent. #Words #Sent.

NZJD 2819.5 121.4 209.4 11.3
-Decision - - 20.2 1.1
-Fact - - 102.6 5.2
-Reason - - 86.6 5.0

CAIL2020-SFZY 2629.5 57.4 283.7 7.3
-Type - - 10.9 1.0
-Plaintiff Claim - - 36.4 2.1
-Defendant Answer - - 33.7 1.3
-Reason - - 106.5 2.0
-Decision - - 88.7 1.3

Table 4. Training time (in minutes) of different models

Model Dataset ExtSum-LG Memsum

Vanilla NZJD 34 206
CAIL. 52 136

IPS NZJD 149 754
CAIL. 195 576

SSE NZJD 251 545
CAIL. 149 329

4.1 Dataset

CAIL2020-SFZY was published by China AI & Law Challenge and
contains several types of Chinese judgment documents1. Summaries

1 CAIL2020-SFZY dataset: https://github.com/china-ai-law-challenge/
CAIL2020/tree/master/sfzy.

Table 5. Memory size of different models. The memory size of
ExtSum-LG is in MB. Others are in GB.

Model Dataset ExtSum-LG Memsum BART

Vanilla NZJD 2.30 0.38 0.54
CAIL. 2.76 1.56 0.54

IPS NZJD 6.90 1.01 1.56
CAIL. 13.80 7.80 2.61

SSE NZJD 5.98 0.40 0.55
CAIL. 7.66 1.61 0.56

for Chinese judgments are well-structured texts. It is easy to capture
the ’Type’ part by selecting the first sentence of the summary. And
’plaintiff’ and ’defendant’ are two guide signals to mine the ’Plaintiff
Claims’ and ’Defendant Answers’ components. The remaining parts
can be divided by a fixed term, ’The court decides’. In the Rouge
evaluation for Chinese sentences, we compare it based on the words
instead of the characters. We utilize the Chinese Legal Language-
based word segmentation tool, Lawa2, to partition sentences into
words.

Moreover, we constructed a new dataset, New Zealand judgment
dataset (NZJD)3, for this experiment. NZJD contains 6,155 judg-
ments from all levels of courts in New Zealand. We split the summary
into three parts by the following process: (1) we extract the first sen-
tence from the summary as the "Decision." Since every summary in
the New Zealand Judgments utilizes a single sentence to summarize
the decision. (2) we identify the keyword "held" and use it to divide
the remaining text into "Facts" and "Reason".

Table 3 shows the statistics of the two datasets. We split each
summary of the two datasets into several parts by following the ob-
servation in Section 3.1. For each summary part, we set the maxi-
mum length of the generated text as the average length of the part
in reference summaries. We utilize the same oracle methods as the
base models to construct extractive summarization labels for the two
datasets.

4.2 Compared Models and Configurations

Extractive Methods We show the flexibility of SSE and its ef-
fectiveness by applying it to several representative summarizers.
ExtSum-LG [27] proposed the general structure of an extractive sum-
marizer. As discussed in Sec 2, many state-of-the-art works [24, 25,
29, 19] follow its design in general. Therefore, we select ExtSum-LG
as one of the baseline models to apply our SSE method. Furthermore,
we also utilize the state-of-the-art summarizer Memsum [11], which
is based on reinforcement learning. We train all baseline models by
following the settings reported in their papers.

Abstractive Methods As the pre-trained language model is the
most popular model used in abstractive summarizers, we apply the
SSE method to BART [13]. We utilize the HuggingFace pre-trained
BART4 and follow the same settings of Se3 [20], a summarizer de-
signed for the legal domain.

We keep all the settings of the backbone model when training the
proposed SSE method. Besides, we set the head of MHP as 8. And all
learnable parameters, those not included in the backbone settings, are
initialized by the standard normal distribution. All experiments run
on an Nvidia GeForce RTX 3090 GPU platform with 24GB memory.

