
SDV: Simple Double Validation
Model-Based Offline Reinforcement Learning

Xun Wanga, Haonan Chena, Junming Yangb, Zhuzhong Qiana;* and Bolei Zhangc;∗

aState Key Laboratory for Novel Software Technology, Nanjing University, China
bSchool of Modern Posts, Nanjing University of Posts and Telecommunications, China

cSchool of Computer, Nanjing University of Posts and Telecommunications, China
ORCiD ID: Zhuzhong Qian https://orcid.org/0000-0003-1625-7575,

Bolei Zhang https://orcid.org/0000-0002-9406-4499

Abstract. Offline reinforcement learning (RL) aims to learn effec-
tive policies from recorded data without further interactions in the
environments that are often costly or risky. Model-based algorithms,
which begin by constructing an environmental model and then learn
the policy under the model, have become a promising approach.
However, most existing works have been over-conservative to avoid
the out-of-distribution error induced by the model generated samples,
leading to poor performance instead. In this work, we propose a novel
model-based offline RL method, named Simple Double Validation
(SDV). The main idea of SDV is to introduce an additional guid-
ance model to assist the agent in determining the rationality of the
states, combined with an advantage weighting factor to avoid effects
that could potentially mislead the models due to suboptimal samples.
In this way, the agent can be guided to more favourable states with
reliable decisions. We evaluated SDV on the widely studied offline
RL benchmarks and demonstrated its state-of-the-art performance.
At the same time, our work introduces the idea of double validation
and model advantage weighting into the field of model-based offline
RL, providing new insights for future research.

1 Introduction

Reinforcement learning (RL) [24] has achieved state-of-the-art per-
formance in many sequential decision problems [1, 21, 23]. However,
the exploration in RL often carries high costs or significant risks,
and has hindered its application in many real-world fields, such as
robotics [4, 9], healthcare [25, 29], and autonomous driving [11, 32].
Alternatively, historical data records are much easier to collect, and
can reveal system feedbacks under predefined policies. Recent of-
fline RL works have utilized the collected data to learn the policies
directly, so as to avoid expensive online interactions [16, 18], emerg-
ing as promising approaches for boosting the practical application of
RL in aforementioned real-world fields.

In offline settings, as further interactions with the environment are
not allowed, there may be distributional shift between the state-action
pairs from the dataset and the real environment. As a result, poli-
cies with out-of-distribution (OOD) state-action pairs cannot be ac-
curately evaluated in the training stage, and may further mislead the

∗ Correspondence to: Zhuzhong Qian (qzz@nju.edu.cn), Bolei Zhang
(bolei.zhang@njupt.edu.cn).

Start state
Trajectories without guidance
Trajectories with guidance
Latent optimal trajectories

Danger with fake-high rewards

Rewards of different volumes

Target state from guidance

Offline dataset

State space

☠
☠

Figure 1: The illustration of the effect of guidance. The orange arrows
represent the latent optimal trajectories that achieve theoretically
maximum reward. The blue arrows represent the trajectories without
guidance which are prone to fall into danger or fail to achieve high
rewards. The green arrows represent the guided trajectories which
are close to optimal states within the dataset and avoid danger and
achieve higher rewards outside of the dataset.

policy optimization, leading to poor performance during online de-
ployment. Therefore, it is critical to handle the trade-offs between
conservatism and optimism in offline settings. On one hand, conser-
vatism is necessary so that the OOD state-action pairs will be visited
less frequently; On the other hand, over-conservatism may also limit
the performance of the policies severely.

To deal with the above problem, previous works have mainly
adopted model-free and model-based methods. Model-free offline
RL [3, 12, 13, 14, 15, 27, 28] directly trains policy with existing
datasets and incorporates conservatism to constrain the policies. Al-
though they have achieved significant performance gains compared
to the online off-policy RL algorithm, the sample efficiencies are lim-
ited with the size of the dataset. In comparison, model-based offline
RL [10, 20, 22, 26, 30, 31] begins by building an environment model
and trains policy by querying the model to increase sample efficiency.
The model-based approaches for overcoming OOD problem can be
roughly divided into two categories: data augmentation [20, 26] and
policy optimization [10, 22, 30, 31]. The former focuses on expand-
ing the original dataset by generating more similar data using the
model while the latter directly uses classical RL algorithms for pol-
icy optimization on the trained model. Although the latter can uti-
lize the model more sufficiently, the agent-model interactions may
accumulate significant extrapolation error and decrease the policy

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230562

2568

https://orcid.org/0000-0003-1625-7575
https://orcid.org/0000-0002-9406-4499

performance. To address this issue, a common practice is to impose
penalties on the uncertainty of the environment model. However, the
uncertainty estimation of neural network models in practical imple-
mentations may be unreliable [19, 30], which tends to result in over-
conservatism, decreasing the performance of the policy instead.

