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Abstract. Hearthstone is a widely played collectible card game that
challenges players to strategize using cards with various effects de-
scribed in natural language. While human players can easily compre-
hend card descriptions and make informed decisions, artificial agents
struggle to understand the game’s inherent rules and are unable to
generalize their policies through natural language. To address this is-
sue, we propose Cardsformer, a method capable of acquiring linguis-
tic knowledge and learning a generalizable policy in Hearthstone.
Cardsformer consists of a Prediction Model trained with offline tra-
jectories to predict state transitions based on card descriptions and a
Policy Model capable of generalizing its policy on unseen cards. To
our knowledge, this is the first work to consider language knowledge
in a card game. Experiments show that our approach significantly im-
proves data efficiency and outperforms the state-of-the-art in Hearth-
stone even when there are untrained cards in the deck, inspiring a
new perspective of tackling problems as such with knowledge rep-
resentation from large language models. As the game constantly re-
leases new cards along with new descriptions and new effects, the
challenge in Hearthstone remains. To encourage further research, we
make our code publicly available and publish PyStone, the code base
of Hearthstone on which we conducted our experiments, as an open
benchmark.

1 Introduction

Reinforcement learning (RL) has shown human-level performance in
many traditional board games [17, 18] and poker games [3, 24]. De-
spite their large search spaces, the dynamics of these environments
are rather simple. For instance, the state transition of Go is simply
the placement of Go pieces. In recent years, many video games with
complex dynamics have been introduced as testbeds to challenge re-
inforcement learning algorithms, such as StarCraftII [22] and Dota2
[2]. However, learning from scratch without any prior knowledge of
the environment requires enormous training time, and the learned
policy may easily fail when the environment dynamics change. In
this work, with the inspiration of how human players learn and trans-
fer to new environment dynamics with linguistically described prior
knowledge, we investigate representing natural language to learn a
generalizable policy in the popular collectible card game Hearth-
stone.
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Many previous works have designed specific environments for lan-
guage grounding tasks like Messenger [12], RTFM [25], and Hazard-
World [23]. These environments pose 2D maps with a single agent
to perform a demanding goal, and the action space is limited to four
movement directions. Unlike them, Hearthstone is a zero-sum game
with two players competing against each other. With more than 3,000
collectible cards, the policy space is relatively large. The environ-
ment dynamics of Hearthstone are determined by the card effects,
which are expressed in natural language and intricately integrated
within the game mechanics.

Up to date, tree-search-based methods have been generally ex-
plored to develop Hearthstone AI systems and even achieved per-
formance approaching that of human experts [20]. These methods
usually require a delicate simulation program to generate outcoming
results of performing different actions. However, developing such a
simulation is not as straightforward in Hearthstone. The game dy-
namics of Hearthstone are complex, and the card effects may mu-
tually affect. When new cards are released, the simulation program
requires to be updated to provide proper results. Moreover, Hearth-
stone features imperfect information and stochasticity in card effects,
tree-search methods need to be further modified to mitigate these dif-
ficulties.

In this work, we propose Cardsformer to learn a generalizable pol-
icy in Hearthstone. Instead of using a real-time simulation of the
game states to construct a search tree, we train a neural network
model capable of grounding natural language to predict state tran-
sitions and perform reasonable actions according to the predictions.
The inference of Cardsformer is divided into two steps - predicting
future states given current state and action representations with the
Prediction Model and leveraging the results to approximate the state-
action values with the Policy Model. To incorporate language de-
scriptions in state and action representations, we use a pre-trained
language model MPNet [19] to get sentence embedding. We train
the Prediction Model with supervised learning on the collected of-
fline trajectories of Hearthstone. Actively prompted by the fixed Pre-
diction Model, the Policy Model is trained with Deep Monte-Carlo
(DMC) Q-learning [24] in a self-play manner. Experiments demon-
strate that our method outperforms previous methods in Hearthstone
on both training cards and untrained cards. Besides absolute perfor-
mance, we also show that Cardsformer takes advantage of the lan-
guage grounding manner to boost data efficiency and generalization.

