
Enforcing Natural Properties of Choice Functions,
with Application for Combination

Nic Wilson *

Insight Centre, School CS and IT, University College Cork, Ireland
ORCiD ID: Nic Wilson https://orcid.org/0000-0003-1874-8255

Abstract. One important and natural representation of preferences
is a choice function, which returns the preferred options amongst any
given subset of the alternatives. There are some very intuitive coher-
ence conditions that might be assumed for an agent’s choice func-
tion, in particular path independence, and a consistency condition
stating that there is always at least one preferred alternative among
any non-empty set. However, an elicited choice function may not sat-
isfy path independence, because of the elicitation being incomplete,
or because of there being some incoherence in the agent’s reported
choice function (despite the agent assenting to the general coherence
conditions). Furthermore, if we wish to combine the choice functions
of more than one agent, simple natural combination operations can
lose path independence. This paper develops methods for enforcing
path independence and restoring consistency, thus, making the user
preferences coherent; this method also leads to approaches for com-
bining two choice functions, in order to suggest the most promising
alternatives for a pair of agents.

1 Introduction

Reasoning with agent preferences is important for many AI deci-
sion support systems, in order to help find choices that are favoured
by a decision maker. One important and natural representation of
preferences is a choice function, which returns the preferred options
amongst any given subset of the alternatives.

There are some very intuitive coherence conditions that might be
assumed for an agent’s choice function, in particular path indepen-
dence [19, 11], and a consistency condition stating that there is al-
ways at least one preferred alternative among any non-empty set.
Path independence means that if A′ is the set of optimal elements
of set of alternatives A then A′ ∪ B has the same optimal elements
as A ∪ B. As well as being a very intuitive property for a choice
function, it can be very helpful computationally since it allows incre-
mental computational of the set of preferred alternatives. However,
an elicited choice function may not satisfy path independence, be-
cause of the elicitation being incomplete, or because of there being
some incoherence in the agent’s reported choice function (despite the
agent assenting to the general coherence conditions). Furthermore, if
we wish to combine the choice functions of more than one agent,
simple natural combination operations can lose path independence
and the consistency condition.

This paper develops methods for enforcing path independence and
restoring consistency, thus, making the user preferences coherent;

∗ Email: nic.wilson@insight-centre.org.

this method also leads to approaches for combining two choice func-
tions, in order to suggest the most promising alternatives for a pair of
agents.

Path independence is equivalent to a pair of well-known condi-
tions, which have been called Heritage and Outcast [1, 11], and have
been considered in many classic works on choice functions. We show
that path independence can be enforced by first enforcing Heritage
and then enforcing Outcast; furthermore, if the input choice func-
tion already satisfies Heritage, one can efficiently compute the best
alternatives in a given set, according to the enforced choice function.

We show further that there is a simple way of restoring consis-
tency that maintains path independence, and that pre-processing the
choice function by restoring consistency can lead to a stronger choice
function.

Section 2 gives the basic definitions and considers important prop-
erties that one might expect of a choice function; we also discuss
how path independent choice functions naturally arise in a preference
elicitation context. The basic combination operations of union, inter-
section and composition are considered in Section 3, and we analyse
which of the properties of choice functions are maintained by the ba-
sic combination operations. Section 4 shows how path independence
can be enforced, and Section 5 discusses different approaches for
restoring consistency. Section 6 concludes.

2 Desirable Properties of Choice Functions

We start with definitions relating to choice functions, and then con-
sider classic desirable properties. We discuss how path independent
choice functions arise naturally in a context when there is only partial
knowledge about a decision maker’s preferences.

2.1 Basic Definitions of Choice Functions

Let Ω be a finite set, which is intended to represent a set of alter-
natives, i.e., alternative choices in a decision making problem. We
define a Choice Function (CF) Op over Ω to be a function from 2Ω

to 2Ω satisfying the following contraction property:

(Sub): for all A ⊆ Ω, Op(A) ⊆ A.

In this paper, the main intended interpretation of a choice function
Op will be that it represents (what we know about) the preferred al-
ternatives (e.g., of some agent) in a particular decision making prob-
lem. For set of alternatives A ⊆ Ω, the set Op(A) represents the
set of optimal (i.e., best) alternatives among A (so Op is short for
Optimal).

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230572

2647

Given the choice function Op over Ω, we will also consider the
complementary function Op over Ω, given by Op(A) = A \Op(A)
for A ⊆ Ω. If Op(A) represents the optimal elements in A, then
Op(A) is the set of sub-optimal elements.

We define the identity function Id on 2Ω by Id(A) = A for all
A ⊆ Ω. This choice function can be considered as the vacuous
choice function over Ω, since, it eliminates no alternative of any A:
no alternative is sub-optimal. For mathematical reasons, it is also
helpful to consider the null choice function Emp on 2Ω defined by
Emp(A) = ∅ for all A ⊆ Ω (where Emp is short for empty set). This
is a choice function that always eliminates all the alternatives.

We define the fixed points Fix(Op) of choice function Op to be
{A ⊆ Ω : Op(A) = A}. These are the sets for which Op is equal to
the vacuous CF. If A ∈ Fix(Op) then Op is, in a sense, uninforma-
tive about A: none of elements of A are preferred to the others.

2.2 Properties and their Relationships

Not all choice functions represent sensible decision making attitudes,
and there are natural properties that one might assume on a choice
function. The main properties of choice functions (over Ω), that we
focus on, are the following important and well known rationality re-
quirements (where A,B ⊆ Ω):

(NE) (Non-emptiness): For non-empty A, Op(A) �= ∅.
(H) (Heritage): If B ⊆ A then Op(A) ∩B ⊆ Op(B).
(O) (Outcast): If Op(A) ⊆ B ⊆ A then Op(A) = Op(B).

Property (NE) (being non-empty) might be viewed as a kind of
consistency requirement: that at least one alternative is optimal (i.e.,
not excluded). Mostly in the social choice literature, a (social) choice
function is defined to be a function 2Ω to 2Ω satisfying (Sub) and
property (NE). We consider functions not satisfying (NE) for a num-
ber of reasons; in particular, for mathematical convenience, because
this looser definition makes the set of choice functions closed under
intersection, and because certain natural notions of optimality, such
as being necessarily optimal, and being possibly strictly optimal [26]
do not always satisfy (NE).

The Heritage property (H) implies that optimal alternatives from a
larger set are inherited by a smaller set. In terms of the corresponding
sub-optimality function, it has an even simpler form:

If B ⊆ A then Op(B) ⊆ Op(A).