2 https://pypi.org/project/lawa/
3 The pre-processed NZJD dataset will be released in https://github.com/

77-qiqi-wang/SSE.
4 https://huggingface.co/facebook/bart-base
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Table 6. Result on New Zealand Judgment Dataset and CAIL2020-SFZY. We did the paired t-test between SSE and IPS on overall Rouge scores. The
p-values are all less than 0.01. The improvement of SSE over IPS is statistically significant.

Model Dataset ExtSum-LG Memsum BART

Vanilla
R1/R2/RL R1/R2/RL R1/R2/RL

NZJD 33.78 / 12.15 / 29.47 39.87 / 14.48 / 36.47 38.35 / 17.74 / 34.45
CAIL2020-SFZY 43.97 / 25.09 / 39.05 34.57 / 17.60 / 29.76 43.62 / 24.23 / 37.07

IPS

R1/R2/RL R1/R2/RL R1/R2/RL
NZJD 35.37 / 13.36 / 30.32 40.70 / 15.91 / 37.56 39.93 / 19.20 / 37.28

-Decision 28.26 / 12.14 / 25.15 31.98 / 14.12 / 28.50 63.27 / 48.85 / 61.99
-Fact 29.94 / 11.33 / 23.01 33.24 / 13.17 / 29.99 32.53 / 13.44 / 28.01
-Reason 27.16 / 9.41 / 20.86 31.44 / 11.80 / 28.41 25.37 / 9.98 / 23.31

CAIL2020-SFZY 53.64 / 35.40 / 49.40 50.24 / 31.17 / 45.77 48.46 / 28.50 / 42.66
-Type 19.68 / 8.52 / 19.61 31.27 / 17.76 / 31.24 80.37 / 72.70 / 80.37
-Plaintiff Claim 44.99 / 26.95 / 43.99 47.90 / 29.90 / 46.82 65.16 / 46.35 / 64.17
-Defendant Answer 43.21 / 23.21 / 41.65 45.09 / 23.98 / 43.53 50.19 / 31.30 / 48.85
-Reason 52.16 / 37.25 / 48.99 48.56 / 33.79 / 45.42 32.43 / 12.55 / 26.57
-Decision 51.65 / 39.99 / 50.25 39.72 / 23.85 / 37.70 49.68 / 26.73 / 46.49

SSE

R1/R2/RL R1/R2/RL R1/R2/RL
NZJD 37.04 / 14.18 / 31.91 41.63 / 16.58 / 39.07 44.13 / 22.01 / 41.25

-Decision 29.03 / 12.60 / 25.85 32.88 / 14.51 / 29.38 66.31 / 51.26 / 64.47
-Fact 30.72 / 11.43 / 23.42 35.24 / 14.62 / 31.93 36.47 / 16.31 / 31.52
-Reason 28.23 / 9.83 / 21.63 32.43 / 12.52 / 29.47 29.28 / 11.40 / 26.37

CAIL2020-SFZY 54.19 / 35.98 / 49.94 51.21 / 31.75 / 46.59 51.45 / 31.53 / 45.75
-Type 19.38 / 8.33 / 19.32 31.21 / 17.77 / 31.18 83.51 / 77.76 / 83.51
-Plaintiff Claim 45.33 / 27.36 / 44.40 48.01 / 30.11 / 46.84 69.29 / 51.66 / 68.12
-Defendant Answer 43.93 / 24.09 / 42.37 45.17 / 24.03 / 43.50 52.15 / 32.57 / 50.74
-Reason 52.61 / 37.93 / 49.51 50.63 / 35.04 / 47.39 36.08 / 15.03 / 30.17
-Decision 52.03 / 40.46 / 50.68 39.96 / 24.16 / 37.91 51.92 / 30.09 / 48.59

Table 7. Ablation studies on New Zealand Judgment Dataset with ExtSum-LG model. We did the two-sample t-test between the proposed SSE and other
methods on overall scores. ♠ means the p-value is less than 0.05. Otherwise, the p-value is less than 0.01.