The contributions of this work can be summarized as follows:

• Cardsformer is the first end-to-end Hearthstone AI system that
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Figure 1. Two sample cards, a snapshot of the game board, and a list of game entities in Hearthstone. As described down below on each card, taking
advantage of the special effects is crucial to gameplay. In our assessment of Hearthstone as a testbed for RL algorithms, we focus on the agent’s ability to

generalize the usage of various cards based on their descriptions.

does not rely on a real-time simulated search tree. Our method
achieves state-of-the-art (SOTA) performance on the training
decks and can be transferred to other decks with unseen cards and
descriptions with minor degradation.

• We are the first to propose a method that introduces a natural
language prompted reinforcement learning agent in a card game.
Experiments demonstrate that the Prediction Model, which takes
advantage of language representations of a pre-trained language
model, improves data efficiency and generalization capabilities of
Cardsformer.

• The challenge of Hearthstone remains in many aspects. We release
our experiment testbed, PyStone, as an open benchmark to inspire
further research1.

2 Related Work

2.1 Hearthstone AI

Building AI agents to perform game combat has been mostly investi-
gated within Hearthstone. Many competitions have been held to pro-
mote related research [7, 14]. One main approach is to use Monte-
Carlo Tree Search (MCTS) [4]. Świechowski et al. [20] modify
MCTS to deal with imperfect information in Hearthstone and further
enhance it with heuristic rules to solve the combinatorial explosion of
game simulations. Choe et al. [5] utilize state abstraction to present
the search space of Hearthstone as a directed acyclic graph and apply
sparse sampling on their modified Upper Confidence Bound algo-
rithm. Another approach is to use an Evolutionary Algorithm (EA).
García-Sánchez et al. [8] propose a method to automatically calcu-
late the weights of a hand-coded Hearthstone agent, and use an EA
to optimize the function which scores all possible actions in a spe-
cific state. Besides game combat, there are also other AI-related re-
search disciplines in Hearthstone, including balanced card/game de-
sign and automatic deckbuilding. De Mesentier Silva et al. [6] inves-

1 https://github.com/WannianXia/Cardsformer

tigate methods for balancing meta-game to search for a combination
of changes to the card attributes. García-Sánchez et al. [9] use a ge-
netic algorithm to evolve automatic deckbuilding in Hearthstone. In
our work, we propose Cardsformer which, unlike previous methods
using MCST, does not require any real-time simulation of branch-
ing states. As the game states and card descriptions are represented
as input vector features and sentence embedding respectively, Cards-
former is an end-to-end system where any card, trained or untrained,
are potentially implemented within.

2.2 Reinforcement Learning with Natural Language

In recent years, a series of works have been proposed to learn gen-
eralizable policies with knowledge from natural language. One ma-
jor domain is Instruction Following, where the agents are presented
with language instructions. These instructions can describe naviga-
tion targets [13], object manipulation tasks [1], or enable multi-agent
interactions [21]. Goyal et al. [10, 11] investigate the use of language
for reward shaping in RL and achieve a faster learning process. In
[16, 12, 25], the agents are informed with environment manuals to
specify the goals or dynamics of the environment. However, these
works consider rather small action space or naive environment dy-
namics (e.g., a 2D world with only four actions for an agent to do)
and do not require explicit knowledge representation from language
descriptions. In this work, we introduce Hearthstone as a testbed for
such a language grounding task. With the intuition that language
descriptions can tell the inner transition pattern between states, we
train a supervised model to capture such patterns and a reinforcement
learning agent with access to future state predictions. This framework
differs from prior work in that it incorporates natural language rep-
resentation to explicitly explain environment dynamics by predicting
future states and taking advantage of the predictions to enhance per-
formance.
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3 Introduction of Hearthstone