Rather than estimating uncertainty directly, one natural and feasi-
ble solution to the aforementioned problem is to provide guidance,
navigating the agent to learn a satisfactory policy. Specifically, as il-
lustrated in Figure 1, the orange arrows represent the latent optimal
trajectories that avoid danger and achieve theoretically maximum re-
ward. The goal of offline RL is to learn a policy as close as possible
to these optimal trajectories, using only the available offline dataset,
and maximize the cumulative reward. If without guidance, as shown
by the trajectories consisting of blue arrows, the agent is prone to
fall into danger due to extrapolation errors or fails to achieve high
rewards for over-conservatism. On the contrary, guidance can inform
the agent of the future state, just as the trajectories represented by the
green arrows. With such guidance, the agent can approach optimal
states within the dataset and be navigated to keep away from danger
and achieve higher rewards outside of the dataset. This motivates us
to provide guidance for the agent to improve the performance.

In this work, we propose a novel double-validation-based method:
Simple Double Validation Model-based Offline Reinforcement
Learning (SDV) with a simple yet effective idea. In brief, SDV trains
a guidance model to perform a secondary validation on the next state
predicted by the transition model, which assists the agent in deter-
mining the rationality of that state and ultimately leads to a more
effective policy. Since SDV does not directly estimate uncertainty, it
effectively avoids the issue of excessive conservatism that exists in
prior works. Considering the potential misleading that a large amount
of suboptimal data may have on the models, SDV also introduces
model advantage weighting factors to assist the models in extract-
ing transitions with greater advantages, thereby improving training
performance. To the best of our knowledge, the existing work on
applying weights to model training mainly considers distributional
differences, with few considering advantages.

In summary, the main contributions of this work are:

• SDV, a novel model-based offline RL algorithm that achieves ex-
cellent performance through combination of double validation and
model advantage weighting.

• The idea of double validation and model advantage weighting may
provide new insights for future research.

We tested1 SDV on 9 MuJoCo datasets in the widely studied D4RL
[2] benchmark, and demonstrated the state-of-the-art performance. In
addition, the ablation results we provide indicate that double valida-
tion and model advantage weighting are crucial for the strong perfor-
mance of SDV, especially double validation.

2 Related Work

Extensive efforts have been made to handle the trade-offs between
conservatism and optimism in offline settings. Existing related works
can be mainly divided into two categories: model-free offline RL and
model-based offline RL. The former optimizes policies directly with-
out training a model while the latter learns an environment model
from offline data and trains policies with the help of the model.

Model-free offline RL Model-free offline RL methods [3, 12,
13, 14, 15, 27, 28] train policies directly on the offline dataset with-
out learning an environment model. Previous works have studied
1 Code and appendix are available at https://github.com/Misakau/SDV.

serveral ways to guarantee conservatism, including constraining the
target policy near the behavior policy through behavior regulariza-
tion [3, 14, 27], or avoiding overvaluing OOD state-action pairs by
optimizing policies with conservative Q-value functions [12, 13, 15].
Although these methods are compute-efficient, their inherent limita-
tion of using only offline datasets constrains the policy from better
generalization on OOD data. Xu et al. [28] recently have proposed to
decouple the target state from the target action, enhancing the gen-
eralization performance of the policy on OOD actions. But since the
policy is still trained with states inside the static dataset, their method
fails to process the OOD states.

Model-based offline RL Model-based offline RL methods [10,
17, 20, 22, 26, 30, 31] begins by constructing an environment model
from the offline dataset and then optimize the policy with the model.
Compared to model-free methods, the model improves sample effi-
ciency and enhances generalization ability of the agent to OOD data.
The works related to this direction can be roughly divided into two
subcategories based on the purpose of the model. 1) Data Augmen-

tation [20, 26]. Analogous to imitative learning, these works usually
use models to generate more trajectories similar to offline data, and
then use model-free methods to train policies. This kind of meth-
ods introduce more OOD information via augmented data than pure
model-free methods, but the augmented dataset is still static and con-
strains the policy from further generalization. 2) Policy Optimiza-

tion [10, 22, 30, 31]. These methods, also called as pure model-
based, directly optimize policy with classical RL algorithms on the
pre-trained model. Therefore, as long as the model is appropriate
enough, for example, can prevent the agent from dangerous OOD
states, the policy is highly likely to achieve better performance. In or-
der to learn such an appropriate model, previous approaches [10, 31]
mainly focus on quantifying the uncertainty of the model and impos-
ing penalties on state-action pairs with high uncertainty, pushing the
agent to be conservative enough when exploring the OOD region.
However, accurately quantifying the uncertainty of neural networks
is difficult, so many subsequent works avoids directly quantifying un-
certainty. For example, Yu et al. [30] used conservative policy evalu-
ation to suppress the value function, but have to refer to a certain dis-
tribution. Rigter et al. [22] improved the conservatism through adver-
sarially training pessimistic models, but have to couple model train-
ing with policy optimization. There are also some works [7, 17] have
attempted to improve model accuracy by incorporating penalties for
distributional bias into the learning objectives. However, these ap-
proaches seldom consider advantages when training the models.