Overall Part 1 Part 2 Part 3
SSE 37.04 / 14.18 / 31.91 29.03 / 12.60 / 25.86 30.72 / 11.43 / 23.42 28.23 / 9.83 / 21.63

SSE w/o DPEnc 35.93 / 13.76♠ / 31.17♠ 30.02 / 13.13 / 26.69 29.67 / 10.98 / 22.68 26.92 / 9.18 / 20.72
SSE w/o TPEnc 36.00 / 13.90♠ / 31.13♠ 29.29 / 12.71 / 26.15 29.61 / 11.01 / 22.64 27.43 / 9.47 / 21.02

SSE w/o DPEnc & TPEnc 35.91 / 13.71♠ / 31.10♠ 29.03 / 12.20 / 25.80 29.73 / 10.98 / 22.64 26.83 / 9.01 / 20.67

4.3 Result and Discussion

RQ1: Comparison of Summarizers with or without Summary

Structure. Table 6 reports the Rouge-1, Rouge-2, and Rouge-L of all
baseline summarizers with and without using IPS and SSE. We can
summarize three key findings from the results. First, IPS and SSE
both improve the quality of generated summaries compared to the
vanilla summarizer. This proves that the summary structure is essen-
tial for summarization. Second, SSE consistently outperforms IPS
in terms of overall Rouge scores because SSE aligns the sentences
or words of the source document to different parts and optimizes
the part representations simultaneously. In this way, information is
shared across different parts, and thus SSE can reduce redundant
and unrelated information. Third, SSE outperforms IPS in generating
summaries for each part in most cases. Especially, SSE significantly
improves the performance of longer parts, such as Facts and Rea-
sons. This is because SSE considers different parts in a unified way,
and thus it can select or generate more interrelated part summaries.
RQ2: Memory size and training time of SSE. As discussed in Sec-
tion 3.3, SSE addresses the limitations of IPS in terms of memory us-
age and training time. Table 5 and Table 4 report the memory usage
and training time for the vanilla models, IPS and SSE, respectively.
We found that SSE requires less memory and training time compared
to IPS. This is because SSE no longer trains multiple summarizers to
generate structured summaries. A larger reduction of memory usage

can be observed on CAIL2020-SFZY, because it has more summary
parts. Nonetheless, there is little improvement in lightweight mod-
els like ExtSum-LG. ExtSum-LG only contains bi-RNN and MLP
layers, both of small sizes. Compared to the vanilla models, its SSE
counterparts do not incur much extra memory usage, especially when
the vanilla models are large. Similarly, SSE saves training time be-
cause it trains a single summarizer instead of multiple summarizers,
as does IPS.
RQ3: Case Study. Figure 3 shows the summary generated by using
summaizers, ExtSum-LG [27] for extractive and BART [13] for ab-
stractive summaries, with the SSE method for the same source doc-
ument of the examples illustrated in Figure 1.

After applying the SSE method, the extractive summary now in-
cludes the Reasons part (in braces). Moreover, the Facts (in brackets)
in the extractive summary now include the crucial information relat-
ing to the alleged breach of law. Also, the extractive summary gener-
ated without SSE contains out-of-order sentences, which makes the
summary confusing to readers and, as a result, greatly diminishes
its usefulness. In contrast, the sentences in the extractive summary
generated with SSE do follow a proper order. As for the abstractive
summary, the improvements are even more impressive. The summary
produced with the SSE method now contains all three parts: Deci-
sion, Facts, and Reasons. Furthermore, unlike the summary produced
without the SSE method, the Reasons part is now a full sentence and
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Figure 3. Summaries produced by summarizers with SSE for the same
document used in Figure 1. Sentences annotated by , [ ], and { } represent

the Decision, Facts, and Reasons components, respectively.

contains meaningful information. These improvements verify that
the SSE method is effective.

