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Abstract. Offline reinforcement learning (RL) circumvents costly
interactions with the environment by utilising historical trajectories.
Incorporating a world model into this method could substantially
enhance the transfer performance of various tasks without expen-
sive calculations from scratch. However, due to the complexity aris-
ing from different types of generalisation, previous works have fo-
cused almost exclusively on single-environment tasks. In this study,
we introduce a multi-environment offline RL setting to investigate
whether a generalised world model can be learned from large, diverse
datasets and serve as a good surrogate for policy learning in different
tasks. Inspired by the success of multi-task prompt methods, we pro-
pose the Task-prompt Generalised World Model (TGW) framework,
which demonstrates notable performance in this setting. TGW com-
prises three modules: a task-state prompter, a generalised dynamics
module, and a reward module. We implement the generalised dynam-
ics module as a transformer-based recurrent state-space model and
employ prompts to provide task-specific instructions, enabling TGW
to address the internal stochasticity of the generalised world model.
On the MuJoCo control benchmarks, TGW significantly outperforms
previous offline RL algorithms in multi-environment setting.

1 Introduction

Offline reinforcement learning (RL) refers to learning a high-reward
policy based on a fixed dataset of previous experiments or human
demonstrations, which presents a promising paradigm for data reuse
and safe policy learning [15, 17]. This data-driven method holds par-
ticular value in domains such as healthcare, autonomous driving, and
robotics, as it circumvents costly or dangerous active exploration.
While most offline RL methods attempt to address the inherent chal-
lenges of extrapolation error [6] and can perform well on a single
task, they struggle to generalise to multiple distinct tasks. Moreover,
such a task-specific approach reliant on extensive handcrafted engi-
neering is impractical for large-scale use. Although some prior work
in the RL field focuses on the multi-task problem, the majority of
these efforts are limited to multi-tasks with various reward functions
in the same environment [1, 26]. These methods relying on task in-
formation embedded within the reward functions, cannot adapt to
distinct environments, which hinders their widespread application in
society. Intuitively, an agent capable of broad applicability across a
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Figure 1. The three robots have different desires, corresponding to the
motivation to complete different tasks. Robot A is hungry and receives
rewards from eating in the eating environment. Robot B is inspired and

receives rewards from outstanding work in the working environment. Robot
C is tired and receives rewards from entertainment in the playing
environment. They all interact with a subset of the world model.

wide range of environments is essential for constructing a general-
purpose agent, which represents a long-term and crucial goal in the
field of artificial intelligence. However, the complexity arising from
different types of generalisation has led to this interesting and vital
setting receiving limited attention.

In contrast, humans can easily draw from offline experience and
adapt it to improve performance in various environments. We be-
lieve one of the key reasons is that humans have a generic percep-
tion of patterns in the physical world, which can improve data ef-
ficiency and the ability to generalise to multiple tasks [16]. Imag-
ine a scenario shown in Figure 1, where the agent has different de-
sires at various periods. Each task requires interaction with a sub-
set of the entire world, with the underlying laws of the world be-
ing uniform and self-consistent. Empirically, the model-based RL
method is potentially an effective way to enhance generalisation due
to the reusability of its dynamics [31]. Therefore, we decided to
leverage a model-based method to address the aforementioned multi-
environment challenges.

Our goal is to investigate whether a generalised world model can
be learned from offline datasets and serve as a good surrogate for
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policy optimisation in multi-environments. Firstly, we introduce a
multi-environment offline RL setting, defining its configuration and
evaluation metrics. To tackle this problem, we propose a Task-prompt
Generalised World Model (TGW) framework, which is a paradigm
for building a world model with a single set of parameters from of-
fline data to support agents performing well in diverse environments.
As multi-task prompt methods offer notable performance and scal-
ing properties in vision and language [23, 19], we incorporate this
architectural inductive bias into the TGW framework.

The TGW framework includes a task-state prompter module for
integrating task information, a generalised dynamics module for fit-
ting multiple dynamics, and a reward module for specifing task
objectives. Specifically, we implement TGW while considering the
properties of constructing a world model in RL. We propose a model
named TransRSSM as the generalised dynamics model, an architec-
ture that can tackle the problem of exploiting environments with dis-
tinctively different dynamics.