In contrast to existing works, our method not only inherits the ad-
vantages of pure model-based offline RL methods, but also avoids
directly quantifying model uncertainty. Instead, it adopts double val-
idation to ensure conservatism without the requirement of reference
distributions or coupled adversarial training. Additionally, it intro-
duces model advantage weighting factors to further prevent the im-
pact of suboptimal data.

3 Preliminaries

MDPs and Offline RL An MDP is defined using the six tuple
M = (S,A, T,R, μ0, γ). S and A represent the state and action
space, respectively. R(s, a) is the reward function, T (s′ | s, a) is
the transition function, μ0 is the initial state distribution, and γ is the
discount factor. In this work, we consider Markovian policy, π(a|s),
which maps each state to the distribution of actions.

The state value function V π
M (s) (also known as the V-value func-

tion) represents the discounted return obtained by executing π from

X. Wang et al. / SDV: Simple Double Validation Model-Based Offline Reinforcement Learning 2569

state s in M : V π
M (s) = Eπ,M

[∑∞
t=0 γ

tR (st, at)
]
. We write V π

M

to indicate the value function under the initial state distribution, i.e.
V π
M = Es∼μ0 [V

π
M (s)]. The goal of a standard MDP is to find the

policy that can maximize V π
M . In order to optimize the policy, it is

also necessary to introduce the state-action value function Qπ
M (s, a)

(also known as the Q-value function), which is the expected dis-
counted return obtained by executing action a in state s and then
executing policy π thereafter.

In offline RL we only have an offline dataset {(si, ai, ri, s
′
i)}|D|

i=1

composed of transitions sampled from real MDP. The goal of offline
RL is to find policy that performs as well as possible during online
deployment without interacting with the real environment.

Model-Based Policy Optimization In line with many exist-
ing works [22, 30, 31], we use Model-Based Policy Optimization
(MBPO) [8] to optimize the policy. MBPO uses the standard Actor-
Critic RL algorithm for policy optimization, but its value function is
trained using the enhanced dataset D ∪ Dmodel, where Dmodel is
the set of synthetic data from the learned model. In order to obtain
Dmodel, MBPO rolls out a batch of k-steps trajectories beginning
with states in D. As for mini-batches to train the policy, MBPO sam-
ples a proportion of f of data points coming from real data D with
the remaining 1 − f proportion coming from Dmodel in each mini-
batch.

Model-based Offline RL algorithm Model-based offline RL
algorithm uses an estimated MDP model to train the pol-
icy. Specifically, it first trains a transition model T̂ from the
dataset, typically through maximum likelihood estimation (MLE):
min

̂T E(s,a,s′)∼D

[
− log T̂ (s′ | s, a)

]
. If the reward model R̂(s, a)

is also unknown, it will also be trained, or generally for convenience,
incorporated into T̂ (s′, r | s, a) as part of the state. Apart from R̂ and
T̂ , the state and action space, initial state distribution and discount
factor are consistent with the real MDP. As long as the estimated
MDP model M̂ = (S,A, T̂ , R̂, μ0, γ) is constructed, any planning
or RL algorithm can be used to optimize the policy π̂ within it.

However, directly applying model-based methods, such as MBPO,
to offline policy optimization does not perform well due to afore-
mentioned distributional shift [10]. To address this issue, we propose
a novel method that improves the reliability of policy optimization
through double validation. Meanwhile, it also prevents the models
from being misled by suboptimal data with a weighting factor based
on advantages.

4 Simple Double Validation Model-based Offline
Reinforcement Learning (SDV)

To the best of our knowledge, almost all existing model-based meth-
ods train policies without guidance, although it may help the agent
make better decisions. Therefore, inspired by the fact that humans
think twice before making decisions, we propose a novel model-
based algorithm, named Simple Double Validation Model-based
Offline Reinforcement Learning (SDV). Apart from the transition
model, SDV trains a guidance model to provide guidance for the
agent. Then, in order to prevent the models from being misled by
suboptimal data, it also introduces model advantage weighting fac-
tors to common MLE losses. Finally, the policy is optimized by SAC
algorithm [5] with an MBPO-like framework.

The final algorithm is shown in Algorithm 1. And to demonstrate
the core idea and effectiveness of SDV better, we built two toy envi-
ronments, which are detailed in Appendix B.

4.1 Double validation

Before making decisions, humans usually refer to past experiences
and others’ guidance to evaluate the future from different perspec-
tives. Inspired by this, SDV not only follows the convention of train-
ing a transition model, but also trains a guidance model based on
the offline dataset. The guidance model is only related to the states,
excluding specific actions. Then the predicted rewards is reshaped
according to the difference between the reference state suggested by
the guidance model and the next state given by the transition model.
Consequently, the agent is able to validate the rationality of the next
state from two different perspectives and make better decisions.