That is, an element is sub-optimal in A if it is sub-optimal in a subset
of A.

In the Outcast property (O), letting C be A \ B we obtain the
following equivalent form:

If C ⊆ A and Op(A) ∩ C = ∅ then Op(A) = Op(A \ C).

That is, if every element of C is sub-optimal in A, then deleting C
from A does not change the optimal elements. Thus, (O) is a form of
independence of irrelevant alternatives [15, 9].

A choice function Op over Ω is said to be path independent [19],
and a Plott function [11], if it satisfies Op(A∪B) = Op(Op(A)∪B)
for any A,B ⊆ Ω. This property, which is very helpful computation-
ally [27], holds if and only if Op satisfies (H) and (O) [1, 11], so is
also desirable from a semantics perspective. We say that Op is a con-
sistent Plott function if it also satisfies the non-empty property (NE).

These properties have been explored a good deal in the literature,
see Moulin’s survey article [17], and e.g., [1, 7]. The names Heritage
(or Heredity) (H) and Outcast (O) come from Aizerman [1] via [11].
Both properties appear as postulates in Chernoff [10]. Property (H)
also corresponds with Sen’s Condition α [20], and Moulin’s Chernoff

Condition [17]. Property (O) was used in Nash [18] and relates with
Moulin’s Aizerman property [17].

Both (H) and (O) imply idempotence: Op(Op(A)) = Op(A). We
also consider a stronger version of idempotence, that is still weaker
than (H):

(SIdem): Strong Idempotence: If A ⊆ Op(B) then Op(A) = A.

2.3 Choice Functions from Elicitation

A choice function over Ω will be a very large object to represent
explicitly, unless Ω is very small. Fortunately, there are a variety
of ways of compactly representing choice functions, in particular,
if the choice function is derived from elicited preferences of a deci-
sion maker (with the elicited preferences being, by their very nature,
limited in size). In this section we consider two different kinds of
compact representation.

Preference elicitation will often lead to a partial representation of
the user preferences, an upper bound on the agent’s choice function.
Various natural preference statements can be expressed in the form
Op(A) ⊆ B, i.e., that all optimal elements of A are in B. If we
elicit a set of such statements, this gives rise to a function Op′ de-
fined on a set L of subsets of Ω, where, for A ∈ L, Op′(A) is as-
sumed to contain the user’s preferred/optimal subset of A. The func-
tion Op′ can be considered as trivially extended to the whole of 2Ω

by Op′(A) = A for all A /∈ L; this defines a choice function over Ω,
which is an upper bound on the user’s true choice function, and which
is compactly represented by Op′ on L (since, at least for moderately
sized Ω, 2Ω will be huge, and L, being based on elicited preferences,
will be typically very much smaller).

This upper bound function Op′ will usually not satisfy intuitive
properties, such as Heritage and Outcast. It can therefore be desir-
able to enforce such properties; we discuss how one can do this in
Section 4 below.

Plott functions generated from partial information

As well as enforcing path independence, there are also other ways
of generating Plott functions from elicited user preferences. Let us
suppose that an agent’s true preferences are a total pre-order over Ω.
Very often our information about someone’s preferences is incom-
plete. So suppose that we have, through elicitation, some reliable in-
formation restricting this set of relations, and thus a non-empty set
X of total pre-orders on Ω. Given � in X , and A ⊆ Ω, we say
that α is optimal in A, written α ∈ O�(A), if α ∈ A and for all
β ∈ A, α � β. We say that α is possibly optimal in A, written
α ∈ POX (A), if there exists � in X such that α ∈ O�(A). Thus,
POX (A) =

⋃
�∈X O�(A); this gives the set of alternatives that

could still be optimal in A, given our current information.
Define the pre-order �X to be the intersection of all relations in

X , with α �X β if and only if α � β for all relations � in X . Let
�X be the strict part of �X , so that α �X β if and only if α �X β
and it is not the case that β �X α. We define UDX (A) to be the set
of elements of A that are undominated (with respect to elements in
A). Thus α ∈ UDX (A) if and only if α ∈ A and there does not exist
β ∈ A with β �X α.

It is well known that POX and UDX are consistent Plott func-
tions; indeed, any consistent Plott function is pseudo-rationalizable,
i.e., expressible as POX for some set of total orders X [1, 11]. Very
often, POX (A) is a smaller set than UDX , and so is in a sense more
informative. (We can also consider the intersection POUDX (A) =

N. Wilson / Enforcing Natural Properties of Choice Functions, with Application for Combination2648

POX (A) ∩ UDX (A), which is also always a consistent Plott func-
tion [27]).

In the choice function literature, there is a good deal of focus
on rationalizable choice functions, that satisfy the property: for all
A,B ⊆ Ω, Op(A) ∩Op(B) ⊆ Op(A ∪B) (Concordance [1]; Ex-
pansion [17]). UDX is rationalizable, but POX typically is not (be-
cause the Expansion property is not maintained by union). Therefore,
non-rationalizable consistent Plott functions (POX) are important in
preference elicitation methods, e.g., [12, 3, 4, 21].

Note that even though X may be a very large set, it will be com-
pactly represented by the preference inputs. One common form, see
e.g., [8, 22, 16, 27, 3, 23], is where it is assumed that the user pref-
erence model is linear, so that each alternative α has an associated
vector α in a multiple-objective space IRp, and it is assumed that the
user utility of α is of the form w · α =

∑p
i=1 w(i)α(i), for some

unknown vector of weights w ∈ X . Hence, vector w has an asso-
ciated total pre-order ≥w over alternatives given by α ≥w β if and
only if w · α ≥ w · β. A convex polytope Y is defined by linear
inequalities arising from preference inputs; for example a preference
of alternative γ over alternative δ, expressed by the user, corresponds
to the constraint w · (γ − δ) ≥ 0. Let X be the set of total pre-
orders {≥w : w ∈ Y}. The preference inputs thus generate the Plott
function POX . Then, for α ∈ A ⊆ Ω, one can efficiently determine
if α ∈ POX (A) by checking the consistency of the set of linear
inequalities [w ∈ Y and w · (α− β) ≥ 0 for all β ∈ A].

3 Combinations

The most straightforward ways of combining choice functions are
based on: (i) taking the intersections of the sets; (ii) taking the union
of the sets; and (iii) applying one choice function and then the other.
In this section we explore some basic properties of these simple com-
bination operations.