We also conduct the same case study for IPS. Figure 4 shows the
IPS method generates summaries by using the same backbone sum-
marizers and the same source document used in Figure 1 and Fig-
ure 3. After applying the IPS method, the extractive summary now
includes the Reasons part (in braces), compared to the vanilla sum-
marizers (Figure 1). Moreover, the Facts (in brackets) in the extrac-
tive summary now contain crucial information related to the alleged
breach of law. However, the Decision part (underlined) is incorrect.
The sentence describes the fact, which is similar to the first sentence
in Facts part. Compared to the SSE method output (Figure 3), it
proves considering different parts together can select more interre-
lated part summaries. As for the abstractive summary, IPS also im-
proves the vanilla summarizers (Figure 1). The summary produced
by the IPS method now contains all three parts: Decision, Facts, and
Reasons. Furthermore, unlike the vanilla summarizer, the Decision
part is correct and factual. However, some decision reasons remain
absent in the Reasons part. The result verifies that the SSE method is
more effective than IPS.
RQ4: Ablation study. We make three ablations to SSE to verify the
effectiveness of the key components of SSE: (1) SSE without DPEnc,
which replaces the document-specific part encodings by randomly
initialized encodings; (2) SSE without TPEnc, which removes the
token-specific encoding and pass the results from DPEnc directly to
the Fusion layer; (3) SSE without DPEnc and TPEnc, which removes
both DPEnc and TPEnc by directly applying different decoders to
generate summaries for different parts.

The results are reported in Table 7. We can observe that the com-
plete SSE consistently outperforms all its ablations. Removing any
of the key components results in a significant performance drop. The
ablation study verifies that both DPEnc and TPEnc are indispensable.

Figure 4. Summaries produced by summarizers with IPS for the same
document used in Figure 1. Sentences annotated by , [ ], and { } represent

the Decision, Facts, and Reasons components, respectively.

When removing DPEnc, the proposed method performs better on the
Decision part. This is because after removing DPEnc, we initialize
part representation randomly and use the same part representations
for all documents. The shared part representations better fit the De-
cision part as the Decision content is often similar across different
documents. In contrast, for summary parts that exhibit high variance
across documents, e.g., Facts and Reasons, removing DPEnc causes
significant performance degradation. The results justify DPEnc’s ef-
fectiveness in producing part representations that are specific to the
source document’s content. Considering the overall performance,
DPEnc is effective and indispensable in most cases.

5 Conclusion

This paper finds summaries in the legal domain are well-structured
and proposes to use the structure information to improve the gener-
ated summary quality. First, we present a straightforward solution to
apply existing summarizers to the structured summary. We named the
method Independent Part Summarizer, IPS. It can generate each part
summary by training based on each specific part summary. But the
approach costs a lot of memory and training time. Then, we propose
a Summary Structure Enhanced (SSE) method to align the content of
the document to different summary parts and generate part-specific
summaries. SSE can be applied to state-of-the-art summarizers with
the Encoder-Decoder framework. SSE does not need to train sev-
eral times for different parts. Therefore, SSE is more efficient than
IPS. Experiments on two legal document datasets from two countries
show that SSE improves the quality of generated summaries.5

5 The code and datasets used in this paper will be released in https://github.
com/77-qiqi-wang/SSE.
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For privacy and ethical reason, we deleted all personal information
in example texts, including Figure 1, 3, and 4. Therefore, they dif-
fer from the original text. Judgments in two datasets used in this re-
search are available to the members of the public once they have
logged into China Judgments Online (https://wenshu.court.gov.cn/)
and New Zealand Legal Information Institute (http://www.nzlii.org/).
Nevertheless, to further protect the privacy of participants in the pro-
ceedings, when we publish our datasets, we will only publish the case
reference number and URL instead of the full text. Furthermore, the
published index datasets will only be allowed to be used for research
reasons, not for any other purpose. To access the original judgments
in China Judgment Online or New Zealand Legal Information Insti-
tute, please follow the websites’ terms and conditions.
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