Training guidance model From an intuitive standpoint, if the
empirical data is not extremely poor, for an initial state, the more
frequently a target state appears in past experiences (i.e. the offline
dataset D), the more likely it is to be safe or even good, no matter
what action the agent takes. Therefore, the guidance model gω(s′ | s)
should satisfy:

ω = arg max
ω

E(s,s′)∼D

[
log gω

(
s′ | s)] (1)

where ω is the parameters of the guidance model.
As a result, we trained the guidance model gω solely based on the

transitions (s, s′) between the current states and the next states in the
offline dataset. In this way, the guidance can be encouraged to focus
on macroscopic state transitions without being disturbed by specific
actions. The corresponding loss function is as follows:

Lg(ω) = −E(s,s′)∼D

[
log gω

(
s′ | s)] (2)

Training transition model Then, as a model-based approach,
SDV conventionally trains the transition model Tφ(s

′, r | s, a)
through an offline dataset, incorporating the immediate reward r as
part of the state into the transition model. The corresponding loss
function is shown below:

LT (φ) = −E(s,a,r,s′)∼D

[
log Tφ

(
s′, r | s, a)] (3)

where φ is the parameters of the transition model.
It is worth noting that, unlike the guidance model, the transi-

tion model also takes the specific actions into account, allowing for
a more granular micro-perspective. The combination of micro and
macro perspective is also what distinguishes SDV’s double valida-
tion from directly training multiple ensemble models.

Reward shaping With the assistance of guidance model, SDV
assesses the validity of the next state predicted by the transition
model. Then it injects the judgment into the MDP model through
reward shaping, thus guiding the agent to choose more reasonable
states during policy optimization.

Specifically, SDV first obtains the reference state s′′ suggested by
the guidance model. Then it calculates the distance between s′′ and
the next state s′ predicted by the transition model. Finally, SDV pe-
nalizes the predicted immediate reward based on the distance:

r̂ = r − λ‖s′ − s′′‖, s′ ∼ Tφ(s, a), s
′′ ∼ gω(s) (4)

where λ is a non-negative constant controlling the severity of pun-
ishment.

It is obvious that the smaller the distance between the next state
and the reference state is, the smaller the penalty on the immediate
reward imposed. And the smaller penalty means that SDV considers
the next state to be more reliable. It is also consistent with common
sense that similar conclusions from different perspectives are gener-
ally more reliable than those from a single perspective. In addition, a

X. Wang et al. / SDV: Simple Double Validation Model-Based Offline Reinforcement Learning2570

reasonable assumption is that although both the two models may oc-
casionally predict states deviating greatly from the expected output,
the probability that the events occur simultaneously with the two out-
put states being very close is very low. Indeed, it is this punishment
mechanism that makes SDV inclined to choose the states it deems to
be more reliable during policy optimization. Thus, SDV ensures the
appropriate conservatism of the estimated MDP model and guides
the agent to make more rational decisions.

4.2 Model advantages weighting

Although double validation with the guidance is more reliable com-
pared to using only the transition model, the training of the models is
entirely based on the offline dataset. Therefore, if there are many sub-
optimal data points, it may mislead the models to select states with
higher frequency but are not optimal enough. Taking the potential
misleading into consideration, SDV also employs model advantage
weighting in addition to double validation. Specifically, the weights
of data points with higher advantages are increased to help the mod-
els overcome the impact of suboptimal data.

Based on different determining factors, the advantage terms of the
transition model and the guidance model are defined as follows, re-
spectively:

AT (s, a, s
′) = r + γVψ

(
s′
)−Qθ(s, a) (5)

Ag(s, s
′) = r + γVψ

(
s′
)− Vψ(s) (6)

where Qθ and Vψ are value functions with parameters denoted by
θ and ψ respectively. Moreover, r is the immediate reward and γ is
the discount factor.

To obtain more reliable V-value and Q-value functions in Eq.5 and
Eq.6, SDV uses expectile regression based on the offline dataset,
rather than the current policy. This approach is similar to the one
used by IQL[13] and is known to produce more accurate results. The
loss functions are shown below:

LV (ψ) = E(s,a)∼D [Lτ
2 (Qθ̂(s, a)− Vψ(s))] (7)

LQ(θ) = E(s,a,s′)∼D

[(
r(s, a) + γVψ

(
s′
)−Qθ(s, a)

)2] (8)

in which Lτ
2(·) is the expectile regression loss defined as:

Lτ
2(x) = |τ − 1(x < 0)|x2 (9)

where τ is a hyperparameter and 1(·) is an indicator function. Since
the value functions are estimated only based on the offline dataset,
SDV can maintain decoupling between model training and policy
optimization while fine-tuning the models with advantage weighting.