Union and intersection of choice functions: We can define the
union and intersection of choice functions Op1 and Op2 (over Ω) in
the obvious way (‘pointwise’). We define Op1∪Op2 and Op1∩Op2

by (Op1∪Op2)(A) = Op1(A)∪Op2(A) and (Op1∩Op2)(A) =
Op1(A) ∩Op2(A) for each A ⊆ Ω.

Intersection seems a rather intuitive way of combining choice
functions: especially when the individual choice functions are rela-
tively indecisive; it involves choosing options that are preferred by
both parties. Union, on the hand, seems rather cautious, with the
returned choices being the alternatives that are preferred by either
agent.

We can also extend the subset relation to choice functions, by ap-
plying it for each subset of Ω. Thus, Op1 ⊆ Op2 means for all
A ⊆ Ω, Op1(A) ⊆ Op2(A). We say that Op1 then strengthens
Op2, because Op1 gives a stronger (or at least as strong) result than
Op2, i.e., for each set A, Op1 finds as least as many elements as Op2

to be suboptimal. We have Op1 ⊆ Op2 ⇐⇒ Op1 ∪ Op2 = Op2

⇐⇒ Op1 ∩Op2 = Op1.

Composition of choice functions: For choice functions Op1 and
Op2 over Ω we define the composition choice function Op2 ◦
Op1 (meaning Op1 followed by Op2) by (Op2 ◦ Op1)(A) =
Op2(Op1(A)) for each A ⊆ Ω.

Work on combining preference information using priority in-
cludes, for instance, a general framework for combining preference
relations using priority [2], voting rules based on sequential elimina-

tion of alternatives [6]; and a computational technique for preference
inference based on composition of lexicographic orders [25].

3.1 Relationships Between Intersection and
Composition

The intersection and the two compositions are often very different
from each other. However, they do have the same set of fixed points,
which is equal to the intersection of the fixed points of the choice
functions. (This doesn’t require any additional assumption on the
choice functions.)

Proposition 1 Consider choice functions Op1 and Op2 over Ω.
Then Fix(Op1 ◦ Op2) = Fix(Op2 ◦ Op1) = Fix(Op1 ∩ Op2) =
Fix(Op1) ∩ Fix(Op2).

1

In the composition Op2 ◦Op1, choice function Op1 is given pri-
ority over Op2, since the first step is to eliminate alternatives with
Op1. To restore symmetry between the two choice functions, one can
consider the union between the compositions (Op1 ◦Op2)∪ (Op2 ◦
Op1), and the intersection (Op1◦Op2)∩(Op2◦Op1); however, the
latter is not so interesting, since it equals the intersection Op1∩Op2

if Op1 and Op2 satisfy (H).

Proposition 2 When choice functions Op1 and Op2 over Ω satisfy
property (H) then Op1 ∩Op2 = (Op1 ◦Op2) ∩ (Op2 ◦Op1), i.e.,
for all A ⊆ Ω,

Op1(A) ∩Op2(A) = Op1(Op2(A)) ∩Op2(Op1(A)).

For choice functions satisfying property (H), Proposition 2 implies
that Op1 and Op2 commute (i.e., the two compositions are equal) if
and only if both compositions are equal to the intersection. We now
explore some situations when the two choice functions commute.
Proposition 3 shows that this happens when the intersection satis-
fies property (O). Proposition 4 gives another sufficient condition for
the choice functions to commute.

Proposition 3 Let Op1 and Op2 be choice functions over Ω, and
suppose that their intersection satisfies property (O) and that Op1 is
idempotent. Then Op2 ◦ Op1 = Op1 ∩ Op2. Thus, if Op2 is also
idempotent then Op1 and Op2 commute: Op1 ◦Op2 = Op2 ◦Op1.

An example of this is when, for some X , Op1 = POX and Op2 =
UDX (see Section 2.3) The intersection POUDX satisfies property
(O) which implies, by this proposition, that choice functions POX
and UDX commute.

Proposition 4 Let Op1 and Op2 be Plott functions over Ω, and as-
sume that for all A ⊆ Ω, either Op1(A) ⊆ Op2(A) or Op1(A) ⊇
Op2(A). Then Op1 ◦Op2 = Op2 ◦Op1 = Op1 ∩Op2.

3.2 Combinations maintaining properties

We will consider which of the properties described in Section 2.2 are
maintained by these different combinations. Formally, a property P
on choice functions is maintained by a combination operation ⊗ (on
choice functions) if for every finite Ω and every choice functions Op1

and Op2 over Ω that satisfy property P , we have that Op1 ⊗ Op2

satisfies P . The parts of (1) and (2) not involving strong idempotence
are well-known (see e.g., [5, 11]).

1 Proofs of all the results can be found in the longer version of the paper,
available online [24].

N. Wilson / Enforcing Natural Properties of Choice Functions, with Application for Combination 2649

Theorem 1 1. Union maintains properties (NE), (H) and (O) but
not strong idempotence.

2. Intersection maintains (H) and strong idempotence but not (NE)
or (O).

3. Composition maintains (NE) and strong idempotence, but not (H)
or (O).

4. Union of composition maintains (NE), but not strong idempotence
or (H) or (O).

Examples showing properties not being maintained

In the examples below, we use only total orderings on Ω = {a, b, c},
and abbreviate a total ordering such as (b, a, c) to just bac. For in-
stance, we can consider a set of orderings X = {abc, cab}, and the
associated choice function based on possibly optimal alternatives,
PO{abc,cab} (see Section 2.2). For non-empty subset A of {a, b, c},
PO{abc,cab}(A) is the set containing the best element in A accord-
ing to abc and the best element according to cab. Recall that for any
X , the choice function POX satisfies the properties in Section 2.2,
in particular, properties (NE), (H) and (O), i.e., is a consistent Plott
function.

Now, a is the top element in the total order abc, and c is the top ele-
ment in cab, so the set of possibly optimal elements in Ω = {a, b, c},
i.e., PO{abc,cab}({a, b, c}), is equal to {a, c}. If we are interested in
{a, b} then we consider the restrictions of the two orderings to this
set, giving the set of orderings {ab, ab} = {ab}, so a is better than b
in both orderings, and hence, PO{abc,cab}({a, b}) equals {a}.

We will first construct an example that shows that composition
does not maintain either (H) or (O), and that intersection does not
maintain (O). Let Op1 be PO{abc,bca}, and let Op2 be PO{abc,cab}.
For i = 1, 2, Opi(A) = A for a singleton or empty set A. Otherwise
we have values as follows:

Op1({a, b, c}) = {a, b}; Op2({a, b, c}) = {a, c};
Op1({a, b}) = {a, b}; Op2({a, b}) = {a};
Op1({a, c}) = {a, c}; Op2({a, c}) = {a, c};
Op1({b, c}) = {b}; Op2({b, c}) = {b, c}.