We conduct experiments based on the GYM-MuJoCo environ-
ment [2]. Compared to other offline model-based methods, our
method has significant advantages in all multi-environment tasks, es-
pecially when the offline data is not sampled by an expert policy. In
addition, TGW also demonstrates successful and effective adaptation
to unseen tasks. Our contributions are listed below:

1. We propose a novel multi-environment offline RL setting and a
TGW framework.

2. We propose TransRSSM, which combines the advantages of
transformers and recurrent state-space models.

3. We experimentally investigate the performance of TGW in seen
and unseen tasks, supporting the conclusion that it is capable of han-
dling multi-environment tasks.

2 Preliminary

Partially Observable Markov Decision Process (POMDP) can be
defined as a tuple M = {S,A,O, r, P, ρ0, γ}, where an agent is
in a state st ∈ S, gets an observation ot ∈ O derived from an ob-
servation function O(ot|st), and decide to take an action at ∈ A
at time step t. The policy of agent can be represented as π(at|ot).
And then st+1 will be arrived according to the state transition func-
tion P (st+1|st, at), the agents will receive a new observation ot+1

and a reward r(st, at, st+1). In addition, ρ0 represent the distribu-
tion of initial state s0, and γ is discounted factor. Typically the goal
of reinforcement learning is to find the optimal policy π∗(at|st), that
can maximize the expected sum of discounted reward donated by
η = Eπ,M[

∑∞
t=0 γ

tr(st, at)].
In the Model-Based RL (MBRL), an agent can learn or pre-

dict with the help of a model without interacting with the real en-
vironment. A learned POMDP model can be represented as M̂ =
{S,A,O, r̂, P̂ , η̂0, γ}. In this expression, the reward function r̂,
the transition function P̂ , and the initial state distribution η̂0 are
learned using interactions sampled from the real environment M =
{S,A,O, r, P, η0, γ}.

In the Offline RL setting, we have access only to fixed datasets
D = (oi, ai, ri, oi+1)

N
i=1 to optimize our policy, where N denotes

the length of the datasets. These datasets may be generated by a di-
versity behaviour policy.

3 Multi-environment Offline RL

In the multi-environment offline RL setting, we aim to leverage
multi-environment offline datasets, denoted as Dtrain = (Dk)

K

k=1,

to enable the agent to perform effectively across diverse environ-
ments. In this notation, K represents the total number of datasets
collected from various environments. A specific task can be repre-
sented by a POMDP Mk = {S,A, rk, P k, ηk

0 , γ}. The offline data
Dk = (si, ai, ri, si+1)

N
i=1 is gathered by interacting with the envi-

ronment specified by Mk using either a pure or a mixed behaviour
policy πk(ai|si). For the sake of brevity, we omit O in this context
and consider O(ot|st) in the subsequent implementation of our al-
gorithm.

Two distinct evaluation processes are proposed. The first as-
sesses the agent’s ability to adapt to tasks encountered within di-
verse contexts. In other words, agents are trained using the dataset
(Dk)

K

k=1, which is sampled from Mtrain = {Mk}Kk=1, and sub-
sequently evaluated in the environment Mseen ∈ Mtrain. The
objective is to maximise η = Eπ,Mseen [

∑∞
t=0 γ

tr(st, at)]. The
second process evaluates the agent’s generalisation capacity for un-
seen tasks, implying that the agent is assessed on Munseen, where
Munseen /∈ Mtrain. Consequently, the optimisation target shifts to
η = Eπ,Munseen [

∑∞
t=0 γ

tr(st, at)].
This setting, which seeks to enhance the generalisability of agents

in multiple distinct environments using offline datasets, is vital
for future research in artificial general intelligence. It is impor-
tant to note that the two primary variations between tasks Mk =
{Sk, Ak, rk, P k, ηk

0 , γ} are the differences in transition functions
P k and rewards rk. Representation learning can be employed to
unify Sk and Ak, and the distributions of ηk

0 will be incorporated
when modelling transition functions.

Although there has been some prior research addressing the multi-
task problem in offline RL, it has predominantly been restricted to
distinct tasks sharing the same dynamic function [26, 35]. There-
fore, we emphasise multi-environment in this setting, specifically
the differences in transition and reward functions. Multi-environment
settings necessitate models with multiple generalisation capabilities,
which has resulted in limited research in this area.

