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Abstract. Deep neural networks are widely used in image clas-
sification tasks, but their internal decision-making mechanisms are
often difficult to explain. While various algorithms have been devel-
oped to visualize these mechanisms, many of them produce coarse,
noisy results that are not always convincing. To address this issue, we
propose a method for enhancing saliency maps produced by saliency
methods. Our method uses a fixed-size sliding window to upsample
local regions of the input image and feed them into the selected visu-
alization algorithm to generate class-specific saliency maps and prob-
ability scores. We then downsample the resulting saliency maps and
multiply them by the probability scores to obtain maps with greater
detail. We evaluate our method using different saliency methods and
network architectures, and demonstrate its effectiveness through both
quantitative metrics and intuitive evaluation. Our results show that
our method significantly improves the performance of these saliency
methods, providing a more valid and reliable means of visualizing
the decision mechanisms of deep neural networks. Code is available
at https://github.com/LuoLogic/Enhuncement-saliency.

1 Introduction

Currently, deep neural networks shine with their superior perfor-
mance in tasks such as image classification, object detection, and se-
mantic segmentation. However, how to interpret the decisions made
by neural networks has become a challenge in research. In image
classification tasks, an intuitive means of interpretation is to find the
regions in the input image that the neural network considers impor-
tant and visualize them with a saliency map, which is called a visu-
alization technique for deep learning.

CAM-based methods [4, 18, 27] are a popular class of methods
with many excellent applications. These methods are usually class-
sensitive and based on the feature maps output from the internal con-
volutional layers of CNNs, so they gain the trust of researchers. The
quality of the saliency map depends on the position of the selected
convolutional layer in the network. Usually, these methods choose a
deep layer of the convolutional network, such as the one closest to
the output layer, which contains rich class information and leads to a
clear class differentiation of the visualized image. However, the fea-
ture map of the deep layer is of low resolution and cannot contain
more detailed information about the class. The shallow layer has a
higher resolution but is full of noise and lacks class information.

Decomposition-based method [3,5,11,14] have a solid theoretical
foundation and use DTD(Deep Taylor Decomposition) [14] as their
basic theoretical framework. These methods reason backward from
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the network output to the input, decomposing the decisions made by
the current layer of the network into the contributions of the previous
layer of the network, until the corresponding elements in the input
are reasoned. However, such methods require inference rules for dif-
ferent network types, and some of them lack class sensitivity, and
the visualized images they produce suffer from lower resolution and
more noise.

This paper addresses the problems of current saliency methods
with high noise, low resolution, and lack of detailed feature infor-
mation by proposing a generic approach that does not seek to modify
current visualization methods from within. Thus it can theoretically
be applied to any saliency methods with class sensitivity. Specifi-
cally, our contributions include:

• We propose an enhancement algorithm applicable to saliency
methods with class sensitivity. It does not require internal mod-
ification of current saliency methods, has good generality, and can
be applied to neural networks with completely different structures,
such as CNN-based and Transformer-based networks.

• Experiments show that the method produces richer feature details
and can more accurately target regions of interest to the network,
while effectively removing noise from the heat maps generated by
current saliency methods.

• Experimental results show that our method has a significant en-
hancement for a wide range of mainstream visualizations, and
shows superior performance in perturbation experiments and im-
age segmentation experiments.

2 Related Work

In this section, we introduce the current saliency map methods, which
can be broadly classified into the following two categories.

2.1 Backpropagation based saliency methods

Zeiler et al. [25] proposed a visualization method based on deconvo-
lution, which inverse maps the values in the feature map back to the
pixel space of the input image, thereby indicating which pixels in the
image are involved in the decision. Building on this work, the Guided
BP [22] proposes to highlight important features of the visualized tar-
get by suppressing inputs and values with gradients less than 0 during
backpropagation. Simonyan et al. [19] propose using the input im-
age’s gradients as a visual interpretation. This method assumes that
some input pixels play a major role in the prediction results of the
network. It directly computes gradients of specified probability score
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Figure 1. The reason for saliency methods with low resolution and more noise. We show a brief pipeline of two types of saliency methods. In both methods
we perform saliency analysis for the dog. The CAM-based methods are limited by the low resolution of the activation maps of the convolutional layer. The

saliency method for transformer is limited by the length of the token, which is due to patch embeding.

to the input, but the input gradients contain obvious noise and the
visualization is fuzzy. SmoothGrad [21] and VarGrad [1] propose an
effective method, which adds noise to the input image several times
to generate a group of images containing noise. By averaging the re-
sults, the final saliency map is smoother. Although these studies have
a solid theoretical basis, their visualization results are not easy to un-
derstand and noisy for humans. In addition, many of these methods
are class-agnostic, i.e., they do not visually interpret the results for
a given class. Some studies [2] point out that the reliability of these
methods is questionable, they are not sensitive to network parame-
ters, even without a network trained to get similar results.