After obtaining the value functions, SDV introduces an advantage
weighting factor α to weight the models’ loss:

Lα
T (φ) = −E(s,a,r,s′)∼D

[
eα(r+γVφ(s′)−Qθ(s,a)) log Tφ

]
(10)

Lα
g (ω) = −E(s,r,s′)∼D

[
eα(r+γVφ(s′)−Vφ(s)) log gω

]
(11)

By advantage weighting, the models can extract transitions with
greater advantages from the dataset. Subsequent ablation experi-
ments also show that combined with double validation, the introduc-
tion of α can indeed improve the performance of the policy. It is also
worth mentioning that α is not necessarily non-negative. When it is
positive, it means choosing optimistic models, and when it is nega-
tive, it represents choosing models more pessimistically. If α exactly

chosen as zero, it degenerates into common MLE models. In this
way, SDV may be provided with more flexibility in its application.
Previous work, such as POR[28], also used similar techniques. But
as a model-free method, POR did not have the transition model, let
alone weighting it, which discounted its generalization on OOD data.

Algorithm 1: Simple Double Validation Model-based Of-
fline Reinforcement Learning (SDV)
Input: offline data set D
Output: policy π(a | s)

1 Initialize parameters ψ, θ, θ̂, φ, ω. � Model training
2 for each gradient step do

3 ψ ← ψ − λV ∇ψLV (ψ)
4 θ ← θ − λQ∇θLQ(θ)

5 θ̂ ← (1− β)θ̂ + βθ
6 φ ← φ− λT∇φL

α
T (φ)

7 ω ← ω − λg∇ωL
α
g (ω)

8 end

9 Initialize replay buffer Dmodel = ∅. � Policy optimization
10 for epoch 1,2,. . . do

11 Sample s1 with batch-size b from D for the initialization
of the rollout.

12 for j = 1, 2, . . . , k do

13 Sample action aj ∼ π(sj).
14 Sample sj+1, rj ∼ Tφ(sj , aj).
15 Compute r̃j = rj − λ‖sj+1 − gω(sj)‖.
16 Add sample (sj , aj , r̃j , sj+1) to Dmodel

17 end

18 Drawing samples from D∪Dmodel, use SAC to update π.
19 end

5 Experiments

In this section, we conducted comprehensive experiments on 9 Mu-
JoCo tasks from the widely used D4RL [2] dataset to evaluate the
performance of SDV and tried to answer the following three ques-
tions:

• Does SDV have equally competitive or even superior performance
compared to other baseline algorithms?

• Do double validation and model advantage weighting play a cru-
cial role in improving the performance of SDV?

• Why is it counterintuitive that training with the random dataset
collected by a stochastic policy is difficult, and has SDV made
any efforts to improve its performance with such a dataset?

5.1 Experiment setting

Data collection We conducted experiments on three types of
MuJoCo tasks from D4RL, namely: random, medium-replay, and
medium. Their specific generation method is as follows and for all
datasets we use the v2 version.

• Random: Roll out a randomly initialized policy for 1M steps.
• Medium: 1M samples from a policy trained to approximately 1/3

the performance of the expert by SAC.
• Medium-replay: Replay buffer of a policy trained up to the perfor-

mance of the medium agent.

X. Wang et al. / SDV: Simple Double Validation Model-Based Offline Reinforcement Learning 2571

Table 1: The results of the D4RL benchmark using the normalization program proposed in [2]. We reported the normalization performance in
the last 11 iterations of training, averaging over 3 seeds. ± represents the standard deviation of the seed. The bold numbers indicate that the
results are within 2% of the most efficient algorithm.

Ours Model-based Baseline Model-free Baseline

SDV COMBO MOReL MOPO CQL IQL POR BRAC-v BC

halfcheetah-r 39.725 ± 2.114 38.8 25.6 35.4 35.4 11.2 29 31.2 2.1
hopper-r 23.415± 14.337 17.9 53.6 11.7 10.8 7.9 12 12.2 9.8
walker2d-r 7.074± 5.206 7 37.3 13.6 7 5.9 6.3 1.9 1.6
halfcheetah-mr 55.264 ± 0.855 55.1 40.2 53.1 46.2 44.2 43.5 47.7 38.4
hopper-mr 100.223 ± 2.902 89.5 93.6 67.5 48.6 94.7 98.9 0.6 11.8
walker2d-mr 97.279 ± 2.902 56 49.8 39 32.6 73.8 76.6 0.9 11.3
halfcheetah-m 62.648 ± 0.112 54.2 42.1 42.3 44.4 47.4 48.8 46.3 36.1
hopper-m 96.966 ± 2.488 97.2 95.4 28 86.6 66.2 98.2 31.1 29
walker2d-m 89.081 ± 3.342 81.9 77.8 17.8 74.5 78.3 81.1 81.1 6.6

Average Score 63.519 ± 2.497 55.289 57.267 34.267 42.9 47.733 54.933 28.089 16.3

-r means -random, -mr means -medium-replay, -m means -medium

Experimental implementation The hyperparameters we mainly
adjusted were the rollout step length k, the real data ratio f and the
reward penalty coefficient λ. The advantage weighting factor α was
set to 10 for all tasks.

We ran SDV on 3 random seeds for each task. In each run, we first
conducted 500k steps of model training to obtain the guidance model
and transition model. Next, considering fairness and consistency, we
conducted 1M steps of policy training according to convention. We
evaluated the policy every 1k steps.