4 Task-prompt Generalised World Model

Recent studies have demonstrated the potential advantages of model-
based RL approaches in offline settings. Furthermore, due to their
flexibility in modifying reward functions and offering more stable
updates, model-based RL methods excel in addressing multi-task
problems. Therefore, it is logical to employ a model-based approach
to tackle the multi-environment offline RL problem. This method
incorporates a learned world model that can effectively serve as a
surrogate for various purposes, including offline policy evaluation
and learning, which requires the ability to generalise across differ-
ent types of environments. Motivated by the success of multi-task
prompt methods in vision and language domains [23], we opted to in-
tegrate this architectural inductive bias into the world model’s learn-
ing process. Diverse environments may share identical mapping re-
lationships, which can pose challenges in state prediction. Prompts
can encode task-specific information, enabling sequence prediction
models to disambiguate tasks effectively.

Therefore, we propose TGW framework, combining prompt and
model-based method to solve the multi-environment offline RL prob-
lem. TGW is paradigm for learning a generalised world model
M̂global = {S,A, r̂, P̂ , η̂0, γ} from various datasets {(Dk)}Kk=1.
Even further, we assume that an environment Mk that represented
a single task, and the state transfer space is a subset of generalised
world model M̂global. As mentioned above, TGW take into account
the effect of distinct different transitions {(P k)}Kk=1 and rewards
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{(rk)}Kk=1 on the final task. It is composed of three modules, a task-
state prompter module, a generalised dynamics module, and a reward
module. The general framework is shown in Figure 2. TGW has the
same functions as the environment in which the agents interact, with
current observation ot and action at as input, current reward rt and
next observation ot+1 as output.

As policy optimisation relies on the world model, an accurate and
dependable world model can generate the return under the policy
ηπ,M̂global such that it approximates as closely as possible the return
in the exact environment ηπ,Mk . Therefore, the ultimate objective
for TGW is to minimise the following expressions:

error =
K∑

k=1

‖ηπ,M̂global − ηπ,Mk‖ (1)

The task-state prompter extracts raw data features and subse-
quently integrates historical or task-related prompt information with
current data to create a standardised prompt input for the next mod-
ule. The first function, represented as p(st|ot), accomplishes the
process of deducing the internal latent states st from local obser-
vations ot at time step t. The second function can be formulated as
p(ht|at, st, ht−1), where at and st represent the current action and
state, respectively. We denote ht as the task-state prompt at time step
t. Furthermore, we presume that it contains potentially valid infor-
mation about states and tasks, which effectively aids the subsequent
module in accurately distinguishing between different tasks.

The generalised dynamics module constructs a unified dynamics
model that incorporates each subset of task-specific environments.
The input for this module is the task-state prompt ht, and the outputs
are the next state st+1 and the next local observation ot+1. Conse-
quently, this module can be represented as p(st+1, ot+1|ht).

Reward module constructs reward functions for different tasks.
Reward function can be formulated as p(rt|ht, st+1, ot+1).

In the following subsections, we will introduce TGW implemen-
tation and experimentally prove its validity.

5 Practical implementation

5.1 Trajectory Prompting

In the field of natural language processing, prompt-based methods
have been employed to address zero-shot and few-shot challenges.
Similarly, prompts have recently been demonstrated to provide ef-
fective task-specific instructions for disambiguating tasks in rein-
forcement learning policy optimisation [34, 22]. Distinct from these
two works, TGW focuses on learning a generalised world model,
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Figure 2. The TGW consists of three parts, the task-state prompter
module, the generalised dynamics module, and the reward module.

rather than striving for optimal performance behaviour policy from
offline datasets. Here, we utilise the sequential decision trajectory
(oi, ai, ri, oi+1)

M
i=1 from the offline data Dk as a task-state prompt

ht, where M represents the length of the trajectory contained in the
prompt. We employ multi-layer perceptron neural networks (MLP)
to project the original observation O onto the hidden space S and
then tokenize serialised data. We define the task-state prompt ht for
task k at time t as follows:

hk
t = (skt−m+1, a

k
t−m+1, s

k
t−m+2, a

k
t−m+2, ..., s

k
t , a

k
t )

where ski = f(oki )
(2)

At the beginning of the evaluation, the tokens are derived from the
task-specific dataset Dk. Subsequently, based on the first-in-first-out
mechanism, the tokens are gradually replaced with historical infor-
mation about the agent’s interaction with the actual environment.

5.2 TransRSSM

To develop a dynamic model with enhanced generalisation and im-
proved accuracy, we propose the TransRSSM network structure,
which combines the advantages of the transformer and the recurrent
state-space model (RSSM) [10]. The transformer is an apt architec-
ture for modelling sequence prediction in a hidden space, owing to
its ability to extract inter-relationships between contexts [32, 3]. In
the RSSM, we assume that the latent space of dynamics consists of
deterministic states st and stochastic states ut, which have been em-
pirically shown to be critical by PlaNet [10] and Dreamer [9]. Sepa-
rating states into deterministic and stochastic categories bolsters the
robustness of the world model predictions.
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Figure 3. Task-state prompter and TransRSSM. In the diagram, the blue
blocks represent data in the original space, the green blocks denote

deterministic states in the latent space, and the yellow blocks correspond to
stochastic states.

