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Abstract. Monocular 3D object detection is an inherently ill-posed
problem, as it is challenging to predict accurate 3D localization from
a single image. Existing monocular 3D detection knowledge distilla-
tion methods usually project the LiDAR onto the image plane and
train the teacher network accordingly. Transferring LiDAR-based
model knowledge to RGB-based models is more complex, so a gen-
eral distillation strategy is needed. To alleviate cross-modal prob-
lem, we propose MonoSKD, a novel Knowledge Distillation frame-
work for Monocular 3D detection based on Spearman correlation
coefficient, to learn the relative correlation between cross-modal fea-
tures. Considering the large gap between these features, strict align-
ment of features may mislead the training, so we propose a looser
Spearman loss. Furthermore, by selecting appropriate distillation lo-
cations and removing redundant modules, our scheme saves more
GPU resources and trains faster than existing methods. Extensive
experiments are performed to verify the effectiveness of our frame-
work on the challenging KITTI 3D object detection benchmark. Our
method achieves state-of-the-art performance until submission with
no additional inference computational cost. Our codes are available
at https://github.com/Senwang98/MonoSKD.

1 Introduction

Due to its widespread applications, 3D object detection has attracted
significant attention in augmented reality, autonomous driving, and
robot navigation. Accurate 3D localization is the basis for ensur-
ing security, so the key to 3D object detection is to obtain accu-
rate 3D localization. According to the input resources, the exist-
ing 3D object detectors can be divided into four categories: LiDAR
point cloud-based [19], stereo image-based [13], monocular image-
based [31, 42] and multi-modality-based methods [36]. The indus-
try usually chooses LiDAR point cloud-based, stereo image-based,
or multi-modality-based methods because they can directly perceive
the depth information of surroundings. Compared with LiDAR sen-
sors and stereo cameras, monocular cameras are low-cost and flex-
ible for deployment. Considering the above unique advantages, the
community has begun to pay more attention to monocular 3D object
detection.

Notable progress in monocular 3D object detection has been
achieved in recent years. Nevertheless, there still exists a consid-
erable performance gap between the monocular image-based and
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Figure 1: Comparison of different distillation strategies. (a) The
loss of mask L1 used in MonoDistill [9], where the mask is used to
filter the background. (b) The Pearson loss proposed in PKD [4] is
equivalent to normalization combined with L2 loss. (c) Our Spear-
man distillation loss for monocular 3D detection.

LiDAR-based methods. Compared with the direct acquisition of ac-
curate depth by LiDAR, predicting depth from monocular images
is an inherently ill-posed problem [23]. To mitigate this issue, sev-
eral works [23] take monocular depth estimation networks to pro-
vide dense depth maps. Recently, some works [18,41] view depth
estimation as an auxiliary task to introduce depth-aware features for
object detectors, achieving remarkable performance improvement.
However, these detectors are still not robust enough for depth esti-
mation, resulting in inevitable depth estimation errors.

To alleviate the above problem, MonoDistill [9] proposes a
monocular 3D detection knowledge distillation (KD) framework to
transfer the depth-related knowledge of LiDAR signals to the RGB
student model to improve the robustness of the detector. MonoDistill
projects the LiDAR signals into the image plane to generate the depth
maps and trains the teacher model. In this case, directly forcing the
teacher and student to align at pixel level on the feature maps is sub-
optimal because cross-modal differences will mislead training. Here,
LiDAR signals are only used for training, and the student network
is a standard monocular 3D detection network during the inference
stage. Moreover, PKD [4] has proven that applying normalization in
2D object detection can bridge the feature gap between the student
and the teacher. However, due to vast modal differences, PKD only
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Figure 2: Visualization of the feature maps and dominant channels. Top: Visualization of teacher and student’s neck feature maps. Bot-
tom: Dominant channels in neck stage "P2’. Let s;.,,, € R denote the feature vector of pixel (u,v) from I-th neck stage and omit | for
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clarity. Then number; =3 l[argmax, su.» = i) where ¢ denotes the channel index.

has a slight improvement in the cross-modal task. In Figure 1 (a)
and (b), we show the two feature distillation strategies adopted by
MonoDistill and PKD. The Mask L1 loss used in MonoDistill di-
rectly aligns the foreground regions of the feature maps from teacher
and student, and PKD aligns normalized feature maps. At the top
of Figure 2, the visualized feature maps show huge differences be-
tween teacher and student, especially in foreground regions. In con-
trast, the visual feature map of MonoSKD is closer to that of the
teacher. The blue curve at the bottom of Figure 2 represents the
dominant channel of the naive feature maps. The teacher’s and stu-
dent’s dominant channels show the vast channel difference. Mean-
while, we migrate the PKD distillation strategy to the monocular 3D
detection field and use the yellow curve to represent the dominant
channel of the normalized feature maps. Compared to the student,
MonoDistill and MonoSKD are more similar to teachers on the blue
curve. For quantitative evaluation, we choose Pearson and Spearman
correlation coefficients as quantitative metrics and compare student,
MonoDistill, and MonoSKD with the teacher’s dominant channel
curve. The closer the metrics are to 1, the better. Even though the
feature difference after normalization is reduced (-0.048 — 0.35), it
still faces vast channel differences. Normalization will destroy the
dominant channel ranking relationship, so the Spearman correlation
coefficient drops (0.27 — 0.21). Therefore, although PKD has im-
proved on the Pearson metric, it can disrupt the ranking relationship
between features, thereby reducing the Spearman metric. Compared
with MonoDistill, the MonoSKD proposed in this paper is more sim-
ilar to the teacher’s dominant channel. MonoSKD achieves better re-
sults than MonoDistill on both metrics because feature maps of dif-
ferent modalities have significant pixel-level differences, making it
challenging to satisfy strict pixel alignment.