We write Op1∩2 for Op1 ∩ Op2, and Op1◦2 for Op1 ◦ Op2,
and Op2◦1 for Op2 ◦ Op1. From the table of values above we have
Op2◦1({a, b, c}) = Op2({a, b}) = {a}. If Op2◦1 satisfied (O) then
we would have Op2◦1({a, c}) = {a}, because {a} ⊆ {a, c} ⊆
{a, b, c}. However, Op2◦1({a, c}) = Op2({a, c}) = {a, c}, show-
ing that Op2◦1 does not satisfy (O). Since, Op1 and Op2 satisfy (O)
this shows that composition does not maintain (O).

Similarly, Op1∩2({a, b, c}) = {a, b} ∩ {a, c} = {a}. And we
have Op1∩2({a, c}) = {a, c} ∩ {a, c} = {a, c}, showing that
Op1∩2 does not satisfy (O), and so intersection does not maintain
(O). Also, we have that Op1◦2({b, c}) = Op1({b, c}) = {b},
and, Op1◦2({a, b, c}) = Op1({a, c}) which equals {a, c}, and thus,
Op1◦2({a, b, c}) ∩ {b, c} = {c} �⊆ Op1◦2({b, c}), which implies
that Op1◦2 does not satisfy property (H). Hence, composition does
not maintain (H).

In the longer version [24] we give an example that shows that in-
tersection does not maintain (NE), and that union does not maintain
strong idempotence, and that the union of compositions maintains
neither strong idempotence nor (H).

4 Enforcing Properties

Properties (H), (O) and (NE) are very intuitive and important prop-
erties of a choice function. However, applying intersection or com-
position operations can mean that some of these properties can be

lost, as shown in the last section. In particular, even if Op1 and Op2

are consistent Plott functions, we may have that their intersection
Op1 ∩Op2 fails to satisfy either (O), or (NE), or both. It is thus de-
sirable to be able to recover the properties, to obtain a coherent form
of choice function. In addition, a partial specification of an agent’s
choice function, based on elicitation, can lack some of these proper-
ties, so again it is desirable to restore coherence.

4.1 Enforcing Through Maximal Strengthenings

Suppose that a choice function Op does not satisfy a desirable prop-
erty P . One can attempt to enforce this property by changing Op to
Op′ that does satisfy P . Our focus here is on strengthening Op to
make it satisfy P ; in this way, if α is viewed as sub-optimal in a set
A w.r.t. Op (i.e., α /∈ Op(A)), then it will be suboptimal w.r.t. Op′

(α /∈ Op′(A)).

Definition 1 (P -enforcement for union-closed properties.) Let P
be a property on choice functions over Ω. We say that P is union-
closed if it satisfies the following two properties:

(a) union maintains P (i.e., if Op1 and Op2 satisfy P then so does
Op1 ∪Op2); and

(b) the null choice function Emp satisfies P .

Consider any union-closed property P , and any choice function
Op over Ω. Define Op(P), called the P -enforcement of Op, to be
the union of all choice functions Op′ such that (I) Op′ satisfies P
and (II) Op′ ⊆ Op. (Since Emp satisfies P and Emp ⊆ Op, there
exists at least one such choice function Op′.)

For union-closed P , the definition implies that Op(P) is the unique
maximal choice function Op′ satisfying P and such that Op′ ⊆
Op. In other words, Op(P) is the (setwise) maximal (i.e., weak-
est) strengthening of Op that satisfies P . The result below gives
some basic properties of P -enforcement, including that the opera-
tion (Op)(P) is idempotent, and is monotone with respect to both
Op and P .

Proposition 5 Suppose that properties P and P ′ on choice func-
tions over Ω are both union-closed, and that P implies P ′. Let
Op and Op1 be choice functions over Ω such that Op ⊆ Op1.
Then (i) Op(P) ⊆ Op; (ii) Op(P) satisfies P ; (iii) if Op satisfies
P then Op(P) = Op, so P -enforcement is idempotent; in par-
ticular, (Op(P))(P) = Op(P); (iv) P -enforcement is monotone:
Op(P) ⊆ (Op1)

(P); (v) Op(P) ⊆ Op(P ′) and (vi) (Op(P ′))(P) =

(Op(P))(P
′) = Op(P).

Both properties (H) and (O) are union-closed (see Theorem 1) and
so, their conjunction, path independence, is too; we can thus consider
respective enforcements.

PI-enforcement of Op: For choice function Op over Ω, we write
Op(π) for the path independent enforcement (PI-enforcement) of
Op. Thus, Op(π) is the enforcement of Op under the conjunction
of properties (H) and (O). PI-enforcement has been studied under
the name Plottization: see Danilov and Koshevoy [11].

4.2 Enforcing Property (H)

There is a simple explicit formula for Op(H), the result of enforc-
ing property (H) on choice function Op. To understand Op(H), it

N. Wilson / Enforcing Natural Properties of Choice Functions, with Application for Combination2650

is helpful to consider property (H) in terms of the associated sub-
optimality function Op: if B ⊆ A then Op(B) ⊆ Op(A). Based on
this, one can see that Op

(H)
, the associated sub-optimality function

for Op(H), is given by Op
(H)

(A) =
⋃

B⊆A Op(B), which leads to
the following result:

Proposition 6 For choice function Op over Ω, and any A ⊆ Ω

we have A \ Op(H)(A) = Op
(H)

(A) =
⋃

B⊆A Op(B), and thus,
Op(H)(A) =

⋂
B⊆A(Op(B) ∪ (A \B)).

4.3 Enforcing Path Independence Given (H)

We say that C encloses A [with respect to Op] if Op(C) ⊆ A ⊆ C,
i.e., A is a subset of C that contains all the optimal elements of C.
We also write this as C �Op A. The Outcast axiom (O) states that if
C encloses A then A and C have the same optimal elements.

Assume that choice function Op over Ω satisfies property (H).
Consider any A ⊆ Ω, and define COp

A to be the union of all sets
B ⊆ Ω that enclose A. We call COp

A the max enclosure of A. The
following result shows that the max enclosure is monotonic in A, and
encloses A (and is thus the unique maximal set enclosing A).

Proposition 7 Assume that choice function Op over Ω satisfies
property (H). Consider any A ⊆ Ω. Then COp

A �Op A, and
Op(COp

A) ⊆ Op(A) ⊆ A ⊆ COp
A . If B ⊆ A then COp

B ⊆ COp
A .