The testbed for our method, Hearthstone, is a popular video game
with millions of monthly active players worldwide. Players use their
self-constructed decks and a unique hero power to compete in 1v1
duels. During the game, the players take turns performing actions of
using cards or ordering minions to attack, until the opponent’s hero
is eliminated by reducing its health to 0. Unlike other board games,
players can use their limited amount of mana crystals, which is 1 at
the first turn and increases by 1 at every new turn, up to a maximum
of 10, to perform multiple actions in a single turn. Thus, players must
use the cards in an appropriate sequence to take full advantage of
the card effects. For example, to destroy an opponent’s minion with
5 Health, you can first enhance a minion with 2 Attack using the
card Blessing of Might: Give a minion +3 Attack, and then order this
minion (now 5 Attack) to attack the opponent’s minion and destroy
it. Each player can draw a new card from their remaining deck cards
at the beginning of each turn. A snapshot of the game board and 2
sample cards are shown in Fig. 1.

In Hearthstone, the vast card pool is a central feature that allows
players to construct their decks. Since the game was published in
2014, the card pool has been continuously enriched by game design-
ers, and a total of more than 3,000 unique collectible cards have been
released. The cards can be of the type spell, minion, or weapon. Spell
cards are discarded after use. Instead, using minion cards will sum-
mon minions to the board on your behalf, and they can attack the op-
ponent’s minions or hero. Using weapon cards will equip your hero
with a weapon and enable it to attack as a minion. The special ef-
fects of all types of cards are described in natural language, which
can be dealing damage, restoring health, drawing cards, etc. Human
players can ground the meaning of card descriptions, infer the re-
sults of using them, and then take reasonable actions. For artificial
agents, Hearthstone provides a testbed for the agents to learn the nat-
ural language knowledge described by the cards and make decisions
accordingly.

4 Preliminaries

Language Conditioned Partially-Observable Markov Deci-

sion Process (LC-POMDP) In our setting, we formulate the
Hearthstone environment G as a Language Conditioned Partially-
Observable Markov Decision Process, defined by the tuple G =<
S,A, T, r,O, Z,E >. S is the set of states, A is the set of actions.
T (st+1|st, at) is the conditional probability of the transition from
state st to st+1 by taking action at. r(st, at) is the reward function
that determines how the agent should be rewarded by taking action at

in state st. O is the set of observations, and Z is the conditional prob-
ability Z(ot|st) of the observation ot given the state st. In Hearth-
stone, a state st consists of hand cards, deck cards, and minions
of both sides. An observation ot consists of observable information
about a player, where the hand cards and deck cards of the opponent
are excluded. Additionally, we define E as the set of game entities.
To model a game state st, we arrange game entities of hand cards,
minions, heroes, and secrets as a sequence, i.e., s = {ei}i=1,2,...,n.
Each entity ei has a feature vector ci representing the entity’s at-
tributes and a pre-trained language embedding of its description li.
ei is then represented as a concatenation of ci and li. In our method,
we use MPNet [19] to get li. The actions are represented by refer-
ring entities, and the actual effect of taking an action is represented
in the corresponding entity description li. More details are explained
in Section 5.

Deep Reinforcement Learning for Hearthstone The op-
timization of LC-POMDP on Hearthstone can be solved by
Deep Reinforcement Learning (DRL). DRL agents aim to learn
a policy that maximizes future cumulative rewards discounted
by γ: Rt =

∑∞
k=0 γ

krt+k(s, a). A typical algorithm, Q-
learning, is widely used as a value-based RL algorithm. The
state-action value function Q(s, a) under π can be defined as
Qπ(s, a) = Eπ

[∑∞
k=0 γ

krt+k+1(s, a)|st = s, at = a
]
, where

at ∼ π(a|s), st+1 ∼ T (s′|s, a). Cardsformer uses deep neural net-
works as function approximation of Q, and calculates the optimal
state-action value function using the Bellman equation as:

Q∗(s, a) =

Eπ[r(s, a) + γ
∑

s′
T (s′|s, a)max

a′ Q∗(s′, a′)]. (1)

The optimal policy can be derived as: π∗(a|s) = argmax
a

Q∗(s, a).