Considering the above deficiencies, we try to mine more general
knowledge of cross-modal features, such as relative relationships.
Therefore, we introduce the Spearman correlation coefficient (SCC)
in the monocular 3D detection distillation framework to learn the
ranking relationship between cross-modal features. In Figure 1 (c),
we show the process of Spearman loss. It can be seen that Spearman
loss only cares about sorting information between features rather
than specific values, which is more suitable for cross-modal tasks.

Besides, we find that the existing distillation framework suffers
from redundant distillation modules. We select the appropriate dis-
tillation location and remove redundant modules, which saves about
30% of the average GPU memory usage, accelerates training, and
improves distillation performance.

To verify our scheme’s effectiveness and generality, we perform
distillation experiments on three recent monocular 3D detectors, in-
cluding MonoDLE [24], GUPNet [22], and DID-M3D [29]. As ex-
pected, our method dramatically improves the performance of these
three detectors on the KITTI [11] benchmark.

In summary, our contributions are listed as follows:

e We propose a general Spearman distillation strategy for the knowl-
edge distillation task of monocular 3D detection to learn the rank-
ing relationship between features and improve performance.

e We find that MonoDistill suffers from redundant distillation mod-
ules, and our redesigned distillation framework saves an average
of 30% of GPU memory and accelerates training while improving
distillation performance.

e We conduct extensive experiments on three detectors using the
challenging KITTI benchmark to demonstrate the effectiveness
and generality of our framework. Our method achieves state-of-
the-art performance with no extra inference computational cost.

2 Related Work
2.1 Monocular 3D object detection

Given an input image, monocular 3D object detection aims to predict
a 3D bounding box represented by its location, dimension, and orien-
tation for each object. Based on whether to use additional data, exist-
ing methods can be divided into two categories: standard monocular
3D detectors and detectors using additional data. Standard monocular
3D detection methods such as MonoDLE only use the RGB images,
annotations, and camera calibrations provided by KITTI dataset [11]
to predict 3D bounding boxes. Mousavian et al. [26] combined es-
timated 3D object orientation and dimensions with the geometric
constraints on translation imposed by the 2D bounding box to re-
cover 3D locations. MonoPair [8] encoded spatial constraints for
partially-occluded objects from their adjacent neighbors to improve
the monocular 3D object detection. Qin et al. proposed MonoGR-
Net [30] for monocular 3D object detection via geometric reasoning
in both the observed 2D projection and the unobserved depth dimen-
sion. OFTNet [32] introduced an orthographic feature transform to
map image-based features into an orthographic 3D space. Instead of
directly regressing depth, some works such as GUPNet predicted 2D
and 3D heights via uncertainty modeling and recovered 3D locations
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based on geometric priors. Meanwhile, several works [20, 42] uti-
lized keypoint-based geometric constraints to improve the monocu-
lar 3D object detection further. These standard monocular 3D object
detectors had achieved prominent progress but still suffered from the
unsatisfactory performance of the 3D locations.

On the other hand, some methods use additional data. Deep
Manta [5] improved performance by using more detailed anno-
tated locations of key points, e.g., wheels, as training labels. several
works [25] use the CAD models as shape templates to get better ob-
ject geometry. Specifically, AutoShape [21] generated shape-aware
key points via CAD models to boost the detection performance. Sev-
eral works [10, 23] accomplished monocular 3D object detectors by
directly taking depth maps from off-the-shelf depth estimators as ex-
tra inputs. Other works utilize additional data to help with online
depth estimation. For example, DD3D [27] utilized a large private
dataset and the KITTI depth dataset for depth pre-training to im-
prove detection performance. MonoDTR [18] proposed an end-to-
end transformer for monocular 3D object detection, which utilized
depth maps as auxiliary supervision. Recently, DID-M3D introduced
dense depth maps to decouple the instance depth. However, these de-
tectors are still not robust enough due to unavoidable depth errors.

2.2 Knowledge distillation

The concept of knowledge distillation (KD) [15] was first proposed
for model compression, which trains student models with GT la-
bels and soft labels from teacher networks. Instead of transferring
knowledge from teachers’ responses, Romero et al. [33] proved that
intermediate features distillation can also guide the training of stu-
dent networks. After that, more and more tasks utilized knowledge
distillation to achieve a remarkable performance improvement, such
as object detection [4] and semantic segmentation [35], etc. Specif-
ically, KD in object detection is usually divided into three cate-
gories: feature-based, relation-based, and response-based. Feature-
based KD usually carefully designs a mask for knowledge localiza-
tion and transfers knowledge after feature alignment (such as dimen-
sion and semantic alignment). Relation-based KD considers the dif-
ference in feature relations instead of the pixel-to-pixel difference
between corresponding feature maps. Response-based KD is a com-
monly used and efficient distillation method, using the teacher’s pre-
diction as a soft label to supervise the student network.