X. Xiong et al. / Task-Prompt Generalised World Model in Multi-Environment Offline Reinforcement Learning2778



Algorithm 1 TransRSSM
Input: TransRSSM parameters θG, task-state prompt ht

Output: Deterministic state st+1, observation ot+1

1: TransRSSM parameters θG contains deterministic state model
parameters θd, stochastic state model parameters θs, observation
model parameters θo

2: Get deterministic state st+1 = fθd(ht)
3: Get means and variances of stochastic state umean

t+1 , uvar
t+1 =

fθs(st+1)
4: Sample stochastic state ut+1 ∼ N (umean

t+1 , uvar
t+1)

5: Get observation ot+1 = fθo(st+1, ut+1)
6: return deterministic state st+1, observation ot+1

Figure 3 illustrates the token processing of task-state prompter
and TransRSSM. The task-state prompter processes raw observations
and actions at time t by converting them into embedded vectors, in
which the raw observations are transformed into deterministic states.
These vectors are then integrated with historical trajectories from the
task memory to generate the serialised task-state prompt ht. And ht

serves as the input for TransRSSM, supplying it with sufficient task-
related historical information. The output of TransRSSM is the raw
observations ot+1 ∈ O that will be sent to agent.

In TransRSSM, we initially utilise the transformer to predict the
deterministic state st+1 in the subsequent step. The generation of
states becomes integrated with the contextual information encom-
passed in the task prompt ht, capitalising on the transformer’s se-
quence modelling capabilities. We split states into deterministic and
non-deterministic states, which enables the model to make more ac-
curate state predictions. In numerous experiments, this distinction
has proven to be crucial [10, 25]. Assuming the stochastic states con-
form to a normal distribution, We predict the means and variances
of the stochastic states, which can be expressed as umean

t+1 , uvar
t+1 =

fθs(st+1). Stochastic states can be generated by sampling from this
distribution: ut+1 ∼ N (umean

t+1 , uvar
t+1). Ultimately, the subsequent

observed state that can be received by the agent is predicted by the
observation model okt+1 = f(skt+1, u

k
t+1).

Thus, our TransRSSM comprises the following components:

Deterministic state model: skt+1 = f(hk
t )

Stochastic state model: uk
t+1 ∼ p(uk

t+1|skt+1)

Observation model: okt+1 = f(skt+1, u
k
t+1)

(3)

The computational procedure of TransRSSM is illustrated in Al-
gorithm 1.

5.3 Uncertainty estimation as intrinsic reward

The optimal approach to building a dynamics model involves obtain-
ing sufficient data to cover the entire S × A → S space. However,
this is impractical, particularly for offline datasets that are inevitably
subject to distribution drift. Consequently, we propose estimating the
uncertainty of the generalised dynamics model in advance, which can
be employed as an intrinsic reward for policy optimisation.

Estimating the uncertainty of functions is a significant area of re-
search within the field of machine learning and has proven to be em-
pirically valuable for world model learning in RL [7, 4]. We leverage
the ensemble method to train N dynamics models with distinct ini-

Algorithm 2 Task-prompt Generalised World Model
Input: Offline dataset D, number of task K, batch size B
Output: TGW model M̂(fθT

,fθR
,fθG

)

1: Initialize Task-state Prompter parameters θT , Reward module
parameters θR, Generalised Dynamics module θG

2: while not converged do

3: for k=1 to K do

4: for b=1 to B do

5: Sample a trajectory τk
b from Dk

6: end for

7: Get a minibatch input τk = {τk
b }Bb=1

8: Get task-state prompt hk = fθT (τ
k, Dk)

9: end for

10: Mix task-state prompt h = {hk}Kk=1

11: Get state and observation spred, opred = fθG(h)
12: Get external reward repred = fθR(h, s

pred, upred)
13: Calculate loss L = 1

B
[(o− opred)2 + (re− repred)2]

14: θT ← θT − α∇θT L
15: θG ← θG − α∇θGL
16: θR ← θR − α∇θRL
17: end while

18: return TGW model M̂(fθT
,fθR

,fθG
)

tialization parameters {θGn |n ∈ [1 : N ]}. At the outset, these mod-
els map the same inputs into various predictions. As training itera-
tions progress, these predictions converge to more consistent values,
while the variance decreases. Ultimately, states not encompassed by
the offline datasets exhibit high uncertainty, whereas sampled data
display low unvertainty.