5 Methodology

Our model, Cardsformer, aims to learn a policy that can generalize
to new cards. We describe the state/action representation, the model
design, and the training methods here.

5.1 State/Action Representation

As shown in Fig. 2(a), the entity’s feature vector ci contains numer-
ical information about its attack, health, and other attributes such as
whether the entity has a Divine Shield or Stealth2, represented in 0/1
flags. We designed four different types of entities: hand card, min-
ion, hero, and secret. Hero powers and weapons are not considered
separate entity types, instead, we treat hero powers as hand cards,
and a weapon entity is represented within a hero entity. Unlike in
other environments, the actions in Hearthstone correspond tightly
with the entities - an action must originate from a source entity and
may choose a target entity if necessary, and its special effect is de-
scribed by the source entity. For example, in the case of using the
hand card Arcane Intellect described as Draw two cards, the source
entity is the hand card and it requires no target entity, while the action
of using the card Blessing of Might, which has the description Give
a minion +3 attack, requires the player to specify a target minion en-
tity. Thus, to represent all possible actions in the game, each entity is
attached with a Source flag and a Target flag. An action of using card
entity ei towards its target ej is to tag the Source flag of ei and the
Target flag of ej to 1, while these flags of other entities remain 0. In
our practice, the Source and Target flags are included in ci, and the
model tells its description from corresponding li. Although actions
are not separated from states as they are represented within ci which
is a component of the state, this is still reasonable since Cardsformer
is a Q-value function approximator.

5.2 Model Design

As shown in Fig. 2(b), the Policy Model takes in the current state
and action concatenated with predictions from the Prediction Model
to compute the Q-values for the agent to make decisions upon. The
predictions are scalar features of minion and hero entities in the next

2 Divine Shield and Stealth are terminologies in Hearthstone, enabling the
agent to negate the next damage once or not to be targeted respectively.

W. Xia et al. / Cardsformer: Grounding Language to Learn a Generalizable Policy in Hearthstone2722



Figure 2. Architecture of Cardsformer: (a) State and action representation of a minion entity; (b) The overall framework of Cardsformer; (c) Model details
for the Prediction Model and the Policy Model.

time step that can tell the effect of a given action to the most ex-
tent. Theoretically, concatenating the predictions as input is redun-
dant for vanilla Q-learning. However, since we aim to learn a gen-
eralizable policy, we assume that a highly generalizable Prediction
Model which can tell the Policy Model how acting on unseen cards
will result in future states can be beneficial. Our experiments in sub-
sections 6.3 and 6.4 demonstrate this. The Prediction Model and the
Policy Model are trained separately and have similar architectures
as shown in Fig. 2(c). The Linear Embedding layers embed ci and
li of different entity types into a uniform vector space, which is 320
dimensions – 64 from ci and 256 from li. The embeddings of all enti-
ties are then fed into four layers of transformer encoder as sequential
data. The feedforward dimension of the transformer encoder layer is
512, and each layer has 8 attention heads. The Linear Decoder de-
codes the output of the transformer into the state of a relevant entity
at the next time step for the Prediction Model, or the Q-value for the
Policy Model.

5.3 Supervised Learning of the Prediction Model

We train the Prediction Model with supervised data generated from
the environment. We collect offline game trajectories by performing
random actions at each state. Each data pair consists of a current state
and an action as input, where the state of game entities at the next
time step serves as the output label. Due to the partially-observable
nature and stochasticity of the game, it is not applicable to predict the
complete state of the game. For example, a drawing card is unknown
in advance and unpredictable. Thus, we only predict selected values
in vector feature c of hero and minion entities. This design aligns
with how human players simulate future game states - not all values
of a future state are concerned and predictable, the basic idea is to
enlarge your minion army and damage the opponent’s hero, which
can be reflected in our design of the predictions. The training loss for
the Prediction Model, noted as M with its parameters as θ, is:

LM (θ) =
1

Na
||Mθ(ot, at)− ot+1||2. (2)

This training loss is a variation of MSE loss, in which we divide the
sum of the mean squared differences between predicted and target
values by Na instead of the total number of elements, and Na is the
number of altered values in ot+1 compared to ot. This is because

different actions in Hearthstone can cause different elements in the
observation to change, and the total number of changing elements
may also vary. For example, a card that freezes a specific minion will
almost only affect the frozen attribute. Our variation of MSE loss
helps balance the loss between different actions and better suits this
situation.