For object detection, Chen et al. [6] first introduced knowledge dis-
tillation to 2D object detection, which distilled the neck, regression
head, and classification head of detectors. Afterward, Wang et.al [38]
proposed a fine-grained feature imitation method. Instead of distill-
ing foreground object regions, Guo et al. [12] proposed that the distil-
lation of background regions can also be effective. Recently, PKD in-
troduced Pearson correlation coefficient (PCC) [1] and normalization
strategy for homogeneous and heterogeneous detectors. For 3D ob-
ject detection, Guo et al. proposed LiGA-Stereo [13] to learn stereo-
based 3D detectors under the guidance of high-level geometry-
aware representations of LiDAR-based detection models. PointDis-
tiller [40] designed a structured knowledge distillation framework for
point clouds-based 3D detection. MonoDistill achieved state-of-the-
art performance by proposing a teacher model based on inputs of a
projected LiDAR signals to guide student detectors with spatial cues
for monocular 3D object detection. Nevertheless, MonoDistill’s strict
alignment of cross-modal features is suboptimal.

3 Methodology
3.1 Overview and Framework

General monocular 3D detection takes an image captured by an RGB
camera as input, predicting 3D bounding boxes of objects for each
object in 3D space. The 3D bounding boxes are usually represented
by 3D center location (z,y, z), dimension (h,w, (), and the orien-
tation 6. Most existing monocular 3D detectors obtain 2D features
through the backbone and neck and recover 3D locations through
multiple independent heads.

As shown in Figure 3, our distillation method differs from the ex-
isting MonoDistill in the knowledge distillation loss function and the
selection of distillation location. On the one hand, we abandon the
strict feature alignment distillation strategy and introduce a relation-
based Spearman distillation loss, which adopts a more general distil-
lation alignment strategy and is more suitable for cross-modal distil-
lation. On the other hand, MonoDistill fuses and distills the output
features of the backbone. We find that MonoDitill has redundant dis-
tillation modules, resulting in inefficient distillation. Thus, we use
the neck output feature as the distillation object, so the heavy feature
fusion module is removed, which allows us to improve performance
while saving about 30% of GPU memory and speeding up training.

3.2  Knowledge Distillation with Spearman
Correlation Coefficient

We empirically find that the discrepancy of predictions between the
RGB-based student and LiDAR-based teacher may tend to be pretty
severe. In this case, directly forcing the teacher and student to align
at pixel level on the feature maps is suboptimal because cross-modal
differences will mislead training. Instead of strictly aligning features,
we guide distillation training with looser constraints. Recently, PKD
introduced the Pearson correlation coefficient for object detection.
PKD has proved that applying PCC for feature maps is equivalent
to normalization combined with mean square error. The normaliza-
tion mechanism bridges the gap between the activation patterns of
the student and the teacher. However, our experiment shows a small
gain when applying PKD to monocular 3D detection distillation (see
Appendix A.6). As is shown in Figure 2, the activation patterns of the
teacher and student networks are seriously different. Although nor-
malization alleviates the differences between teachers and students,
the differences in the cross-modal task are still considerable.

Considering the enormous cross-modal differences, the direct
alignment of specific values between feature maps is too rigorous for
network training. To seek a looser distillation strategy, we consider
the relative correlation between distillation features, so the Spearman
correlation coefficient is introduced. Such a distillation strategy can
reduce the difficulty of distillation and further improve performance.
We adopt Spearman’s distance as the metric, i.e.,

1

L
£scc(syt) = Z(l _TSCC(Sl7tl)) (1)
=1

il

Tsces Ly S, t represent the Spearman correlation coefficient, number
of the feature maps from neck, student feature maps, and teacher
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Figure 3: Illustration of the proposed MonoSKD. The overall design follows MonoDistill. First, we train the teacher network offline with the
processed GT depth, which shares the same architecture as the student. Second, we load and freeze the teacher network and guide the student
network with the teacher’s features and responses. In the inference phase, we only use the parameters of the student network.

feature maps respectively,

Cov(R(s), (R(1))

roee(5:0) = S ((R(s) St (R(D)
P (R(s:) ~R(s ))(Rm_m))
VI (R(s) — R(s)2/S 2 (R(t:) — R(1)?
2)

where B denotes batch size, R(s;) is rank index of s;, Cov(R(s)) is
the covariance of R(s), R(s) and Std((R(s)) denote the mean and
standard derivation of R(s), respectively.

However, to evaluate the ranking relationship between different
features, the Spearman correlation coefficient requires a ranking op-
eration, which is not differentiable. Fortunately, Blondel et al. [2] in-
troduced a novel method for fast differentiable sorting and ranking,
so we adopted it.

3.3 Selection of Distillation Objects

Although MonoDistill proposes a practical monocular 3D detection
knowledge distillation framework, it still faces the problem of exces-
sive GPU memory usage. Specifically, in order to more effectively
distill the output features of the backbone, MonoDistill introduces
an attention-based feature fusion module. We argue that this strategy
is inefficient and redundant. In contrast, we directly select the multi-
scale feature maps of the neck as the distillation objects to deal with
rich spatial information because the neck has the function of fea-
ture fusion. Another empirical explanation for choosing the feature
map output from the neck as the object of distillation is that shallow
features are more susceptible to noise than high-level features. Re-
moving the heavy fusion module can save 30% GPU memory and
speed up training. In particular, to introduce more information to aid
in distillation, we keep the first layer output of the neck for distilla-
tion, which MonoDistill discards. In our experiments, selecting the
multi-scale features of the neck for distillation can also improve per-
formance (see Table 2 for more details). In Figure 4, we show the
feature fusion process of the neck and the selected objects for distil-
lation.