Note that in order to highlight the simplicity and feasibility of
SDV, we did not use preheating techniques such as behavior cloning,
nor did we use the ensemble models commonly used by most ex-
isting model-based algorithms [10, 17, 22, 31]. Instead, we directly
trained models conducted by single network, and optimized the pol-
icy with stochastic initialization. However, the results of experiments
showed that even with such a simple setting, SDV still achieved good
performance.

For more details about the specific architecture of networks, the
hyperparameters settings, the evaluation procedure and the software
and hardware environment, please refer to the Appendix A.

5.2 Evaluation results on the D4RL dataset

We compared SDV with pure model-based and model-free base-
line algorithms. Pure model-based algorithms include: MOPO [31],
COMBO [30] and MOReL [10]. Model-free algorithms include BC,
BRAC-v, CQL [15], IQL [13], and POR [28]. Except for the results
of IQL in the random dataset taken from [28], all the results were
taken from the original papers or D4RL baseline[2]. The comparison
results are shown in Table 1.

As the results show, although SDV only used single network mod-
els and did not perform auxiliary warm-up startup, it achieved SOTA
on 6 tasks with a significant advantage over the others and was com-
parable to the previous best algorithms on most tasks, demonstrating
its superiority.

Compared to RAMBO Due to the policy optimization of 2M
steps and the coupling of model training and policy optimization, it
is unfair to compare RAMBO [22] with the above algorithms. But we
compared SDV separately with RAMBO in Table 2 to test whether
the decoupled fixed models and shorter policy optimization would
significantly reduce its performance. The results of RAMBO were
taken from the original paper.

Table 2: The normalized results of SDV and RAMBO. The bold num-
bers indicate that the results are within 2% of the most efficient algo-
rithm.

SDV RAMBO

halfcheetah-r 39.725 ± 2.114 40

hopper-r 23.415 ± 14.337 21.6
walker2d-r 7.074± 5.206 11.5

halfcheetah-mr 55.264± 0.855 68.9

hopper-mr 100.223 ± 2.902 96.6
walker2d-mr 97.279 ± 2.902 85
halfcheetah-m 62.648± 0.112 77.6

hopper-m 96.966 ± 2.488 92.8
walker2d-m 89.081 ± 3.342 86.9

Average Score 63.519 ± 2.497 64.444

To our surprise, even with fixed models and only half the policy
optimization steps of RAMBO, SDV outperformed RAMBO on 5
tasks and was competitive with it on most tasks. In particular, our
algorithm performed much better than RAMBO on the hopper-m/mr
and walker2d-m/mr tasks. The reason for the performance gap on the
halfcheetah task may be that the policy has not fully converged due to
the limited computational budget, which also resulted in SDV having
an average score that is competitive with RAMBO but slightly lower.

5.3 Ablation study

In order to investigate whether the double validation and model ad-
vantage weighting are indeed the key factors that make SDV per-
form better, we have conducted an ablation study on the medium and
medium-replay datasets with the following three variants: 1) SDV-

b: double validation without model advantage weighting, 2) SDV-p:

model advantage weighting without double validation, and 3) SDV-

n: neither double validation nor model advantage weighting, i.e. of-
fline MBPO.

The hyperparameters set for each ablation task were the same as
those for evaluation experiments, except that the reward penalty co-
efficient λ was set to 0 for SDV-p and SDV-n while the advantage
weighting factor α was set to 0 for SDV-b and SDV-n.

As the results shown in Table 3, the full implementation of SDV
achieved better results on all tasks except for hopper-mr, which may

X. Wang et al. / SDV: Simple Double Validation Model-Based Offline Reinforcement Learning2572

(a) Halfcheetah-random-MLE (b) Hopper-random-MLE (c) Walker2d-random-MLE

(d) Halfcheetah-random-SDV (e) Hopper-random-SDV (f) Walker2d-random-SDV

Figure 2: T-SNE results, the orange points are the states rolled out from the model and the blue points are states sampled from real environment
with darker blue indicating higher reward values.

have been overly optimistic due to the fixed setting of α = 10, result-
ing in a slight decrease in its performance compared to SDV-b vari-
ant. Comparing the impact of the two techniques on the performance
of SDV, on one hand, the double validation has made a significant
contribution to the policy training performance. On the other hand,
although the model advantage weighting technique alone may lead
to worse results than the bare SDV-n due to being overly optimistic,
it can provide some help in improving the policy performance when
combined with the conservatism brought by the double validation.
This indicates that it is necessary and effective to combine these two
techniques to improve SDV’s performance.

5.4 Exploration of random datasets

Intuitively, when the dataset size is fixed, using random policy sam-
pling should cover more transition distribution information, leading
to a more accurate learned model. However, contrary to intuition,
most methods, including SDV, perform worse on the hopper-r and
walker2d-r datasets compared to halfcheetah-r while more conserva-
tive methods such as MOReL have an advantage. It indicates that the
difference between the distribution supported by the two datasets and
the true distribution may be much greater than that of halfcheetah-r,
so more conservative approaches seem to be more appropriate, even
though their performance on datasets with better data collection poli-
cies may not be that outstanding.