Using Proposition 7, it can be shown that, given Heritage, the Out-
cast enforcement is equal to the optimal elements of the max enclo-
sure:

Proposition 8 Given Op over Ω satisfying property (H), define
choice function Op∗ over Ω by Op∗(A) = Op(COp

A) for all A ⊆ Ω.
Consider any A ⊆ Ω.

1. Op∗ satisfies properties (H) and (O).
2. Op∗ ⊆ Op. If Op′ ⊆ Op and Op′ satisfies property (O) then

Op′ ⊆ Op∗. Thus, Op∗ = Op(O).

Theorem 2, which follows immediately from Proposition 8, states
that the Outcast-enforcement satisfies Heritage and thus path inde-
pendence, and corresponds with the optimal elements of the max en-
closure operation.

Theorem 2 Assume that choice function Op over Ω satisfies prop-
erty (H). Consider any A ⊆ Ω. Then Op(O)(A) = Op(COp

A). In
addition, Op(O) satisfies Property (H) and thus is a Plott function.

Example. Let Ω = {a, b, c, d}, and suppose that Op is given
by Op(B) = {a, b} if B = Ω, and otherwise, Op(B) = B.
It is easily seen that Op satisfies Heritage, but does not satisfy
Outcast (because Op(Ω) = {a, b} �= Op({a, b, c})). We have
Op(Ω) ⊆ {a, b, c} ⊆ Ω, and so Ω encloses {a, b, c}, and hence is
the max enclosure of {a, b, c}. Thus, Op(O)({a, b, c}) = {a, b}. In
fact, Op(O), which equals the PI-enforcement Op(π) of Op, is given
by Op(O)(B) = {a, b} if B equals either Ω, {a, b, c} or {a, b, d},
and otherwise, Op(O)(B) = B. �

Proposition 5(vi) implies that (Op(H))(π) = Op(π), and Theo-
rem 2 implies that if Op satisfies (H) then enforcing (O) preserves
(H), and also preserves (NE). This leads to the following corollary,
which means that to enforce path independence (i.e., (H) ∧ (O)), we
can first enforce (H) and then enforce (O).

Corollary 1 For any choice function Op,

(Op(H))(O) = (Op(H))(π) = Op(π).

If Op satisfies (H) then Op(π) = Op(O), and if Op also satisfies
(NE) then so does Op(π).

Corollary 1 and Proposition 5(vi) imply that ((Op(O))(H))(O) =
(Op(O))(π) = Op(π). One might wonder if (Op(O))(H) = Op(π)

also necessarily holds. This is, however, not the case, because apply-
ing (H)-enforcement can lose property (O). For example, suppose
that Ω = {a, b, c}, and that Op({a, b}) = {a}, Op({b, c}) = {b},
Op({a, c}) = {c}, and Op(A) = A for all other sets A ⊆
Ω. Op satisfies (O), and Op(H) is the same as Op except that
Op(H)({a, b, c}) = ∅, which implies that Op(H) does not satisfy
(O), and that Op(π) = (Op(H))(O) = Emp. Thus, (Op(O))(H) =
Op(H) �= Op(π) for this particular choice function Op.

If Op does not satisfy (H) then applying (O)-enforcement can
lose consistency (NE). In fact, we can even have Op(O) = Emp
for consistent Op. For example, suppose that Ω = {a, b, c}, and
Op({a, b, c}) = {a}, Op({a, b}) = {b}, and Op(A) = A for
other sets A. Then, using the facts that Op(O) ⊆ Op and Op(O)

satisfies (O), we have Op(O)({a, b, c}) ⊆ {a, b} ⊆ {a, b, c},
and hence, {a} ⊇ Op(O)({a, b, c}) = Op(O)({a, b}) ⊆ {b}, so
Op(O)({a, b, c}) = ∅, and thus, Op(O) = Emp, by (O).

To summarise, we can enforce path independence by enforcing
Heritage and then enforcing Outcast. So, if a choice function Op sat-
isfies Heritage then enforcing path independence is the same as en-
forcing Outcast. If, in addition, Op is consistent then enforcing Out-
cast maintains consistency. In contrast, if we take a choice function
Op satisfying Outcast, then enforcing Heritage does not necessarily
enforce path consistency, since the Outcast property may be lost. In
addition, enforcing Outcast can lose consistency, if the choice func-
tion does not satisfy Heritage.

4.4 Computation of Enforcements

With an explicit representation of a choice function Op, Proposi-
tion 6 and Theorem 2 enable efficient computation of Op(H) and
Op(π), in linear time in the size of the representation. Regarding
enforcing (H), we can update Op by starting with sets of cardi-
nality 1, and then sets of cardinality 2 etc, using the update rule
Op(A) := Op(A) ∪⋃ {Op(B) : B ⊆ A, |B| = |A| − 1}.

If Ω is not very small then the explicit representation of a choice
function will be infeasible, and we might, as discussed in Section 2.3,
represent a function Op on a set L of subsets of Ω, arising from
elicited preferences. Since Op(B) is empty for B not in L, we have,
by Proposition 6, for A ∈ L, Op

(H)
(A) =

⋃
B∈L:B⊆A Op(B).

The computation of Op
(H)

(and thus Op(H)) over L can be done
incrementally, starting from the minimal subsets in L and working
upwards. After computing Op(H) on L, one can compute Op(H)(A)

for any particular set A ∈ 2Ω that is not in L, using Op
(H)

(A) =⋃
B Op(B) where the union is taken over all maximal subsets B of

A within L.
For the (O)-enforcement of Op that satisfies (H), one can set

Op(O)(A) = Op(Ω) for all A such that Op(Ω) ⊆ A ⊆ Ω. Then,
we iterate the process, by choosing any maximal set C whose value
Op(O)(C) has not yet been defined, and set Op(O)(A) = Op(C)
for all A such that Op(C) ⊆ A ⊆ C.

Of course, an explicit representation of Op is exponential in |Ω|;
but, in many situations we will have an implicit representation, and

N. Wilson / Enforcing Natural Properties of Choice Functions, with Application for Combination 2651

we will be interested in computing the path independent enforcement
Op(π)(A) for an individual set A corresponding to the set of cur-
rently available alternatives. Theorem 3 below shows that this can be
done very efficiently for Op satisfying (H), requiring less than |Ω|
calls of Op(·) to compute Op(π)(A). We generate, in a particular
way, a nested sequence of sets Ω = B0 � B1 � · · · � Bk, where
Bk is the first element in the sequence such that Op(Bk) ⊆ A; we
obtain Op(π)(A) = Op(Bk).