P3 P2
160 < 48 320 x 96

P2
320 x 96

Up-sampling
Operation

3
160 x 48

Feature
T2 :] Aggregation
-321} = 96 Node

Figure 4: Illustration of our distillation object selection strategy.
The green rectangle and orange arrow denote the feature aggregation
node and up-sampling operation. The feature maps in the blue rect-
angle will be distilled.

3.4 Other Knowledge Distillation Strategy

By proposing a distillation strategy using the Spearman correlation
coefficient to mine the ranking knowledge of networks across differ-
ent modalities, we alleviate the misleading training problem faced by
strict feature alignment distillation. However, the knowledge learned
by the student model still needs to be improved to support the perfor-
mance requirements of the 3D detector because the ranking relation-
ship cannot fully represent the similarity between features. In order
to obtain high-performance detectors, we still need a strict relational
distillation to achieve high feature similarity in advance. We find that
strict relation distillation combined with loose Spearman distillation
can transfer the dark knowledge of the teacher model more effec-
tively. Based on the above considerations, we retain the scene relation
distillation in MonoDistill and let it play the role of strict relational
distillation. Define f; and f; denote the 5*" and j*" feature vector,
and we calculate the similarity map as follows:

It
Si ;= —r= 3
A T TS @)

After that, we utilize L1 loss to train similarity maps of the teacher
and student network.

1 K K
— t s
Loa = 7= > D IISi; = Sislh “)

i=1 j=1
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Table 1: Quantitative comparisons of the Car category on the KITTI testing set. The best results are listed in red and the second in blue.
Note that DD3D employs the large private DDAD15M dataset (containing approximately 15M frames).

Methods Venue Extra Data Runtime Easy APMiV[((Sia.r test) Hard EasyAPB E&égar test)HaI d
MonoDLE [24] CVPR 2021 None 40ms 17.23 12.26 10.29 24.79 18.89 16.00
MonoEF [44] CVPR 2021 None 30ms 21.29 13.87 11.71 29.03 19.70 17.26
MonoFlex [42] CVPR 2021 None 35ms 19.94 12.89 12.07 28.23 19.75 16.89
MonoRCNN [34] ICCV 2021 None 70ms 18.36 12.65 10.03 25.48 18.11 14.10
GUPNet [22] ICCV 2021 None 34ms 22.26 15.02 13.12 30.29 21.19 18.20
MonoCon [20] AAAI 2022 None 26ms 22.50 16.46 13.95 31.12 22.10 19.00
Kinematic3D [3] ECCV 2020 Temporal 120ms 19.07 12.72 9.17 26.69 17.52 13.10
AutoShape [21] ICCV 2021 CAD 40ms 22.47 14.17 11.36 30.66 20.08 15.95
PatchNet [23] ECCV 2020 LiDAR 400ms 15.68 11.12 10.17 22.97 16.86 14.97
D4LCN [10] CVPR 2020 LiDAR 200ms 16.65 11.72 9.51 22.51 16.02 12.55
DDMP-3D [37] CVPR 2021 LiDAR 180ms 19.71 12.78 9.80 28.08 17.89 13.44
CaDDN [31] CVPR 2021 LiDAR 630ms 19.17 13.41 11.46 27.94 18.91 17.19
MonoDTR [18] CVPR 2022 LiDAR 37ms 21.99 15.39 12.73 28.59 20.38 17.14
MonoDistill [9] ICLR 2022 LiDAR 40ms 22.97 16.03 13.60 31.87 22.59 19.72
DID-M3D [29] ECCV 2022 LiDAR 40ms 24.40 16.29 13.75 32.95 22.76 19.83
DD3D [27] ICCV 2021 External - 23.22 16.34 14.20 32.35 23.41 20.42
CMKD [16] ECCV 2022 External 630ms 25.09 16.99 15.30 33.69 23.10 20.67
MonoSKD+MonoDLE - LiDAR 40ms 24.75 17.07 14.41 34.43 23.62 20.59
Improvements (to baseline) +7.52 +4.81 +4.12 +9.64 +4.73 +4.59
MonoSKD+DID-M3D - LiDAR 40ms 28.43 17.35 15.01 37.12 24.08 20.37
Improvements (to baseline) +4.03 +1.06 +1.26 +4.17 +1.32 +0.54

Where L.q4, K, s, t represent the scene distillation loss, the number
of feature vectors, and the student and teacher feature maps, respec-
tively.

Furthermore, like most distillation works, we use the teacher’s pre-
dictions as soft labels to guide the student network training. The ob-
ject response distillation loss can be formulated as follows:

N
L :
Loa = 3 2 IMy i = pil ®)

where N, My, p;, and p}, represent the number of detection heads, the
Gaussian-like mask, and prediction of the k' detection head from
student and teacher network.

3.5 End-to-end Training

For the convenience of expression, we define the inherited losses
from the student network as L,cq, Lcis and Lgep for bounding box
regression, object classification, and depth regression, respectively.
The total training loss is:

L= ﬁreg + Accls + Edep + Lod + £sd + aﬁscc (6)

where « are hyper-parameters to balance the detection training loss
and distillation loss. Rather than specially selecting the optimal
hyper-parameters, we choose o = 1 for simplicity.