One possible explanation for the aforementioned difference is that
for fine-tuned tasks such as robot control, a randomly initialized pol-
icy is more likely to get stuck in a suboptimal state. In the hopper
and walker2d environments, if the robot’s state violates certain con-
straints, the episode immediately will terminate (corresponding to
high exploration costs and risks), which limits the space covered by
trajectories and makes it difficult to explore the distribution. For ex-
ample, the average length of trajectories in the hopper-r dataset is

Table 3: The normalized results of ablation experiment. The bold
numbers indicate that the results are the most efficient algorithm.

SDV SDV-b SDV-p SDV-n

halfcheetah-mr 55.264 51.872 52.519 49.877
hopper-mr 100.223 102.778 49.032 30.055
walker2d-mr 97.279 94.183 12.607 31.048
halfcheetah-m 62.648 62.014 38.778 44.151
hopper-m 96.966 76.68 0.686 1.9
walker2d-m 89.081 88.678 4.539 4.894

Total Score 501.461 489.290 158.162 161.925

only 22 steps, and the highest normalized score is only 9.612. In con-
trast, the halfcheetah environment allows the robot to freely explore
in 1k-step episodes, greatly increasing the possibility of trajectories
covering more distribution information.

To validate the above explanation, we conducted the following
experiments separately on halfcheetah-r, hopper-r and walker2d-r.
Firstly, we trained an MLE model and a SDV model on the offline
dataset and then used a random policy to run the simulation until
reaching state s50 in the real MuJoCo environment. Next, we ran-
domly sampled 10k actions from the action space. Finally, we used
these actions to obtain the next states s′50 from both the real envi-
ronment and the models, and mapped these two sets of s′50 to 2D
using t-SNE [6] for comparison. If the distributions of the two sets
of states are similar, their shapes after t-SNE processing should be
similar; otherwise, the shapes will be different.

Figure 2 confirms that the models trained on the halfcheetah-r
dataset is more accurate, while on the other two datasets, the devia-
tion is significant, which verifies the above explanation. Furthermore,
despite the low accuracy for the latter two tasks, the states predicted
by the SDV model exhibit a stronger inclination towards areas with

X. Wang et al. / SDV: Simple Double Validation Model-Based Offline Reinforcement Learning 2573

high rewards than those from the MLE model. This indicates that,
even with a suboptimal dataset, the SDV approach can still enhance
the likelihood of the agent reaching more favorable states.

6 Conclusion and Future Directions

In this work, we propose a simple yet effective model-based offline
RL algorithm SDV inspired by human decision-making. It intro-
duces an additional guidance model combined with model advantage
weighting factors to provide more appropriate conservatism com-
pared to previous works. In this way, the agent can be guided to
more favourable states with reliable decisions. SDV demonstrated
SOTA performance on the widely studied benchmark, and the abla-
tion results indicated the crucial role the two key techniques play in
its strong performance.

Meanwhile, our work introduces double validation and model ad-
vantage weighting into model-based offline RL, potentially provid-
ing new inspiration for future research, such as exploring the the-
oretical underpinnings of the effectiveness of double validation, in-
vestigating methods for automatically tuning hyperparameters, and
integrating the concept of double validation into other tasks.

Acknowledgements

This work is partly supported by National College Student Innova-
tion Training Program 2023, National Natural Science Foundation
of China, under grants No. 61832005 and No. 62202238, China
University Industry Research Innovation Foundation, under grant
No. 2021FNA04005, and Natural Science Foundation of Jiangsu
Province, under grant No. BK20200752.

References

[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn
Powell, Raphael Ribas, et al., ‘Solving rubik’s cube with a robot hand’,
arXiv preprint arXiv:1910.07113, (2019).

[2] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey
Levine, ‘D4rl: Datasets for deep data-driven reinforcement learning’,
arXiv preprint arXiv:2004.07219, (2020).

[3] Scott Fujimoto, David Meger, and Doina Precup, ‘Off-policy deep re-
inforcement learning without exploration’, in International conference
on machine learning, pp. 2052–2062. PMLR, (2019).

[4] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine, ‘Deep
reinforcement learning for robotic manipulation with asynchronous off-
policy updates’, in 2017 IEEE international conference on robotics and
automation (ICRA), pp. 3389–3396. IEEE, (2017).

[5] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine,
‘Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor’, in International conference on ma-
chine learning, pp. 1861–1870. PMLR, (2018).

[6] Geoffrey E Hinton and Sam Roweis, ‘Stochastic neighbor embedding’,
Advances in neural information processing systems, 15, (2002).

[7] Toru Hishinuma and Kei Senda, ‘Weighted model estimation for offline
model-based reinforcement learning’, Advances in neural information
processing systems, 34, 17789–17800, (2021).

[8] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine, ‘When to
trust your model: Model-based policy optimization’, Advances in neu-
ral information processing systems, 32, (2019).