As the representation of a specific entity ei, its feature vector ci
and language description li can be initially linked, such that if some
ci is unique, the model may neglect its li as the training processes.
The Prediction Model is designed to learn the transition pattern rep-
resented by li instead of remembering ci as a reference to card ef-
fects. Thus, during this process of training the Prediction Model, we
randomly initialize the stats of each card entity at the beginning of
each episode to get randomized ci, then the model must query li
to predict the effect of an action. This design avoids mapping fea-
ture vectors to state transitions in the model, which can enhance the
model’s generalization ability.

5.4 Reinforcement Learning of the Policy Model

We adopt Deep Monte-Carlo (DMC) [24] Q-learning to obtain the
optimal policy. In general, DMC methods employ a central learner
model to learn from sampled episodes that are generated by multiple
actors. The parameters of the distributed actors will be synchronized
with the central learner after the actors send their generated episodes.
At each non-terminal state, the environment will provide a complete
list of all available actions. The concatenations of these actions with
the current state are fed into the Cardsformer system as an input batch
to predict respective Q-values. Only the Policy Model is trained in
this phase – the parameters of the Prediction Models are fixed. We
do not work on heuristic rules to design rewards – the agent is only
rewarded at the terminal state of the game with +1 for winning or −1
for losing. The discount factor for future rewards is set to 1. Thus,
given episodes, the training loss for the Policy Model is to minimize
the loss function LQ:

LQ(θ) =
n∑

t=1

E(ot,at,rt,o
′
t)
[rt + γmax

a′
t

Qπ
′ (o′t, a

′
i,M(o′t, a

′
t); θ

′
)

−Qπ(ot, at,M(ot, at); θ)]
(3)

(c)(b)(a)
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where M(·) is the prediction from the Prediction Model as an addi-
tional input to the value function, θ and θ′ are the parameters of the
Policy Model and the corresponding target network, respectively.

6 Experiments

In this section, we first introduce our Experimental setup in Section
6.1. We show the absolute performance of Cardsformer, in terms of
win rates compared to other methods, in the following Section 6.2.
In Section 6.3, we perform an ablation study on the design of Cards-
former. We use Shapley values [15] to inspect how the language em-
bedding and attributes in vector features affect the output of Cards-
former in Section 6.4.

6.1 Experimental Setup

We evaluate our method on PyStone, which is built upon the open-
source project SabberStone3. In our setting, we skip the mulligan
phase (in which the players have a chance to replace their starting
hand cards) of the game since it is irrelevant to our concern in this
paper. Cardsformer is trained on our predefined training decks. For
each hero class, we build two or three decks (depending on com-
mon deck builds of the hero class) with classic and basic cards and
get 20 different training decks out of nine classes. These cards and
their derivatives are described in 186 different sentences. We collect
a dataset of 10,000 games with approximately 800,000 pairs of la-
beled data by performing random actions between two random train-
ing decks. The Prediction Model is trained for 5,000 epochs on this
dataset. After the Prediction Model is trained and fixed, we train the
Policy Model with self-play. The agent is agnostic to its own and
the opponent’s decks, thus the agent must decide on its currently
available hand cards and board minions instead of remembering an
elaborated policy related to the deck. Training the Policy Model in
a Linux server with 8 Titan XP GPUs and 64 CPU cores achieves a
data throughput of approximately 2,500 frames (we denote a learn-
ing pair of s, a → Q(s, a) as a frame) per second, and we train the
Policy Model of Cardsformer extensively with 100 million self-play
frames, which requires approximately 11 hours of training.