There exist several methods that exploit the activation information
within a model to produce salient maps. For instance, class activation
mapping based approaches, including the first proposed Class Acti-
vation Mapping (CAM) [27] and its variants such as Grad-CAM [18],
Grad-CAM++ [4], XGrad-CAM [8], etc., aim to generate category-
distinct saliency maps by weighting different channels of the feature
maps with category-specific gradient information obtained through
back-propagation. On the other hand, the Relevance-CAM [13] uti-
lizes the relevance scores obtained from Layer-wise Relevance Prop-
agation (LRP) to weight the feature maps, demonstrating that shal-
low convolutional layers still retain class-relevant information. The
CAMERAS [12] framework, which fuses the feature maps and gra-
dients through multi-stage scaling of the input image, generates a
higher resolution saliency map. However, this method is only effec-
tive in Convolutional Neural Network (CNN) models with residual
structures. In general, the CAM-based methods leverage the feature
maps, a crucial data component within a model, resulting in good
performance and widespread research attention.

2.2 Perturbation-based saliency methods

Perturbation-based saliency methods generate saliency maps without
relying on internal model data and instead focus solely on the inputs
and outputs of the model. Early approaches, such as the use of a
black square [25] to scramble the input image to identify the regions
of interest for the model, have been replaced by more sophisticated
techniques. For instance, Local Interpretable Model-agnostic Expla-
nations (LIME) [16] employs a proxy model to fit the local decision-
making behavior of the target model and thereby assess the sensitiv-
ity of various features. RISE [15] utilizes a large number of masks to
mask the input image and calculates the probability of the target cate-
gory as the weight for each mask, which is then combined linearly to
produce the saliency map. Another approach, Mask [7] uses gradient
descent to identify the mask with the lowest confidence in the target
category. Score-CAM [24] and Group-CAM [26] perturb the input
image using the feature map as the mask to compute the weight of
the feature map and combine it linearly to generate the saliency map.
While these methods can provide a direct representation of signifi-
cant regions in the input image, they often have high computational
costs and require optimization.

2.3 Decomposition based saliency methods

Decomposition-based algorithms use Deep Taylor Decomposition as
the basic theoretical support, and they treat the output of a neu-
ral network as a decomposition of the function on the input vari-
ables. Here, we focus our attention on Layer-wise Relevance Prop-
agation(LRP) [3] and its related derivative algorithms. Layer-wise
Relevance Propagation algorithm is a special case of DTD(Deep Tay-
lor Decomposition), which starts from the prediction class and prop-
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Figure 2. Pipeline of our enhancement method. f can be any of the class-sensitive saliency methods, and there is also no limit to the architecture of the
networks.

agates the relevance backward to the input image, and the propaga-
tion process follows the rule of relevance conservation, i.e., the sum
of the relevance of each layer of neurons in the network is equal.
Subsequent derivative algorithms of LRP have followed this ba-
sic rule. Examples include Contrast-LRP [9] and Softmax-Gradient-
LRP (SGLRP) [11], although both algorithms use information from
all other classes to highlight the visualization of a particular class.
Hila Chefer et al. [5] develop a new LRP rule for the structure of
the Transformer to solve the challenges encountered during propa-
gation in attention layers and skip connections. They solve the prob-
lem of visualizing the Transformer in the field of image classification
by combining the gradients of each transformer block and its corre-
sponding relevance score. We will cite in our experiments the work
of Hila Chefer et al. [5] to demonstrate the generality of our method
on transformer-based architecture ViT [6] as well.

3 Proposed Approach

To solve the problems of low resolution, blurred features, and noise
in current saliency methods, our method applies a sliding window
on the input image and allows the saliency method to enhance the
perception of local information in the input image by collecting and
fusing the visualization information from different window images.
The pipeline of our method is illustrated in Figure 2.