The operation that generates Bi from Bi−1 can be described as
follows. Given a superset B of A, we delete all the optimal elements
that are not in A; this generates a new set which is a subset of B but
still contains A. We iterate the operation until we reach a fixed point
C, i.e., when all optimal elements are in A, and so C encloses A.

If we start with any superset of the max enclosure CA of A then the
fixed point is the max enclosure, since it encloses A and contains CA

by Proposition 9(2) below. In particular, starting with Ω, the set of all
alternatives, the fixed point will be the max enclosure of A, and thus
equal to the PI-enforcement of A, by Theorem 2 and Corollary 1.

Theorem 3 Let Op be a choice function satisfying (H), and let A be
a subset of Ω. Define the sequence of sets B0, B1, . . . by B0 = Ω and
for i ≥ 1, Bi = A∪(Bi−1 \Op(Bi−1)). There exists k ≤ |Ω|−|A|
such that Bk+1 = Bk, and Op(Bk) ⊆ A, and for all i with 1 ≤ i <
k, Bi � Bi−1; and Bk+1 = Bk. We have Op(π)(A) = Op(Bk).

Theorem 3 follows easily using Proposition 9 below.

Proposition 9 Let Op be a choice function satisfying (H), and let
A ⊆ Ω, and define, for A ⊆ Ω, the function fA

Op by, for E ⊆ Ω,
fA
Op(E) = A ∪ (E \Op(E)).

1. If A ⊆ E then A ⊆ fA
Op(E) ⊆ E, and fA

Op(E) = E ⇐⇒
Op(E) ⊆ A.

2. Suppose that C ⊆ Ω is such that Op(C) ⊆ A. If E ⊇ C then
fA
Op(E) ⊇ C.

3. E is a fixed point of fA
Op if and only if Op(E) ⊆ A ⊆ E, i.e.,

E �Op A (E encloses A).

As discussed in Section 2.3, a Plott function arises naturally as a
Possibly Optimal function PO in preference elicitation; with some
common preference models, given an explicit set A of alternatives,
PO(A) is computable in polynomial time using linear program-
ming (see Section 2.3). When combining (using intersection) two
such functions PO1 and PO2 (one for each agent), their intersection
Op = PO1 ∩ PO2 satisfies (H), so Theorem 3 allows a value of the
PI-closure Op(π)(A) to be computed in polynomial time.

We illustrate the algorithm for computing Op(π)(A), for the case
in which Op is the intersection of two consistent Plott functions.
Let Ω = {a, b, c, d, e}, let Op = Op1 ∩ Op2, where Op1 equals
PO{abcde,adecb,bcaed}, i.e., the union Oabcde ∪ Oadecb ∪ Obcaed,
where Oabcde, for instance, is the choice function generated by the
total order a > b > c > d > e, so e.g., Oabcde({c, d, e}) = {c}.
Let Op2 = PO{baecd,cbaed}.

We have Op1({a, b, c, d, e}) = {a, b} because a is the best ele-
ment for total orders Oabcde and Oadecb, and b is the best element
for total order Obcaed. Similarly, Op2({a, b, c, d, e}) = {b, c}.

Let A = {c, e}. Then, B0 = Ω = {a, b, c, d, e}; so, Op(B0) =
Op1({a, b, c, d, e}) ∩ Op2({a, b, c, d, e}) = {a, b} ∩ {b, c} =
{b}. Then, B0 \ Op(B0) = {a, c, d, e} and so B1 = {c, e} ∪
{a, c, d, e} = {a, c, d, e}. Similarly, Op(B1) = {a, c} ∩ {a, c} =
{a, c}. Then, B1 \Op(B1) = {d, e} and so B2 = {c, e}∪{d, e} =
{c, d, e}. Op(B2) = {c, d} ∩ {c, e} = {c}. Since Op(B2) ⊆ A

we have, by Theorem 3, Op(π)(A) = Op(B2) = {c}. Note that
Op(A) = {c, e} �= Op(π)(A), which illustrates the fact that Op is
not a Plott function.

5 Restoring consistency (NE)

Suppose that we have a choice function Op that does not satisfy prop-
erty (NE), so that Op(A) = ∅ for some non-empty A ⊆ Ω; (in par-
ticular, Op may arise as the intersection of two Plott functions). We
cannot restore (NE) in the same way that we enforced the properties
in Section 4.1, since if Op fails to satisfy (NE) and Op′ ⊆ Op then
Op′ fails to satisfy (NE) (since Op(A) = ∅ implies Op′(A) = ∅).
Instead we need to weaken Op rather than strengthen it.

The basic idea of our approach here is to replace an empty value
by a backup value; that is, if Op(A) = ∅, we reset Op(A) to be some
non-empty set σ(A) leading to a new version Opσ of Op. For exam-
ple, we could choose σ(A) to be some default value; in particular,
we might set σ(A) = A for all subsets A, so that σ is the vacuous
(identity) choice function Id.

Definition 2 Opσ: Let Op and σ be choice functions over Ω. Define
Opσ by Opσ(A) = Op(A) if Op(A) is non-empty, and otherwise,
define Opσ(A) = σ(A).

Clearly, Op ⊆ Opσ . If Op is consistent (i.e., satisfies (NE)) then
Opσ = Op. If σ is consistent then so is Opσ . Also, if Op ⊆ σ then
Opσ ⊆ σ.

The following result shows that we can restore consistency to a
Plott function by just replacing the empty values by the values of a
consistent Plott function, and still maintain path independence.

Proposition 10 Let Op and σ be Plott functions over Ω. Then Opσ

is a Plott function, and if σ satisfies (NE) then so does Opσ .

If we are intersecting choice functions Op1 and Op2, and setting
Op = (Op1 ∩Op2)

(π), another simple option is to use σ = Op1 ∪
Op2, which ensures that the final combined choice function is always
weaker than (or equal to) the union.

The result below shows that, in Plott functions, the sets that are
mapped to the empty set are all the subsets of a particular set ZOp.
This means that Opσ equals σ on subsets of ZOp, and equals Op
otherwise.

Proposition 11 If Op is a Plott function over Ω then there exists
some subset ZOp ⊆ Ω such that Op(A) = ∅ ⇐⇒ A ⊆ ZOp. For
all A ⊆ Ω, Op(A) = Op(A \ ZOp) ⊆ A \ ZOp. If A ⊆ ZOp then
Opσ(A) = σ(A); otherwise, Opσ(A) = Op(A).