In offline RL, exploration in a uncertain state should typically be
avoided. We quantify the model’s uncertainty by measuring the vari-
ance of deterministic states predicted by various ensemble models,
and utilise it as an intrinsic reward for policy training:

rikt+1 = V ar(skt+1) (4)

Extrinsic rewards are typically represented by predicting a scalar
based on state transitions and supervision labels. Additionally, the
serialised latent states and the current deterministic and stochastic
states are considered as inputs for extrinsic reward prediction, with
the aim of aligning the reward prediction with task information and
state-transition stochasticity. The mapping process can be expressed
as follows:

rekt+1 = f(hk
t , s

k
t+1, u

k
t+1) (5)

Here, we utilise β as a hyperparameter representing the level of
risk tolerance of the agent, which balances exploration in uncertainty.
The final reward expression is as follows:

rkt = rekt+1 − β ∗ rikt+1, (6)

where rkt serves as the immediate reward obtained during the in-
teraction between the policy and the world model, guiding the agent
to avoid the missing parts of the state space in the offline dataset.

5.4 Training

The model parameters are τ and its prediction probability distribu-
tion can be expressed as:
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log pτ (o1, r, a1, ..., oM , aM ) =

M∑
m=1

log pτ (om|o1, a1, ..., om−1, am−1)
(7)

As for model training supervision signals, there are labels corre-
sponding to the prediction values okm and rkm within the offline data.
As our objective is to model the dynamics function, the loss of the
behaviour policy is not computed for sequence tokens. Consequently,
the training loss under k tasks can be expressed as follows:

L(θ) = −
K∑

k=1

M∑
m=1

(
log pθ(o

k
m|ok1 , ak

1 , ..., o
k
m−1, a

k
m−1)+

log pθ(r
k
m|ok1 , ak

1 , ..., o
k
m−1, a

k
m−1)

) (8)

The algorithm process is shown in Algorithm 2. As our primary
focus is on the learning of generalised world models, policy opti-
misation is not the priority of this research agenda. Both planning
and learning methods are feasible for learning policies with our
world model, and we ultimately chose to use the offline version of
MBPO [11] to enable a fair comparison with the baseline.

6 Experiments

In our experiments, we concentrate on addressing the following ques-
tions concerning the implementation of our TGW framework:

(1). How does TGW perform on seen tasks?
(2). How does TGW perform on unseen tasks?
(3). How does each module of the TWG configuration affect the

final outcome?

6.1 Experiments on seen tasks

In the first experiment, we opted to use benchmark tasks in of-
fline RL, OpenAI gym’s MuJoCo-based environments [30], to val-
idate the generalisability of our model. We utilise offline data from
D4RL [4], encompassing three environments (HalfCheetah, Hopper,
and Walker2D) and four types of data (Random, Medium, Medium-
Replay, and Medium-Expert). These tasks require the RL agent to
learn to control various robot joints to accomplish the task. The
characteristics of the four datasets are as follows: Random: the be-
haviour policy is randomly initialised. Medium: the behaviour pol-
icy is based on the SCA algorithm trained to a certain performance.
Medium-replay: this data is obtained from the training behaviour
policy to the medium level. Medium-expert: the behaviour policy
consists of medium policy and expert policy. As the range of returns
varies across scenarios, we normalise reward values for all tasks to
range between 0 and 100, facilitating comparison between tasks.

The baseline algorithms we consider for comparison derive from
two aspects. Firstly, we compare our algorithm with model-free
offline methods, including CQL [14] and Prompt-DT [34], with
Prompt-DT also utilising the prompt-transformer architecture as
we do. Secondly, model-based offline reinforcement learning algo-
rithms resemble our methods, and we opt to use MOPO [38] and
MOReL [12] as baselines.

We assess the performance of algorithms in a multi-environment
offline setting. Each algorithm is cross-trained using a mixture of
data from different environments at the same level and subsequently
evaluated individually within each environment. Consequently, there

are four sets of experiments corresponding to four types of data, with
the algorithms in each set tested across three environments. For a
more comprehensive comparison, we also conducted empirical eval-
uations in single-environment scenarios, wherein each algorithm was
trained solely with data pertinent to the test environment. To ensure a
fair comparison, we enhance each algorithm by incorporating a sim-
ilar tokenisation process, enabling adaptation to varying observation
dimensions. As the observation dimension differs between tasks, we
utilise a neural network to map it onto a hidden space with the same
dimension as the token, which is equally applicable for actions.