3.1 Motivation

CAM-based saliency methods and transformer attribution method
are limited by low resolution and lack the ability to locate de-
tailed feature information. In Figure 1, we show a brief pipeline of
most current CAM-based methods such as Grad-CAM [18], Grad-
CAM++ [4], XGrad-CAM [8], etc., whose raw saliency map resolu-
tion is limited by the resolution of the feature maps extracted from the

convolutional layers. Similarly, since transformer structure-based vi-
sion models use patch embeding, the original saliency map resolution
of proposed saliency methods for such models such as Transformer
attribution [5] is also limited by the token length. The raw saliency
map contains very limited information and cannot give more detailed
feature information. The original saliency map is upsampled to get
the final saliency map, which easily generates noise and highlight
the areas that are not related to the target class. [12]

3.2 Initialize Window Images

Let I0 ∈ R
3×H0×W0 be an original input image. We use a sliding

window function ψ(I, start, h, w, stride) to extract I0 in blocks,
where I is the input image; start is the starting point of the sliding
window in the coordinate system, whose origin is the upper left cor-
ner of the input image in general; h and w denote the window size,
which should be smaller than the size of the input image; stride in-
dicates the number of pixels moved by the sliding window each time,
and the direction of movement includes right and down.

pkn = ψ(I0, start, h, w, stride) (1)

where pkn denotes a window image and kn denotes the coordinates
of that image in I0,

∗
p = {pk1 , pk2 , · · · , pkn} (2)

where
∗
p represents the set of all original window images. Then we

upsample
∗
p to the size of I0 using the bi-linear interpolation function

φ:

∗
P = φ(

∗
p, H0,W0) (3)

where
∗
P = {Pk1 , Pk2 , · · · , Pkn} .
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3.3 Get visualizations and weights

Let F be a pre-trained deep neural network, and Fc(I) denotes the
probability score about class c obtained by inputting image I into F .
For the current visualization algorithm, we consider it as a function f
of the neural network F , the input image I and the class c. When the
input image is I0, we can get the result of this visualization algorithm
for the interpretation of the neural network F :

S0 = f(F , I0, c) (4)

where S0 ∈ R
1×H0×W0 . The pixels in S0 correspond to the pixels

in I0. The larger value in S0 corresponds to the larger contribution
of the pixel points in I0 to the class c. Then we can get the saliency

maps of the window images
∗
P .

∗
S = f(F ,

∗
P , c)

= {Sk1 , Sk2 , · · · , Skn} (5)

In all CAM-based visualization algorithms, various forms of
weighting the feature maps are employed, and this step is essential to
measure the contribution of each feature map. To measure the impor-
tance of saliency maps generated by different window images, we
obtain the probability score of each window image with respect to
class c.

∗
α = Fc(

∗
P )

= {αk1 , αk2 , · · · , αkn} (6)

where αkn is the probability score obtained from the input of Pkn

into F with respect to the class c.

3.4 Fuse saliency maps

In this step, we fuse these saliency maps
∗
S with rich details into the

saliency map S0 generated by the input image I0. First we downsam-

ple
∗
S to the window size:

∗
s = φ(

∗
S, h, w)

= {sk1 , sk2 , · · · , skn} (7)

Second, we multiply
∗
s by their weight and add them to the pixel

value on the corresponding coordinates of S0:

S′
c =

∑
(
∗
s

∗
α+ S0)

=

kn∑

k1

(αknskn + Skn
0 ) (8)

where kn in Skn
0 denotes the coordinate in S0, which corresponds to

the coordinate in I0 of the window images.

3.5 Smoothing and Normalizing

Because of the sliding window application, a grid exists on the
saliency map, which visually appears not smooth enough. Therefore,
we use an ideal low-pass filter Δ(S′

c, H(X,Y )) to optimize it.