4 Experiments
4.1 Dataset and Metrics

Following the previous works [22, 24], we perform experiments on
the challenging KITTI [11] dataset. The KITTI dataset comprises
7,481 training samples and 7,518 testing samples, where the labels of
training samples are publicly available, and the labels of testing sam-
ples are private, which are only used for online evaluation and rank-
ing. To conduct ablations, we further divide the training samples into

a train set (3,712 samples) and a validation set (3,769 samples), fol-
lowing prior works [7]. The final results of our method are reported
on testing set, while the ablation studies are conducted on the vali-
dation set. Besides, KITTI divides objects into easy, moderate, and
hard levels according to the 2D box height, occlusion, and truncation
levels of one object. In KITTI, only three categories of performance
are mainly concerned: car, pedestrian, and cyclist, among which the
performance of car with the moderate level is the most critical. For
evaluation metrics, both 3D detection and Bird’s Eye View (BEV)
detection are evaluated using the A Pso metric.

4.2 Implementation Details

To demonstrate the generalizability and effectiveness of our method,
we choose three monocular 3D detection networks for distillation ex-
periments: MonoDLE, GUPNet, and DID-M3D. We accomplish our
method with the PyTorch framework [28]. Taking the MonoDLE de-
tector as an example, we conduct experiments on 2 NVIDIA RTX
3090 GPUs with batch size 12 and train it for 160 epochs, which
takes almost 10 hours. See Appendix A.2 for experimental details
of GUPNet and DID-M3D. We choose the Adam optimizer with the
initial learning rate 1e ~>. We apply the linear warm-up strategy for
the first five epochs of training, which increases the learning rate to
le™3. Afterward, the learning rate decays in epochs 95 and 125 with
a rate of 0.1. For the backbone, neck, and head, we follow the de-
sign of MonoDistill. We train the teachers with the same dense depth
maps used in MonoDistill for a fair comparison. To execute the dis-
tillation process, we have pre-trained the teacher network, and the
teacher performance is demonstrated in Appendix Table 9. Addition-
ally, our code will be open-sourced for reproducibility.

4.3 State-of-the-art Comparisions

As is shown in Table 1, we compare the experimental results of
our framework and other state-of-the-art methods on the KITTI
testing set. Our schemes are significantly improved compared to
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Figure 5: Qualitative results. We employ blue, red, and green 3D boxes to denote the DID-M3D baseline, MonoSKD, and ground truth results.

Additionally, we use red circles to highlight significant differences.

Table 2: Ablation studies on the KITTI validation set. We conduct
experiments based on the MonoDLE network. SD, SCC, and OD de-
note the scene distillation, the Spearman distillation, and the object
response distillation, respectively. {: Distilled object selection strat-
egy proposed in Section 3.3.

AP5p (Car val) APpgy (Car val)

# |SD SCC oD Easy Mod. Hard | Easy Mod. Hard
MonoDistill | 2440 1847 1646 | 32.86 25.14 21.99
Our MonoDistillT | 24.67 18.64 1574 | 3440 2581 2245
(a) 19.86  15.11 12.64 | 2693 21.03 18.33
b)| v 2135 1697 1459 | 29.54 2271 19.69
(© v 2126 1693 1447 | 29.16 2244 19.53
(d) v 2223 1760 1502 | 3147 2375 21.46
@|v v 2141 17.17 1467 | 2971 2297 20.04
o | v v | 2474 1844 1563 | 3383 2518 21.90
© vV | 2463 1832 1549|3330 2514 21.82
M| v v v |2610 1918 1696 | 3477 2575 22.44

\ | +6.24 +4.07 +432 | +7.84 +4.72 +4.11

the respective baseline models and outperform other state-of-the-
art methods. On the car category that KITTI cares most about,
our MonoSKD+DID-M3D results achieve state-of-the-art perfor-
mance on almost all 3D-level and BEV-level metrics. In particular,
compared with the second-best results, our scheme achieves up to
13.31% and 7.81% relative performance improvements on 3D-level
and BEV-level metrics. Our scheme can theoretically be applied to
any monocular 3D detector and improve performance.

4.4 Ablation Study

In this section, we analyze the effectiveness of each part of our dis-
tillation framework on the KITTI validation set. As shown in Table
2, considering that GUPNet and DID-M3D uses the ROI-align oper-
ation and the reproducibility cannot be guaranteed, we conduct the
ablation experiment base on the MonoDLE network. It is noteworthy
that we conduct our ablation experiments on the redesigned distilla-
tion framework (discussed in Section 3.3). Our redesigned distilla-
tion framework is higher than the original MonoDistill in most indi-
cators, which has lower GPU memory occupation and faster training
speed (see Appendix A.3). Specifically, all distillation schemes im-
prove the accuracy of the baseline model, and their improvements
are complementary. Compared with the baseline, the final model can
improve the absolute detection performance by 6.24, 4.07, 4.32 and

absolute BEV performance by 7.84, 4.72, 4.11 on the easy, moder-
ate, and hard levels, respectively.

4.5 Distillation with Different Detectors and
Backbones

To further demonstrate the effectiveness and generalizability of our
method, we select three monocular 3D detection networks and com-
pare our method with the competitive MonoDistill scheme. As shown
in Table 3, our distillation scheme has achieved better performance
than MonoDistill on all detectors in terms of detection performance
and BEV performance, which also verifies the superiority of our
scheme.

In Table 4, we select representative backbones like ResNet [14]
and MobileNetv3 [17] to supplement related experiments, and the
results show that our scheme is not sensitive to the backbones.