[9] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swan-
son, Rico Jonschkowski, Chelsea Finn, Sergey Levine, and Karol Haus-
man, ‘Mt-opt: Continuous multi-task robotic reinforcement learning at
scale’, arXiv preprint arXiv:2104.08212, (2021).

[10] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and
Thorsten Joachims, ‘Morel: Model-based offline reinforcement learn-
ing’, Advances in neural information processing systems, 33, 21810–
21823, (2020).

[11] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ah-
mad A Al Sallab, Senthil Yogamani, and Patrick Pérez, ‘Deep rein-
forcement learning for autonomous driving: A survey’, IEEE Transac-
tions on Intelligent Transportation Systems, 23(6), 4909–4926, (2021).

[12] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum, ‘Of-
fline reinforcement learning with fisher divergence critic regulariza-
tion’, in International Conference on Machine Learning, pp. 5774–
5783. PMLR, (2021).

[13] Ilya Kostrikov, Ashvin Nair, and Sergey Levine, ‘Offline reinforcement
learning with implicit q-learning’, arXiv preprint arXiv:2110.06169,
(2021).

[14] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey
Levine, ‘Stabilizing off-policy q-learning via bootstrapping error reduc-
tion’, Advances in Neural Information Processing Systems, 32, (2019).

[15] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine, ‘Con-
servative q-learning for offline reinforcement learning’, Advances in
Neural Information Processing Systems, 33, 1179–1191, (2020).

[16] Sascha Lange, Thomas Gabel, and Martin Riedmiller, ‘Batch rein-
forcement learning’, Reinforcement learning: State-of-the-art, 45–73,
(2012).

[17] Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim, ‘Representation bal-
ancing offline model-based reinforcement learning’, in International
Conference on Learning Representations, (2021).

[18] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu, ‘Of-
fline reinforcement learning: Tutorial, review, and perspectives on open
problems’, arXiv preprint arXiv:2005.01643, (2020).

[19] Cong Lu, Philip J Ball, Jack Parker-Holder, Michael A Osborne, and
Stephen J Roberts, ‘Revisiting design choices in offline model-based
reinforcement learning’, arXiv preprint arXiv:2110.04135, (2021).

[20] Jiafei Lyu, Xiu Li, and Zongqing Lu, ‘Double check your state before
trusting it: Confidence-aware bidirectional offline model-based imagi-
nation’, arXiv preprint arXiv:2206.07989, (2022).

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al., ‘Human-level control
through deep reinforcement learning’, nature, 518(7540), 529–533,
(2015).

[22] Marc Rigter, Bruno Lacerda, and Nick Hawes, ‘Rambo-rl: Robust ad-
versarial model-based offline reinforcement learning’, arXiv preprint
arXiv:2204.12581, (2022).

[23] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, et al., ‘Mastering the game of go
without human knowledge’, nature, 550(7676), 354–359, (2017).

[24] Richard S Sutton and Andrew G Barto, Reinforcement learning: An
introduction, MIT press, 2018.

[25] Shengpu Tang and Jenna Wiens, ‘Model selection for offline reinforce-
ment learning: Practical considerations for healthcare settings’, in Ma-
chine Learning for Healthcare Conference, pp. 2–35. PMLR, (2021).

[26] Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan
Li, and Chongjie Zhang, ‘Offline reinforcement learning with reverse
model-based imagination’, Advances in Neural Information Processing
Systems, 34, 29420–29432, (2021).

[27] Yifan Wu, George Tucker, and Ofir Nachum, ‘Behavior regularized of-
fline reinforcement learning’, arXiv preprint arXiv:1911.11361, (2019).

[28] Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan, ‘A policy-
guided imitation approach for offline reinforcement learning’, Ad-
vances in Neural Information Processing Systems, 35, 4085–4098,
(2022).

[29] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin, ‘Rein-
forcement learning in healthcare: A survey’, ACM Computing Surveys
(CSUR), 55(1), 1–36, (2021).

[30] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey
Levine, and Chelsea Finn, ‘Combo: Conservative offline model-based
policy optimization’, Advances in neural information processing sys-
tems, 34, 28954–28967, (2021).

[31] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou,
Sergey Levine, Chelsea Finn, and Tengyu Ma, ‘Mopo: Model-based of-
fline policy optimization’, Advances in Neural Information Processing
Systems, 33, 14129–14142, (2020).

[32] Zeyu Zhu and Huijing Zhao, ‘A survey of deep rl and il for autonomous
driving policy learning’, IEEE Transactions on Intelligent Transporta-
tion Systems, 23(9), 14043–14065, (2021).

X. Wang et al. / SDV: Simple Double Validation Model-Based Offline Reinforcement Learning2574

	Introduction
	Related Work
	Preliminaries
	Simple Double Validation Model-based Offline Reinforcement Learning (SDV)
	Double validation
	Model advantages weighting

	Experiments
	Experiment setting
	Evaluation results on the D4RL dataset
	Ablation study
	Exploration of random datasets

	Conclusion and Future Directions