S′′
c = Δ(S′

c, H(X,Y )) (9)

H(X,Y ) is the transfer function of the ideal low-pass filter, its
definition is:

H(X,Y ) =

{
1 D(X,Y ) ≤ D0

0 D(X,Y ) > D0

(10)

where D0 is the distance from the cutoff frequency to the center of
the spectrum.D(X,Y ) =

√
X2 + Y 2 is the distance from the point

(X,Y ) in the spectrogram of S′
c to the center of the spectrum. The

spectrum center is a zero-frequency component.
Finally, after Min-Max normalization we can get a saliency map

with more details:

Sc =
S′′
c −min(S′′

c )

max(S′′
c )−min(S′′

c )
(11)

4 Experiments

In this section, we illustrate the effective enhancement of our method
on current saliency methods through qualitative comparison and
quantitative evaluation. Among the quantitative evaluation experi-
ments, we follow the work of Hila Chefer et al. [5] for perturbation
tests and segmentation tests.

4.1 Setup

4.1.1 Datasets and Models

In this paper, we use two models, one is a CNN-based pre-trained
VGG19 [20] and the other is a pre-trained ViT-base model [6] using
Transformer blocks, whose input is a fixed 224×224 size image that
is decomposed into a sequence of 16×16 size patches after passing
through the patch embedding layer. For the perturbation experiments,
we use the ImageNet(ILSVRC) 2012 validation set [17], which con-
tains 50,000 images with a total of 1,000 classes. For the segmenta-
tion experiments, we use the annotated data from [10], which has a
total of 4276 images and contains 445 classes.

4.1.2 Baselines

We select five saliency methods as baselines, among which for
ViT-base visualization we chose Grad CAM [18], LRP [3], par-
tial LRP [23], Transformer attribution [5]. The implementation of
all these algorithms in ViT follows the work of Hila Chefer et
al. [5]. Among them, the Transformer attribution method created by
Hila Chefer et al. [5] is the best for the current Transformer-based
model visualization. For VGG19 [20], we chose the popular Grad
CAM [18] and Grad CAM++ [4], which are both backpropagation
and feature map based algorithms that are fast and simple. We choose
the last convolutional layer of VGG19 as the source of feature maps
because it contains rich semantic information.

4.1.3 Our Method’s parameters

In our experiments, all images are resized to 3×224×224. The
sliding window parameters are: start = (0, 0), h = 96, w =
96, stride = 32, the start is the upper left corner of the input im-
age, i.e. the origin of the coordinate system. In the low-pass filter, we
set D0 = 35 uniformly.
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Figure 3. Samples based on different architectures and different algorithms are compared. For one algorithm, the results of our enhancement method are
boxed in red.

Figure 4. Samples based on different architectures and different algorithms are compared. For one algorithm, the results of our enhancement method are
boxed in red.
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Figure 5. Saliency map comparison of different objects in the image, the results of our enhancement method are boxed in red.

4.2 Quantitative evaluation

We test the visual effect of our enhancement method on ViT and
VGG19 on existing saliency methods. We do not overlay the saliency
maps onto the original input images(except LRP) because this can
better show the quality of the saliency maps under different algo-
rithms, especially to facilitate the observation of the noise distribu-
tion. In Figure 3 and Figure 4, we randomly select six images and
visualize the maximum prediction class with different saliency meth-
ods to generate saliency maps separately, where the saliency maps in
the red box are obtained by applying our enhancement method to its
left side.

A review of Figure 3 and Figure 4 shows that our enhancement
method reduces noise and irrelevant highlighting in saliency maps.
Our sliding window mechanism extracts subtle class-related evi-
dence from the input image, allowing for identification of multiple
occurrences of the same class (lines 1, 2, and 4 in Figure 3, lines
1, 4, and 6 in Figure 4). Our method also effectively highlights de-
tailed features of the target class and key decision-making basis for
the network (lines 5 and 6 in Figure 3, lines 2, 3, 5 in Figure 4).

4.3 Qualitative Evalution

4.3.1 Perturbation tests

A good saliency method accurately identifies key features contribut-
ing to a neural network’s decision and assigns each pixel in the
saliency map a value reflecting its contribution. We evaluate method
performance through positive and negative perturbation tests. In the
positive perturbation test, we first input a batch of images into the
saliency method to generate the saliency map. Next, we replicate the
original batch of images to create 10 additional batches, and accord-
ing to the pixel importance ranking provided by the initial saliency

map, we apply different masking ratios to each batch. For instance,
the second batch has the top 10% of important pixels masked, the
third batch has the top 20% of important pixels masked, and so on,
with the first batch remaining unchanged. Finally, we feed these 10
batches of images into the network and calculate the average top-1
accuracy for each batch. The negative perturbation test follows the
same steps but starts with unimportant pixels. Our evaluation metric
is the area under the curve (AUC) of the average top-1 accuracy in
10% increments from 0%-90%.