Table 3: Distillation performance with different detectors of the
Car category on the KITTI validation set. {: our reproduced re-
sults, whose performance is much higher than that reported in the
original MonoDistill paper.

APs3p (Car val) APpgy (Car val)

Methods Easy Mod. Hard | Easy Mod. Hard
MonoDLE 1986 15.11 12.64 | 2693 21.03 1833
+MonoDistill 2440 1847 1646 | 32.86 25.14 21.99
+Ours 26.10 19.18 16.96 | 34.77 2575 22.44
GUPNet 21.19 1623 1357 | 30.14 2238 19.29
+MonoDistillt | 2434  17.72  14.89 | 31.74 2322 19.98
+Ours 2530 18.06 1537 | 32.54 2372 21.71
DID-M3D 2575 1777 1474 | 33.39  23.66  20.86
+MonoDistill 27.08 1931 16.16 | 35.85 2547 21.73
+Ours 2891 2021 16.99 | 37.66 2641 23.39

4.6  Qualitative Results

In order to demonstrate the superiority of our method more intu-
itively, we visualize the results predicted by the network. As shown
in Figure 5, we apply the red boxes to represent the result of our
proposed MonoSKD+DID-M3D. Our model has better localization
performance than the baseline model.

4.7  Pedestrian/Cyclist Detection

To demonstrate the generalizability of other categories, we perform
experiments on cyclist and pedestrian categories (see Table 5). We
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Table 4: Quantitative comparison of different backbones on
KITTI validation set. We conduct experiments based on MonoDLE
network. The best results are listed in bold.

AP3p (Car val) APpgy (Car val)

Backbones Easy Mod. Hard | Easy Mod. Hard
Res18 (T) 66.54 4831 4156 | 77.78 61.60 52.96
Res18 (S) 1796 1391 12.17 | 2478 18.74 16.72
+MonoDistill 20.25 15.60 13.12 | 27.88 20.83 17.95
+MonoSKD 21.58 16.31 13.70 | 28.52 21.55 18.48

MobileNetv3-L (T) | 65.77 4855 40.81 | 77.36  60.75 52.19
MobileNetv3-L (S) | 15.73 12.37 10.33 | 2347 17.57 15.67
+MonoDistill 16.59 1293 10.71 | 25.34 19.58 16.81
+MonoSKD 18.15 14.02 12.28 | 26.97 20.24 17.34

use the pre-trained model provided by DID-M3D as the baseline and
retrain the three-category teacher model. Our scheme achieves the
best results in almost all indicators. Moreover, we provide the full
three-category performance in Appendix Table 10. It is worth noting
that the performance of the Cyclist in MonoDistill actually drops af-
ter distillation. We guess this is because the bounding boxes of the
Cyclist category often contain more background pixels, so the align-
ment based on L1 loss misleads learning. In contrast, our Spearman
distillation scheme is more relaxed and steadily improves detection
performance.

Table 5: Performance of Pedestrian/Cyclist detection on the
KITTI validation set under IoU criterion 0.5. The best results are
listed in bold.

APs3p(Pedestrian) AP5p(Cyclist)
Methods ‘ Easy Mod. Hard | Easy Mod. Hard
DID-M3D 11.15  8.65 7.15 | 540 2.8l 2.72
+MonoDistill | 1596 11.86 9.80 | 4.73 269 250
+MonoSKD 16.24 1192 928 | 550 345 3.00

4.8 Sensitivity study of loss weight «

In Eq. 6, we use the loss weight hyper-parameter « to balance the
detection training loss and distillation loss. Here, we conduct several
experiments to investigate the influence of a.. As shown in Table 6,
the worst result is just a 0.38 mAP drop compared with the best result
(19.18 — 18.80), indicating our method is not sensitive to the hyper-
parameter ov.

Table 6: Ablation study of loss weight hyper-parameter «.

APBEV (Car val)

AP3p (Car val)
Easy Mod. Hard

Easy = Mod. Hard

0.5 | 25.10 18.80 16.58 | 3442 25.60 22.16
1.0 | 26.10 19.18 16.96 | 34.77 25.75 22.44
20 | 2638 19.05 16.81 | 34.81 2568 2238

4.9 Insights into Spearman Distillation and
Downstream Task Generality

Spearman distillation introduces a loose constraint between cross-
modal features instead of strict alignment and is more suitable for
cross-modal tasks. The 3D object detection task is a typical cross-
model task for its multiple modalities (e.g., Camera, LiDAR, and
Radar) inputs, and thus, we choose monocular 3D object detection
task to verify our method. We can put the whole story on the knowl-
edge distillation itself. Spearman distillation has strong knowledge
transfer potential and can be easily extended to downstream tasks.

Take 2D detection as an example (Table 7). SKD can achieve signifi-
cant performance gains without scene relation distillation, even with
heterogeneous teachers. CMKD is a distillation method for BEV
paradigm 3D detection, so we replaced the MSE loss in CMKD with
the proposed SKD. Table 8 reveals that SKD suits the BEV paradigm
detectors. Compared with CMKD, SKD brings performance im-
provements in almost all indicators.

Table 7: Distilling Student Detectors with Homogeneous and Het-
erogeneous Teachers on the COCO dataset.