The results, averaged over five random seeds, are displayed in Ta-
ble 1. It can be observed that in the multi-environment setting, TGW
achieves state-of-the-art (SOTA) results in 10 out of the 12 tests, par-
ticularly in random and medium-replay datasets. On average, TGW
outperforms the other algorithms by a considerable extent. In con-
trast, the next best approach is Prompt-DT, which achieves SOTA
results in the remaining 2 out of 12 tests. Both Prompt-DT and TGW
methods with prompt exhibit greater adaptability to multi-task en-
vironments compared to other methods. In single-environment set-
tings, although TGW is not specifically tailored for particular tasks, it
still achieves comparable performance. TGW attains optimal perfor-
mance in 4 out of the 12 tests, followed by Prompt-DT, which obtains
optimal results in 3 out of the 12 tests. Generally, the performance
of an algorithm declines when the setting changes from single-env to
multi-env. This is due to the presence of issues in multi-task learning,
such as catastrophic forgetting and task interference. However, it can
be observed that TGW has the least decrease in scores, demonstrating
more stable performance when facing tasks in various environments.

Furthermore, we discovered that model-based approaches outper-
form model-free methods within poor data quality, suggesting that
poor behaviour policy has less impact on model-based algorithms.
Overall, the model-based method, TGW, exhibits adaptability to di-
verse environments and excels in multi-environment offline rein-
forcement learning problems.

6.2 Experiments on unseen tasks

To address question (2), we examine two variants of widely-used
simulated continuous control problems, including cheetah-vel and
ant-dir [20]. In cheetah-vel, there are 40 tasks with different target
velocities, while ant-direction comprises 50 tasks with varying goal
directions. Our baseline for comparison is Prompt-DT, which ex-
hibits strong performance in multi-task problems and can fine-tune
to unseen tasks with small datasets.

Our algorithm leverages the same offline data as Prompt-DT. How-
ever, we train in a multi-environment setting. As in the previous ex-
periment, we normalise the reward values for all tasks to a range
between 0 and 100, allowing for comparison across different tasks.
To investigate the impact of data distribution on multi-task generali-
sation performance, we selected ten tasks from each of the two envi-
ronments at equal intervals. The first five tasks of each environment
were used for training (ten in total), and the remaining five tasks were
employed to evaluate performance on unseen tasks.

In prior model-based offline algorithms, generalisation to unseen
tasks was achieved by directly assuming a known reward function,
which effectively introduced task-related instructions for policy op-
timisation. However, in practice, it is frequently impossible to cap-
ture the exact reward function. As such, we evaluate how the reward
module of TGW will perform under unseen tasks. To obtain a deeper
understanding of the impact of the reward function on TGW, we ex-
perimentally set TGW to two versions: TGW-finetune, which fine-
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Table 1. Results for multi-environment seen tasks. The table presents eight sets of experiments, corresponding to training configurations with four sets of
single-environment data and four sets of multi-environment data. The results on the left side pertain to distinct models trained with single-environment datasets
and evaluated within the respective environments. The results on the right side relate to a single model trained with multi-environment datasets and evaluated

across the corresponding environments.

Test Environment Prompt-DT CQL MOPO MOReL TGW(Ours) Prompt-DT CQL MOPO MOReL TGW(Ours)

Single-env Test 1: Training with random data Multi-env Test 1: Training with random data
halfCheetah 29.3 35.4 34.4 25.6 36.2 24.3 12.1 18.3 13.7 29.7

hopper 10.5 10.8 11.7 53.6 48.7 10.8 5.7 16.7 23.1 37.2

walker2d 18.6 7.0 13.6 37.3 38.5 17.6 3.4 14.2 12.6 31.6

Single-env Test 2: Training with medium data Multi-env Test 2: Training with medium data
halfCheetah 47.1 44.4 42.3 42.1 46.1 45.3 18.1 27.8 12.4 41.2
hopper 55.3 86.6 28.0 95.4 97.5 58.9 49.3 27.1 28.7 88.4

walker2d 62.3 74.5 17.8 77.8 61.2 51.3 52.7 17.8 28.2 60.3

Single-env Test 3: Training with medium-replay data Multi-env Test 3: Training with medium-replay data
halfCheetah 42.4 46.2 53.1 40.2 44.2 38.6 25.1 24.2 18.1 40.5