To evaluate Cardsformer, we define 3 testing decks with 10, 20,
and 30 unseen cards in place of original cards. Note that each deck
consists of exactly 30 cards, this experimental design tests the gener-
alization ability of Cardsformer at different levels. The unseen cards
have different descriptions from the training cards. Nevertheless, due
to the limited performance of the Prediction Model, the unseen cards
are restricted to those with simple effects that do not rely on unique
triggers. For example, the prediction model can generalize the effect
of Drain Life: Deal 2 damage, and restore two health to your hero
exactly as it described, but fails to predict Lorewalker Cho: When-
ever a player casts a spell, put a copy into the other players hand
since its effect is triggered by a unique condition and is not generally
trained on the Prediction Model. Cardsformer is also evaluated on
training decks against other methods, denoted as 0 unseen cards. A
more detailed list of cards used in the experiments for training and
testing Cardsformer can be found in our open-source project.

6.2 Comparison to Baseline Methods

We compare Cardsformer to three publicly available baselines, which
are:
3 SabberStone is an open-source Hearthstone simulator designed to support

AI research. See https://github.com/HearthSim/SabberStone

Dynamic Lookahead This is the first place method4 in Hearth-
stone AI Competition 2020 [7]. It takes advantage of the partially-
observable simulations implemented by SabberStone to look ahead
at the results of available actions and defines a heuristic rule to eval-
uate the states. The look-ahead depth depends dynamically on the
number of available actions, ranging from 1 to 3.

Aggressive/Controlling Agent These are the basic AI methods
implemented within SabberStone using MCTS. It compares hero
health and board minion attributes to evaluate the states and con-
struct a search tree. The agent will visit nodes with the highest score
by executing relevant actions. The evaluation can be in an aggressive
or controlling style. The aggressive agent weights higher scores on
damaging the opponent’s hero, while the controlling agent prefers to
maintain friendly minions while damaging the opponent’s minions.

As shown in Table 1, Cardsformer achieves the best performance
on both training and testing decks, except on the testing deck with
30 unseen cards compared with the SOTA method, Dynamic Looka-
head. On training decks, Cardsformer beats Dynamic Lookahead
with an average win rate of 78.0% in 1,000 random games. Un-
seen cards added to the deck do have an impact on Cardsformer,
but it still outperforms Dynamic Lookahead on testing decks with
10 or 20 unseen cards. In the worst case, compared on 30 unseen
cards, Cardsformer can still achieve an average win rate of 47.5%.
Note that Cardsformer is trained in a specific environment with a
limited set of cards, and it infers the dynamics and usage of unseen
cards through neural networks. In comparison, other methods rely
on simulation programs where the effects of each unique card are
pre-implemented. These methods become inapplicable if new cards
are introduced without updating the simulation program. However,
Cardsformer can theoretically incorporate any new card. Apart from
its superior performance, tested on a relatively common computer de-
vice powered by Intel Core i5-11400 CPU and NVIDIA GTX 1660s
GPU, the inference time for Cardsformer to make a move is 0.053
seconds, while Dynamic Lookahead takes 0.078 seconds, Aggres-
sive Agent takes 0.118 seconds and Controlling Agent takes 0.131
seconds, averaged on 1,000 states each.

6.3 Ablation Study

6.3.1 Model Components

There are two components related to the concern of grounding lan-
guage to enhance performance in Hearthstone: the presence of the
Prediction Model and sentence embedding with the pre-trained lan-
guage model. We perform ablation studies on these two components
to investigate how Cardsformer performs with or without them. First,
we remove the prediction model to get Language Only Cardsformer,
which only represents language descriptions with a pre-trained lan-
guage model but does not learn how these descriptions correspond to
state transitions. Furthermore, we replace the sentence embedding in
Language Only Cardsformer with one-hot embedding from card IDs
to get One-Hot Policy, which is to compare how language representa-
tion from the pre-trained language model affects the training process.
We save a checkpoint per one million frames trained on each model
design, up to 100 million frames. In Fig. 3(a), we compare these 300
checkpoints in an Elo ranking system including randomly initialized
models, denoted as 0 training frames. Each game is between two
random checkpoints and an identical training deck. The full version