Method schedule mAP APs AP,y APp
Retina-ResX101 (T) 2x 40.8 22.9 44.5 54.6
Retina-Res50 (S) 2% 374 20.0 40.7 49.7
+FRS [43] 2x 40.1 21.9 43.7 543
+FGD [39] 2X 40.4 23.4 44.7 54.1
+SKD (Ours) 2x 40.6 22.0 44.8 54.8
FCOS-X101 (T) 2x+ms 42.7 26.0 46.5 54.7
Retina-Res50 (S) 1x 36.5 20.4 40.3 48.1
+SKD (Ours) 1x 40.1 22.7 44.3 53.8

Table 8: Effectiveness experiments under the BEV paradigm.

Method ‘ AP3p (Car val) ‘ APpgy (Car val)

Easy Mod. Hard | Easy Mod. Hard
CMKD [16] | 23.49 15.56 12.97‘31.81 21.02 18.57

+SKD (Ours) | 23.59 15.79 13.16 | 31.79 22.27 19.05

5 Conclusion

In this paper, we propose MonoSKD, a cross-modal distillation
framework for monocular 3D object detection via Spearman’s rank
correlation coefficient. Existing distillation schemes try to strictly
align cross-modal features, thus leading to suboptimal distillation
performance. To alleviate this problem, we propose to use the Spear-
man correlation coefficient to help mine ranking knowledge among
features. To improve distillation efficiency, we select the appropri-
ate distillation objects to save 30% of GPU memory and accelerate
training. We distill three detectors to verify the effectiveness of our
scheme and achieve state-of-the-art performance on the challenging
KITTI benchmark without introducing additional inference costs.
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A Appendix

Considering the space constraints of the main text, we provide more
experimental results and discussions in the supplementary material.

A.1 Motivation

In recent years, remarkable progress has been made in monocular
3D object detection. However, these lightweight detectors face the
problem of low detection performance, so distillation frameworks
such as MonoDistill are proposed to alleviate this problem. In our
research on MonoDistill, we find that the distillation technique used
by MonoDistill is a stricter constraint based on the 2D detection dis-
tillation scheme. Because 2D object detection uses RGB image input,
the difference between the teacher and student models is not vast, so
that we can use a strict distillation strategy. When it comes to monoc-
ular 3D object detection, there is a vast difference in the input of the
teacher and the student model. Directly aligning features may mis-
lead the training, so finding a general and loose distillation strategy
is necessary. Specifically, we try to distill the relative relationship
between features, introducing the Spearman correlation coefficient.

Table 9: Quantitative comparison between teacher and student on
the KITTI validation set. T’ indicates the teacher using the dense
depth maps as input for training and inference. ’S’ indicates the stu-
dent without distillation.

) AP5p (Car val) APpgy (Car val)

Methods Easy @ Mod. Hard | Easy Mod. Hard
MonoDLE (T) | 60.57 45.06 3790 | 7420 5749 50.89
MonoDLE (S) | 19.86 15.11  12.64 | 2693 21.03 18.33
GUPNet (T) 48.54 3288 2744 | 61.29 4358 37.63
GUPNet (S) 21.19 1623 13.57 | 30.14 2238  19.29
DID-M3D (T) | 63.71 43.81 3697 | 7459 55.09 46.52
DID-M3D (S) | 25.75 17.77 1474 | 33.39 23.66 20.86

A.2  More Details of Our Experiments

To execute the distillation process, we have pre-trained the teacher
network, and the performance of teacher and student is demonstrated
in Table 9.

MonoDLE. First, we chose MonoDLE as the baseline model for
our ablation studies because we noticed that GUPNet and DID-M3D
apply ROI-align operation, which is irreproducible during training.
We believe that this property affects the fairness of the experiment.
In contrast, the MonoDLE network has good reproducibility, so we
do ablation experiments based on MonoDLE. The same settings as
MonoDistill are used when choosing MonoDLE as the baseline:
learning rate, optimizer, and batch size.

GUPNet. Because MonoDistill does not open-source the distil-
lation code of GUPNet, we reproduce the relevant results, and our
distillation results have higher performance. In addition, the authors
of GUPNet open-source the pre-trained model, so we directly reuse it
as a student model. Because we use a different PyTorch version, it is
reasonable that the performance of the pre-trained models is slightly
different. For GUPNet, we use three categories in KITTI for training.

DID-M3D. Following the original author’s training setting, the
DID-M3D results we report in the main text are all trained in the
"Car’ category. Again, we keep the same training settings as the orig-
inal paper. It is worth noting that when training the teacher models
of MonoDLE and GUPNet, the GT depth map we use is provided

by MonoDistill. However, DID-M3D has already provided a pre-
processed depth map. At this time, we directly reuse the depth map
provided by DID-M3D.

A.3  Advantages of the Redesigned Framework

To validate the effectiveness of our distillation framework, we report
the average GPU memory and training time per epoch for MonoDLE
and DID-M3D, respectively. As is shown in Figure 6, compared with
MonoDistill, our distillation framework saves at least 30% of GPU
memory while bringing faster training. In addition, we quantitatively
show that the new framework still brings performance improvements
in ablation experiments (see Table 2).

A.4  Detailed Car/Pedestrian/Cyclist Detection

Compared to the *Car’ category, the 'Pedestrian’ and ’Cyclist’ cat-
egories have small sizes, non-rigid structures, and limited training
samples, so they are much more challenging to detect. As shown
in Table 10, we report the full detection and BEV performance
for Pedestrian, Cyclist and Car categories, and we can see that our
scheme is still effective. To avoid ambiguity, we clarify that DID-
M3D is only trained in the Car category in the main text, so Car’s
performance will be slightly higher. In order to compare with the
pre-trained model provided by DID-M3D, we retrain the models of
three categories.