Iterative consistency restoration

Suppose we have a nested sequence of Plott functions Op ⊆ σ1 ⊆
· · · ⊆ σk = Id, representing a progressive weakening of Op. Then
we can iteratively apply (·)σj , giving Op′ = Opσ1σ2...σk (i.e.,
(· · · (Opσ1)σ2 · · ·)σk) which is a consistent Plott function by Propo-
sition 10. If Op(A) �= ∅ then Op′(A) = Op(A), and otherwise,
Op′(A) = σj(A), where j is minimal such that σj(A) is non-empty.

In particular, suppose we want to combine two agents’ Plott func-
tions Op1 and Op2, based on intersection, and achieve a consistent
Plott function; we assume we have, for some k ≥ 1, progressive
weakenings of the two Plott functions: Opz ⊆ Op1

z ⊆ · · · ⊆ Opk
z =

Id, for z = 1, 2. Let Op = (Op1 ∩ Op2)
(π) be the PI-enforcement

of the intersection, and let σj = (Opj
1 ∩Opj

2)
(π), for j = 1, . . . , k,

N. Wilson / Enforcing Natural Properties of Choice Functions, with Application for Combination2652

so Op ⊆ σ1 ⊆ · · · ⊆ σk = Id, since PI-enforcement is monotone
(see Proposition 5). Then we can restore consistency progressively
with σ1, σ2, . . . , σk, in order to try to keep as much information as
possible from Op, giving the consistent Plott function Opσ1σ2...σk .

Pre-processing with another consistency restoration

Proposition 10 implies that for any choice function Op, and for a con-
sistent Plott function σ, Op(π)σ (i.e., (Op(π))σ) is a consistent Plott
function and that Op(π)σ(A) equals the PI-enforcement Op(π)(A)
when the latter is non-empty. However, there are some situations
when the consistency restoration can seem too drastic, in particu-
lar if Op(Ω) = ∅; in that case, Op(π)(A) = ∅ for all A ⊆ Ω (i.e.,
Op(π) = Emp) and so Op(π)σ just equals σ, and no further (consis-
tent) information from Op is used. (This is a problem especially if
we don’t have gradual progressive weakenings of Op, discussed in
the last paragraph.)

To help avoid this issue, we can apply an additional pre-processing
step: for Op satisfying (H), we first restore consistency, thus, consid-
ering the operator (·)σ(π)σ .

It seems desirable to only make changes for sets for which the PI-
enforcement is empty. This is assured for operator (·)σ(π)σ by the
following result.

Proposition 12 Assume that Op is a choice function that satis-
fies (H), and that σ is an arbitrary choice function. If Op(π)(A)
is non-empty then Opσ(π)σ(A) = Op(π)σ(A) = Opσ(π)(A) =
Op(π)(A).

Proposition 13 below implies that Opσ(π)σ is a consistent Plott
function that is closer to the PI-enforcement than Op(π)σ .

Proposition 13 Suppose that Op is choice function over Ω that sat-
isfies (H), and that σ is a consistent Plott function over Ω such that
Op ⊆ σ. Then Opσ(π)σ and Op(π)σ are consistent Plott functions
and Op(π) ⊆ Opσ(π)σ ⊆ Op(π)σ . If Op is a Plott function then
Opσ(π)σ = Op(π)σ = Opσ .

Example. Let Ω = {a, b, c, d}, let Op = Op1 ∩ Op2, where
Op1 = PO{abcd,acbd,adbc}, and Op2 = PO{bacd,cabd}. Then
Op(Ω) = {a} ∩ {b, c} = ∅, so (NE) fails for the intersection
Op. Let σ = Op1 ∪ Op2 = PO{abcd,acbd,adbc,bacd,cabd}. Since
Op(Ω) = ∅, we have that Ω is the max enclosure of every set and
so the PI-enforcement Op(π) equals Emp (this also follows directly
from the Outcast property, putting A = Ω), and thus, Op(π)σ = σ,
and e.g., Op(π)σ(Ω) = {a, b, c}. In contrast, Opσ(π)σ is stronger,
equalling Opσ(π), and with Opσ(π)σ(Ω) = {a}. �

Restoring consistency and enforcing PI for the
intersection of two total orders

Although our focus and motivation is based more on imprecise than
precise choice functions, it is revealing to consider what happens in a
precise case, in which we wish to combine two choice functions cor-
responding with total orders. Interestingly, it turns out that restoring
consistency first with the vacuous choice function leads to a natural
result, with the enforcement of path independence transferring useful
information from non-conflicting sets to the conflicting ones.

Let ≥1 and ≥2 be two total orders on Ω, and let ≥∩ be their in-
tersection, so that α ≥∩ β if and only if α ≥1 β and α ≥2 β. For
i = 1, 2, let Opi be the choice function associated with ≥i, so that

Opi(A) is equal to the singleton set {max≥i(A)} consisting of the
best element of A with respect to ≥i. Let Op = Op1 ∩ Op2. Now,
Op(A) is equal to {α} for a case in which α is the best element
of A with respect to both orderings; otherwise, Op(A) is empty. In
particular, if α and β are different alternatives then Op({α, β}) is
empty unless ≥1 and ≥2 agree on which of α and β is better. This
implies that the choice function Op is not consistent unless the two
total orders ≥1 and ≥2 are identical.

We consider restoring consistency and PI-enforcement, where we
restore with respect to either σ1 = Id (the vacuous choice function)
or σ2 = Op1 ∪Op2.
Restoring consistency with union then PI-enforcement: we have that
Opσ2(π)(A) = {max≥1(A),max≥2(A)}, i.e., we return the best
element with respect to each total order. This is because if Op(A) �=
∅ then Op(A) = Op1(A) = Op2(A) = σ2(A), and thus, Opσ2 =
σ2, which implies that Opσ2(π) = σ2 as the latter is a Plott function.
Restoring consistency with identity and then PI-enforcement:
Opσ1(π)(A) is equal to the set of Pareto-undominated elements of A
(call this Op′(A)) i.e., all elements of A except those β with α >∩ β
for some α ∈ A.

The set Opσ1(π)(A) contains both optimal elements max≥1(A)
and max≥2(A) but may well contain many others as well; it is a
little like a qualitative convex closure of Op1 and Op2. In a fully
qualitative setting, it might be argued that this is the most natural
result; in particular, it corresponds to the set of all alternatives α that
could have maximum sum of utility U1(α) + U2(α), where for i =
1, 2, Ui is some utility function on Ω that is compatible with ≥i.