In the step of getting saliency maps, we visualize and test the pre-
dicted class of the network and its real target class separately. If the
saliency method is class-sensitive, its test results on the target class
will be better than the predicted class, otherwise, both results are the
same.

We propose the Over−all score to comprehensively evaluate the
perturbation test results, which is calculated asAUC(Over−all) =
AUC(Negative)−AUC(Positive). As can be seen in Table 1, our
enhancement method achieves significant improvements in all the
Over− all scores. The most significant improvements are observed
for the GradCAM and LRP algorithms applied to ViT, which previ-
ously lacked the ability to accurately visualize and localize impor-
tant features. After enhancement using our method, these methods
are able to identify important features. Examples of this can be seen
in Figure 3, which demonstrates that our method can assist saliency
methods in identifying important features of interest to the neural
network, regardless of the underlying network structure.

4.3.2 Segmentation tests

In Segmentation tests, we calculate the mean value of pixels in each
saliency map and set the pixels above the mean value in the saliency
map to 1 and the rest to 0. The thresholded saliency map is com-
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Table 1. AUC results(percent) for negative and positive perturbations on the ImageNet validation set concerning the predicted and target classes. For
’Negative’ and ’Over-all’ higher is better, and for ’positive’ lower is better, better records are marked as boldboldbold. For the same method, the line with �is the

performance after applying our enhancement method.

Model Method E Predicted Target
Negative Positive Over-all Negative Positive Over-all

ViT

GradCAM 41.52 34.06 7.46 42.02 33.56 8.46
� 47.54 26.99 20.55 48.46 26.49 21.97

LRP 43.49 41.94 1.55 43.49 41.94 1.56
� 62.69 27.51 35.18 64.76 26.45 38.31

partial LRP 50.49 19.64 30.85 50.49 19.64 30.85
� 55.57 18.45 37.12 56.13 18.14 37.99

Transformer attribution 54.14 17.03 37.11 55.04 16.04 39.00
� 57.57 16.93 40.64 58.83 16.25 42.58

VGG19
GradCAM 38.08 12.15 25.93 39.04 11.71 27.33

� 39.07 10.20 28.87 40.09 9.78 30.31

GradCAM++ 40.50 11.79 28.71 40.81 11.61 29.20
� 40.95 10.09 30.86 41.49 9.81 31.68

Table 2. Segmentation performance on the ImageNet-segmentation, higher
is better(percent). For the same method, the line with �is the performance

after applying our enhancement method.

Model Method E Pixel Acc mAP mIoU

ViT

GradCAM 64.44 71.60 40.82
� 70.33 77.02 47.81

LRP 51.09 55.68 32.89
� 69.34 80.88 50.37

partial LRP 76.31 84.67 57.94
� 80.42 85.83 62.85

Transformer attribution 79.74 86.03 62.01
� 81.90 86.56 64.56

VGG19
GradCAM 69.03 76.76 48.99

� 73.78 79.99 53.82

GradCAM++ 76.77 85.48 58.89
� 78.60 85.42 60.58

pared with the ground truth segmentation in the dataset. We use
three metrics commonly used in semantic segmentation to measure
performance: pixel-accuracy, mean-intersection-over-union (mIoU),
and mean-Average-Precision(mAP), where mAP is calculated using
the saliency map without thresholding.

The segmentation results are listed in Table 2. From this, we can
see that our enhancement method has a significant improvement on
all three key metrics of the listed saliency methods, and even Trans-
former attribution [5] can get a non-negligible improvement, which
is currently the best performer on ViT. This indicates that our method
can be useful for enhancing the performance of current saliency
methods in the segmentation domain.

5 Conclusion

This paper proposes an enhancement method for current saliency
methods, which is independent of the structure of networks, as long
as the saliency method can give differentiated results for different
classes. Our method has a clear optimization effect, and the saliency
map can achieve a more accurate localization of the target features
while also finding detailed evidence for the neural network to make
decisions, as demonstrated in our quantitative experiments.

Currently, our method keeps the sliding window size and stride al-
ways constant and is not smart enough. In the future, we will improve
it to achieve lower computational costs and more reliable visualiza-

tion results.
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