hopper 60.9 48.6 67.5 93.6 82.1 56.1 42.3 34.2 23.9 70.6

walker2d 47.1 32.6 39.0 49.8 50.7 43.2 25.4 18.2 29.7 47.3

Single-env Test 4: Training with medium-expert data Multi-env Test 4: Training with medium-expert data
halfCheetah 67.2 62.4 63.3 53.3 59.3 58.2 46.4 42.6 28.2 51.1
hopper 98.3 111 23.7 108.7 103.2 92.4 83.2 31.7 42.7 100.2

walker2d 103.7 98.7 44.6 95.6 84.7 75.9 73.5 44.6 33.7 86.7

Average 53.3 54.9 32.8 64.4 62.7 47.7 36.4 26.5 24.6 57.3

Figure 4. Results for multi-environment unseen tasks. Solid lines
indicate means and shaded areas indicate variances. The five tasks on the left

of both figures are seen tasks, while the others are unseen tasks.

tunes the reward function with the task-related dataset within the
prompt, and TGW-newR, which trains policies directly using the
reward function of the new task.

The experimental results, obtained over five random seeds, are de-
picted in Figure 4. As evident from the variations in the curves, both
TGW and Prompt-DT exhibit strong performance on seen tasks. And
their performance declines as the tasks deviate from the known en-
vironment distribution. In the cheetah-vel tasks, larger task IDs cor-
respond to a greater degree of out-of-distribution task statuses. The
performance of PDT-FineTune begins to degrade significantly, while
our methods remain relatively stable. In contrast, the ant-dir tasks
exhibit an opposite pattern, with Task 10 reverting to a distribution
similar to that of Task 1. Consequently, the curve begins to rise at
Tasks 9 and 10. In terms of overall results, TGW-NewR delivers the
best performance, followed by TGW-FineTune.

6.3 Ablation study

To address question (3), we carry out a comprehensive ablation study
on TGW. The primary objective is to investigate the impact of the
three TGW modules on the final performance, corresponding to three
algorithm configurations. TGW w/o Prompt: our model forgoes the

task prompt and directly converts the current observation into a to-
ken, which is then input into the Generalised Dynamics module.
TGW w/o RSSM: we cease sampling stochastic states. TGW w/o

ri: we utilise only predicted external rewards in our policy optimi-
sation. Regarding the experimental environment, we use the same
configuration as in Experiment 1. The results of the experiment are
presented in Table 2.

From the results, it can be seen that the complete TGW method
performs the best in the majority of cases. Without the prompt, the
performance noticeably declines in each test. We speculate that, upon
removing the prompt, the transformer model’s absence of context de-
pendency information results in an accumulation of state prediction
errors. The lack of adjustment of the length of the model’s depen-
dence on context led to irreparable deviations in policy optimization,
which did not perform well even on single-env task.

The TransRSSM exerts a positive influence on learning in both
single-environment and multi-environment settings, regardless of
data quality. We believe that the reason for its effectiveness across
various settings is due to the necessity of a world model, learned from
offline data, that possesses the ability to handle random data distri-
bution. This is because in offline RL, the dataset cannot cover all
possible state transitions, resulting in epistemic uncertainty remain-
ing, regardless of the presence or absence of aleatoric uncertainty.
And the design of TransRSSM addresses environmental stochastic-
ity, leading to more robust performance.

The final column presents ablation experiment results for intrinsic
rewards, demonstrating a significant impact on the final outcomes in
most cases. This can be attributed to the fact that, in the context of
offline reinforcement learning, exploration in highly uncertain states
may result in severe extrapolation errors, whereas intrinsic rewards
encourage exploration in more conservative states. Additionally, the
impact of intrinsic reward is related to the hyperparameter β. We in-
vestigated the effect of β, and the results of the ablation experiment
over five random seeds are shown in Figure 5. It can be seen that the
intrinsic rewards have a relatively smaller impact when the data qual-
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Table 2. Results for ablation study. The table shows four sets of experiments, each corresponding to algorithms trained with different qualities of data

Test Environment TGW TGW w/o P TGW w/o RSSM TGW w/o ri TGW TGW w/o P TGW w/o RSSM TGW w/o ri

Single-env Test 1: Training with random data Multi-env Test 1: Training with random data
halfCheetah 36.2 8.7 31.5 36.2 29.7 7.5 23.4 29.7

hopper 48.7 23.1 35.8 28.1 37.2 10.3 40.5 36.5
walker2d 38.5 18.5 20.3 31.4 31.6 16.6 24.9 28.0