4 https://hearthstoneai.github.io/botdownloads.html, developed by Sebastian
Miller.
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Win Rates and Standard Deviation of Cardsformer (%)

Unseen cards 0 10 20 30

Dynamic Lookahead 78.0± 2.5 70.7± 2.2 64.0± 4.0 47.5± 2.6
Aggressive Agent 92.9± 1.6 98.4± 1.4 96.8± 1.4 97.4± 1.9
Controlling Agent 94.1± 2.2 89.6± 2.7 87.7± 3.0 89.7± 3.5

Table 1. Win rates of Cardsformer against other methods on training decks and testing decks with different amounts of unseen cards. The win rates are
evaluated on 1,000 games, and the standard deviations are calculated by separating every 100 games.

(a) (b) (c)

(d) (e) (f)

Figure 3. The comparison of ablation models throughout the training process. (a) shows the Elo ranking scores of all checkpoints. A total of 100,000 matches
between two random checkpoints are recorded. (b) and (c) shows win rates of Cardsformer checkpoints against fully trained Language Only Cardsformer and
One-Hot Policy on training decks respectively. (d) - (f) are comparisons between Cardsformer checkpoints and fully trained Language Only Cardsformer on

decks with different amounts of unseen cards, which are 10, 20, and 30 respectively. Each win rate point is tested with 1,000 games and under 3 random seeds.

of Cardsformer significantly outperforms other versions in terms of
data efficiency and final performance. After approximately 20 mil-
lion training frames, the Elo score of full Cardsformer has already
reached above 2100, close to Language Only Cardsformer trained
with all 100 million frames and far beyond One-Hot Policy. Lan-
guage Only Cardsformer also outperforms One-Hot Policy, neither
of which has the Prediction Model, and we attribute this result to that
the sentence embedding from pre-trained MPNet provides the agent
with better representations of the cards instead of learning it from
one-hot card IDs.

The Elo score system shows a qualitative comparison between
all checkpoints. To get quantitative results and demonstrate the ef-
ficiency of Cardsformer, we compare the win rates of checkpoints
from Cardsformer throughout the whole training process against
fully trained Language Only Cardsformer checkpoint and fully
trained One-Hot Policy checkpoint, as shown in Fig. 3(b) and Fig.
3(c) respectively. These figures show that as the training progresses,
the win rate of Cardsformer rapidly increases: Only about 20 mil-
lion frames of training data are needed to match the performance of
fully trained Language Only Cardsformer, and it requires even less
to match the performance of a fully trained One-Hot Policy, which
is approximately 10 million frames. After training for 100 million

frames (the end of the curves in Fig. 3(b) and Fig. 3(c)), fully trained
Cardsformer has a win rate of about 62% against fully trained Lan-
guage Only Cardsformer, and about 70% against fully trained One
Hot Policy. Under the same training conditions, the performance of
the complete Cardsformer model is better. These results indicate that
both the Prediction Model and language embedding significantly im-
prove the training efficiency of Cardsformer.

Theoretically, the performance of both Language Only Cards-
former and One-Hot Policy on the training decks can converge to the
same level as complete Cardsformer as long as the input features are
well-defined. The superiority of our design of Cardsformer lies not
only in its improvement of data efficiency during the training pro-
cess but also in its zero-shot generalization capabilities. As shown
in Figs. 3(d) - 3(f), we compare the checkpoints of complete Cards-
former against fully trained Language Only Cardsformer on testing
decks with different amounts of unseen cards (One-Hot Policy is not
compared on testing decks because it is not capable to get one-hot
embedding from extra unseen cards). These trends are almost identi-
cal to Fig. 3(b) but with a faster growth rate and a larger gap in the
final performance. This indicates that the Prediction Model helps fur-
ther enhance the performance of Cardsformer on decks with unseen
cards.
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Figure 4. Ablation study on language embedding methods regarding (a)

the training loss of Prediction Model and (b) the elo scores of the
checkpoints of the Policy Model.