We can also consider PI-enforcement followed by restoring con-
sistency. If the best element of Ω with respect to ≥1 is not the best
element of Ω with respect to ≥2 then Op(Ω) = ∅, which implies,
from the Outcast property, that Op(π) = Emp, the trivial null choice
function. Then Op(π)σ is just equal to σ. This is thus another kind
of example illustrating that restoring consistency first can lead to a
stronger choice function.

6 Discussion

We have considered methods for the combination of a pair of choice
functions, and analysed their properties. Natural combination meth-
ods can lose key properties, and we consider how path independence
can be enforced, and consistency restored, which leads to combina-
tions operations which maintain these properties.

Path independence can be enforced for a choice function by en-
forcing first the Heritage property and then the Outcast property. If
the choice function already satisfies Heritage, then the preferred set
among a given set of alternatives can be efficiently computed for the
new path independent choice function. We have also shown how the
non-emptiness property can be restored, to generate a consistent Plott
function, with two different approaches. These methods can be used
to generate a consistent Plott function when combining the prefer-
ences of more than one agent, in particular, by applying the methods
to the intersection of their choice functions.

In future work, it would be valuable to consider more complex
methods for combining multiple agents’ choice functions, and con-
sider what further properties of the combination one would like. For
example, it could be possible to apply belief merging approaches
e.g., [14, 13], for each given subset of alternatives A, and then en-
force/restore desirable properties to the resulting choice function. It
would be interesting to also explore the application of our enforc-
ing/restoring methods to social choice functions generated by various
forms of voting rule under uncertainty.

N. Wilson / Enforcing Natural Properties of Choice Functions, with Application for Combination 2653

Acknowledgements

This publication has emanated from research conducted with the fi-
nancial support of Science Foundation Ireland under Grant number
12/RC/2289-P2 at Insight the SFI Research Centre for Data Analyt-
ics at UCC, which is co-funded under the European Regional Devel-
opment Fund; it has also been supported by the EU H2020 ICT48
project “TAILOR”, under contract #952215. I also thank the review-
ers for their constructive comments.

References

[1] M. Aizerman and A. Malishevski, ‘General theory of best variants
choice: Some aspects’, IEEE Transactions on Automatic Control, 26,
1030–1040, (1981).

[2] H. Andréka, M. Ryan, and P.-Y. Schobbens, ‘Operators and laws for
combining preference relations’, J. Log. Comput., 12(1), 13–53, (2002).

[3] N. Benabbou and P. Perny, ‘Incremental weight elicitation for multiob-
jective state space search’, in Proc. AAAI 2015, pp. 1093–1099, (2015).

[4] N. Benabbou and P. Perny, ‘Adaptive elicitation of preferences under
uncertainty in sequential decision making problems’, in Proc. IJCAI
2017, pp. 4566–4572, (2017).

[5] D.H. Blair, ‘Path independent social choice functions: a further result’,
Econometrica, 43, 173–174, (1975).

[6] S. Bouveret, Y. Chevaleyre, F. Durand, and J. Lang, ‘Voting by sequen-
tial elimination with few voters’, in Proc. IJCAI 2017, pp. 128–134,
(2017).

[7] F. Brandt and P. Harrenstein, ‘Set-rationalizable choice and self-
stability’, J. Economic Theory, 146(4), 1721–1731, (2011).

[8] D. Braziunas and C. Boutilier, ‘Minimax regret based elicitation of gen-
eralized additive utilities.’, in UAI, pp. 25–32, (2007).

[9] Susumu Cato, ‘Choice functions and weak Nash axioms’, Review of
Economic Design, 22, 159–176, (2018).

[10] H. Chernoff, ‘Rational selection of decision functions’, Econometrica,
22, 422–443, (1954).

[11] V. Danilov and G. Koshevoy, ‘Mathematics of Plott choice functions’,
Mathematical Social Sciences, 49, 245—-272, (2005).

[12] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh, ‘Elici-
tation strategies for soft constraint problems with missing preferences:
Properties, algorithms and experimental studies’, Artif. Intell., 174(3-
4), 270–294, (2010).

[13] S. Konieczny, J. Lang, and P. Marquis, ‘DA2 merging operators’, Arti-
ficial Intelligence, 157(1-2), 49–79, (2004).

[14] S. Konieczny and R. Pino Pérez, ‘Merging information under con-
straints: a logical framework’, Journal of Logic and computation, 12(5),
773–808, (2002).

[15] R. D. Luce and H. Raiffa, Games and decisions: introduction and crit-
ical survey, Wiley, New York, 1957.

[16] R. Marinescu, A. Razak, and N. Wilson, ‘Multi-objective constraint op-
timization with tradeoffs’, in Proc. CP-2013, pp. 497–512, (2013).

[17] H. Moulin, ‘Choice functions over a finite set: a summary’, Social
Choice and Welfare, 2(2), 147–160, (1985).

[18] J.F. Nash, ‘The bargaining problem’, Econometrica, 18(2), 155–162,
(1950).

[19] C. R. Plott, ‘Path independence, rationality, and social choice’, Econo-
metrica, 41, 1075–1091, (1973).

[20] A. K. Sen, ‘Choice functions and revealed preference’, Rev. Econ. Stud.,
38(3), 307–317, (1971).

[21] F. Toffano and N. Wilson, ‘Minimality and comparison of sets of multi-
attribute vectors’, in Proc. ECAI-2020, (2020).

[22] P. Viappiani and C. Boutilier, ‘Regret-based optimal recommendation
sets in conversational recommender systems’, in Proc. RecSys-2009,
pp. 101–108. ACM, (2009).

[23] P. Viappiani and C. Boutilier, ‘On the equivalence of optimal recom-
mendation sets and myopically optimal query sets’, Artif. Intell., 286,
103328, (2020).

[24] N. Wilson, Enforcing Natural Properties of Choice Functions, with
Application for Combination (Longer Version), http://ucc.insight-
centre.org/nwilson/EnforcingPropertiesCFsLonger.pdf, 2023.

[25] N. Wilson and A.-M. George, ‘Efficient inference and computation of
optimal alternatives for preference languages based on lexicographic
models’, in Proc. IJCAI 2017, pp. 1311–1317, (2017).

[26] N. Wilson and C. O’Mahony, ‘The relationships between qualitative
notions of optimality for decision making under logical uncertainty’, in
Proc. AICS-2011, (2011).

[27] N. Wilson, A. Razak, and R. Marinescu, ‘Computing possibly optimal
solutions for multi-objective constraint optimisation with tradeoffs’, in
Proc. IJCAI-2015, (2015).

N. Wilson / Enforcing Natural Properties of Choice Functions, with Application for Combination2654