Single-env Test 2: Training with medium data Multi-env Test 2: Training with medium data
halfCheetah 46.1 40.7 27.6 33.8 41.2 22.0 31.5 41.2

hopper 97.5 37.9 54.1 77.0 88.4 33.7 28.4 72.3
walker2d 61.2 25.2 27.0 61.2 60.3 25.1 31.8 49.7

Single-env Test 3: Training with medium-replay data Multi-env Test 3: Training with medium-replay data
halfCheetah 44.2 29.9 38.2 28.8 40.5 18.1 39.8 38.0
hopper 82.1 18.3 64.6 71.0 70.6 26.3 61.2 65.8
walker2d 50.7 39.5 33.2 50.7 47.3 19.0 34.9 34.4

Single-env Test 4: Training with medium-expert data Multi-env Test 4: Training with medium-expert data
halfCheetah 59.3 30.0 39.8 42.7 51.1 12.7 36.7 42.3
hopper 103.2 7.5 70.2 91.6 100.2 28.0 78.3 65.2
walker2d 84.7 15.4 70.9 60.4 84.2 18.4 71.6 73.3

ity is poor, and a larger impact under medium-expert data. Although
a trade-off exists, this configuration can indeed enhance the scope of
policy exploration, and tuning of the hyperparameter β has an ad-
vantage in terms of improving the final result. In summary, through
ablation experiments, we have validated that each module distinctly
and positively influences the final performance of TGW.

Figure 5. Ablation study of β. The two figures display the impact of β on
under different data quality conditions.

7 Related work

To mitigate the substantial cost of online interaction and inefficient
data utilisation, reinforcement learning has evolved from purely on-
line RL to transition memory-based RL, commonly referred to as
offline RL [15]. Due to extrapolation error [6], most offline RL al-
gorithms constrain the policy to be within the domain of the be-
haviour policy. Some algorithms improve upon importance sampling
[18, 28, 29], while others focus on quantifying the uncertainty of pre-
dictions [13] or training the policy with pessimistic Q-value estima-
tion [6]. Additional works concentrate on offline data collection [36].
In contrast to these approaches, which rely on datasets to train spe-
cialised policies, TGW extracts generic information from data across
different environments.

Model-Based RL has demonstrated remarkable success in com-
plex decision-making problems, with planning methods to predict
further horizons [5, 27, 24]. Compared to model-free methods,
Model-Based RL offers advantages in stability, data efficiency, and
security [21, 8]. There are methods that use world models to facil-

itate transfer across tasks with different reward functions to accom-
plish multiple tasks [25]. CASCADE [35] learns a generalised world
model in an online setting. Some methods are based on offline data.
ALPT is based on data pre-training for inverse dynamics models
[33]. And MOReL [12], MOPO [38], and COMBO [37] learn envi-
ronment models with uncertainty-based punishment on offline data.
However, these world models remain restricted to a single dynamic
environment. As a generalised world model, TGW can adapt to dif-
ferent tasks with both diverse reward functions and distinct transition
functions.

Transformer-based RL methods often models state-action tra-
jectories as a sequence prediction problem, simplifying a range of
design decisions, as seen in the decision transformer [3, 22]. How-
ever, these methods conflate world models with decision-making,
rendering planning infeasible in these algorithms. Prompt transform-
ers were initially used to address problems without large amounts of
annotated data [19] and have proven useful for tackling tasks with
data from various distributions [23]. Both GATO [22] and Prompt-
DT [34] employ prompt transformers to solve RL problems and are
adaptable to multiple tasks. The distinction lies in TGW’s focus on
constructing a generalised model rather than directly imitating pol-
icy. The advantage of our method is that policy learning is not con-
strained by behaviour policy.

8 Conclusions

We propose a novel multi-environment offline RL setting in which
the agent leverages fixed demonstrations collected from different en-
vironments to perform well across distinct tasks. To address this,
we introduce a framework called TGW that incorporates the archi-
tectural inductive bias of the prompt-transformer. During the algo-
rithm’s implementation, we consider the properties of constructing
a world model in RL and propose the structure named TransRSSM.
Experimental results demonstrate TGW’s superior performance for
both seen and unseen tasks compared to previous offline RL algo-
rithms. We also confirm that the task-state prompter and TransTSSM
are critical to the final outcome.

For future work, our main direction is to extend its generalization
across different dynamics and expand towards multi-modal states.
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