6.3.2 Language Embedding

We compare three alternative methods generating language embed-
ding l: 1) sentence embedding from MPNet (what we use in Cards-
former), 2) mean pooling of Bert embedding, and 3) word embedding
without pre-training. The training loss across 1,000 epochs is shown
in In Fig. 4(a). To investigate the impact of embedding methods on
the Policy Model, we train Language Only Cardsformer, which only
contains the Policy Model without resorting to the Prediction Model,
with different embedding methods and compare trained checkpoints
in an Elo system similar to Fig. 3(a), only that the models are not fully
trained with 100 million frames but 10 million instead. Under three
random seeds and 10,000 games between two random opponents, the
results of Elo scores are shown in Fig. 4(b). Both results demonstrate
that word embedding without pre-training performs much worse.
Though MPNet performs nearly identically with Bert on training the
Policy Model, it performs slightly better on training the Prediction
Model.

6.4 Interpreting Cardsformer

The extraordinary performance of Cardsformer can be attributed to
many aspects, one of which is the lavishness of the model input.
We use all kinds of observable game information as model input of
Cardsformer, including original and predicted entity states. To inter-
pret how each component of the model input affects the Policy Model
of Cardsformer, we use SHAP [15] to inspect the importance of input
features to the Policy Model. SHAP uses the classic Shapley values
from game theory and their related extensions to explain the out-
put of neural network models. A higher Shapley value indicates the

sample has a positive impact on the output, which in this case is the
Q-value, while lower Shapley values indicate the sample reduces the
output. In addition, we can also rank the importance of all the input
features according to their contributions by disturbing the input value
samples and comparing the Shapley value results. The distributions
of samples from the five most important input features are shown in
Fig. 5. This figure demonstrates that, when the Policy Model evalu-
ates the Q-value of a given state-action pair, it allocates most of its
credits to the Prediction Model. Take the No. 1 and No. 5 features as
an example - the No. 1 feature in Fig. 5 is the predicted health of the
opponent’s hero. When the action causes the health of the opponent’s
hero to be higher, the evaluated Q-value will decrease (the red area is
mainly distributed on the left), but if the action causes the health of
your hero to be higher, the evaluated Q-value will increase (the red
area is mainly distributed on the right).

Figure 5. Shapley values of five most decisive input features, which are
indexed on the vertical axis as: 1 - Opponent’s Hero Health Prediction; 2 -

Opponent’s Max Mana; 3 - Opponent’s Max Mana Prediction; 4 - Hero Max
Mana; 5 - Hero Health Prediction.

7 Conclusions

In this paper, we adopt Hearthstone as our testbed for language
grounding and decision-making tasks. Instead of learning from
scratch, we use a large language model to get sentence embedding
of card descriptions and pre-train a dynamics model to capture the
inherent transition pattern of the game states. With this dynamics
model, the agent is aware of the consequence of each available ac-
tion, thus the RL process achieves higher data efficiency. Further-
more, the inherited generalization capability from the pre-trained lan-
guage model enables the agent to perform on new descriptions even
if they are unseen during training. Nevertheless, grounding language
and learning a generalizable policy in Hearthstone still require fur-
ther investigation. The dataset used to train the Prediction Model is
generated with limited training cards and random actions, while the
whole Hearthstone game features far more complex card effects. In
our practice, we have noticed that Cardsformer fails to predict card
effects that are triggered by unique conditions, which may be solved
in the future by applying a larger and more diverse dataset. To in-
spire future work, we also publish our environment code as PyStone,
which can be easily adopted in recent RL manners.

In our future work, we will apply this idea of grounding language-
described state transitions in other environments and further inves-
tigate other disciplines of using natural language in reinforcement
learning.
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