Observing Table 10, our MonoSKD is better on almost all metrics
but slightly weaker on *Hard’ metrics for the pedestrian category. It
is reasonable because we scale the feature map during distillation to
speed up the convergence of Spearman loss, so the pedestrian cate-
gory does not get enough training due to its smaller size. In addition,
we find that our scheme has apparent advantages at almost all ’Easy’
and 'Mod.’ levels, proving our point of view from the side. We will
talk about this in the next section.

A.5 Weaknesses of Our Method

Although our scheme has achieved performance improvements on
the KITTI validation set and testing set, it cannot be ignored that our
scheme still has some shortcomings.

We adapt the scaling strategy because the detection task is a dense
prediction task, so too many feature pixels lead to a decrease in sort-
ing efficiency. In order to speed up the training, we adapt the scaling
strategy. Therefore, small objects that originally accounted for a low
proportion of the feature map may disappear entirely after scaling.
Consequently, our method does not all outperform baselines, espe-
cially in "Hard’ settings.

Suggestions. Limited by the currently almost unsolvable sorting
efficiency problem, we recommend that when using Spearman dis-
tillation, determine the feature map size in the distillation process
according to the data set or only distill the object area in the feature
map. In our experiments, we find that by increasing the size of the
feature map during Spearman distillation or focusing on the features
of the object region without scaling, performance improvement can
be obtained. For the former, if the categories are large objects (such
as "car" in KITTI), relatively small feature map sizes can be used to
speed up training. Otherwise, training time will be sacrificed. For the
latter, we only need to use the features of the region of interest with-
out scaling. Considering efficiency issues, our experimental results
in the main text do not adopt these suggestions.
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Figure 6: Average GPU usage and training time of the redesigned distillation framework. We use two GPUs, and the batch size of
MonoDLE is 12, and the batch size of DID-M3D is 16.

Table 10: Performance of Car/Pedestrian/Cyclist detection on the KITTI validation set. Please note, Pedestrian/Cyclist performance is

calculated under IoU criterion 0.5.

Methods AP3D (Car) APBEV (Car) APgD (Ped) APBEV (Ped) AP3D (CyCliSt) APBEV (CyCliSt)

Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard | Easy Mod. Hard

DID-M3D 2536 17.03 14.05[33.90 2325 19.51|11.15 8.65 7.15|12.84 1023 7.90 [540 281 272|597 3.50 3.02

+MonoDistill | 26.14 18.08 14.84|34.50 24.56 20.84|15.96 11.86 9.80 | 17.84 13.64 11.42|4.73 2.69 250|531 2.82 274

+MonoSKD |27.53 18.25 14.96 | 36.15 25.08 21.14|16.24 11.92 9.28 |18.43 13.60 10.77|5.50 3.45 3.00|6.48 3.76 3.59
Table 11: Comparing Pearson and Spearman correlation coeffi- outperforms PKD.

cients on the KITTI validation set. We choose MonoDLE as base-
line model. ’PCC’ stands for Pearson Correlation Coefficient, and
’SCC’ stands for Spearman Correlation Coefficient. The best results
are listed in bold.

Table 12: Comparing Pearson and Spearman correlation coeffi-
cients on the KITTI festing set. We choose MonoDLE and DID-
MB3D as baseline model. The best results are listed in bold.

AP3p(Car val) APgEy (Car val) AP;3p(Car test) APg gy (Car test)
Methods Easy Mod. Hard Easy  Mod. Hard Methods Easy Mod. Hard | Easy Mod. Hard
MonoDistill | 24.40  18.47 1646 | 32.86 25.14 21.99 PKD+MonoDLE 2339 16.51 14.08 | 31.92 22.03 19.90
with PCC 25.08 18.69 16.58 | 33.66 2530 22.11 MonoSKD+MonoDLE | 24.75 17.07 14.41 | 34.43 23.62 20.59
with SCC__ | 26.10 1918 16.96 | 34.77 2575 2244 PKD+DID-M3D 2655 1689 14.74 | 3601 2371 2025
MonoSKD+DID-M3D | 28.43 17.35 15.01 | 37.12 24.08 20.37

A.6  Discussion about Pearson Knowledge Distillation

Our scheme uses the Spearman correlation coefficient. Someone may
wonder why we do not select the Pearson correlation coefficient for
distillation. This section focuses on applying the Pearson correlation
coefficient in cross-modal distillation.

First of all, PKD-based distillation strategies are not suitable for
cross-modal tasks. Although the normalization operation can further
alleviate the feature difference, this method is not the optimal solu-
tion under the premise of a vast modal difference. In the 2D object
detection task, due to the input data’s consistent modality, the whole
task’s distillation is relatively easy, even for heterogeneous 2D detec-
tors.

Besides, PKD is a particular distillation method that considers
both relation-based and feature-based distillation. We think PKD is
more inclined to feature-based distillation and replace the feature
map L1 loss in MonoDistill with PKD. As is shown in Table 11,
the PCC strategy can achieve a certain performance improvement in
the validation set, but the improvement is very limited. In contrast,
our scheme brings a more obvious performance improvement. In Ta-
ble 12, we show the performance results of our scheme and PKD on
the KITTI testing set. The results show that our method significantly
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