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Abstract. Many few-shot image classification methods focus on
learning a fixed feature space from sufficient samples of seen classes
that can be readily transferred to unseen classes. For different tasks,
the feature space is either kept the same or only adjusted by gener-
ating attentions to query samples. However, the discriminative chan-
nels and spatial parts for comparing different query and support im-
ages in different tasks are usually different. In this paper, we propose
a task-sensitive discriminative mutual attention (TDMA) network
to produce task-and-sample-specific features. For each task, TDMA
first generates a discriminative task embedding that encodes the inter-
class separability and within-class scatter, and then employs the task
embedding to enhance discriminative channels respective to this task.
Given a specific query and different support images, TDMA further
incorporates the task embedding and long-range dependencies to lo-
cate the discriminative parts in the spatial dimension. Experimental
results on miniImageNet, tieredImageNet and FC100 datasets show
the effectiveness of the proposed model.

1 Introduction

The success of deep learning depends heavily on a large amount of
labeled training data, limiting the scalability of deep learning models
to new or rare concepts with few annotations. As a promising ap-
proach to tackle this challenge, few-shot classification aims at learn-
ing a classifier trained on seen classes that can be adapted to new
unseen classes, given only very few labeled samples of new classes.

Most existing few-shot classification methods [36, 32, 9, 25, 18,
28, 8] employ a meta-learning paradigm to discover transferable
meta-knowledge from a set of tasks that mimic the few-shot test
setting with the seen classes. Different methods differ in the meta-
knowledge, which could be a distance metric [36, 32], an optimiza-
tor [18, 28], and initial parameters [9, 25]. Meta-knowledge is gen-
erally applied to all few-shot classification tasks with unseen classes
indiscriminately. As the embedding function is performed on support
and query samples independently, the channel-spatial feature map of
a sample remains the same compared with any other sample.

However, the discriminative channels and foreground areas of in-
terest are often different when comparing different sample pairs in
different tasks. As illustrated in Figur 1, in three different tasks and
when comparing with different images, the discriminative parts of
the same support image differ a lot. Adaptively identifying the most
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Figure 1: Illustration of the main idea for TDMA. Each column shows
the support images for a 3-way 1-shot task. The first class of the sup-
port images in three different tasks are "bird" class. The discrimi-
native parts of the bird image vary considerably in comparison with
other support images in the three tasks. In the first task, the bird’s
differentiation from the tiger and bear is located in its body, where
the bird possesses wings while the others do not. In the second task,
the bird’s dissimilarity is present in its tail when contrasted with the
kite and the airplane. Lastly, in the third task, the background of the
bird image differs from the objects in other support images, i.e., the
bamboo and bar.

discriminative features and the most relevant regions for each sample
pair is important for fully leveraging useful information from few la-
beled samples. This can be difficult because whether a pixel or a local
region is discriminative may depend on the whole task and multiple
non-local regions of the compared image. For example, the discrimi-
native parts between rabbit images and cat images might be their ears
while the discriminative parts between rabbit images and dog images
could possibly be their noses. As far as we know, few work [12] is
devoted to adapting the features according to specific sample pairs
but only produces spatial cross-attentions with local operations.

In this paper, we propose a Task-sensitive Discriminative Mutual
Attention (TDMA) network for few-shot classification, which adap-
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tively enhances the discrimination ability of features with a new joint
channel-spatial attention mechanism according to different tasks and
image pairs. TDMA first generates a global discriminative task em-
bedding based on linear discriminate analysis (LDA) to compute
channel attentions, and the task embedding is used as the channel
weight of the image. TDMA then generates spatial attention maps
using a mutual attention module with the guidance of the task embed-
ding to locate the discriminative parts in both images. The response at
each position of one image is computed by taking all positions of the
other image into consideration to tackle long-range dependencies.
The generated channel-wise and spatial-wise attentions are used to
enhance the features so that the discriminative foreground responses
are strengthened and the irrelevant noisy information is filtered out.
In this way, TDMA is able to improve the performance and does not
bring too much computation and storage burden. Our contributions
are threefold:

• We propose a novel LDA-based method which aims to search the
most discriminative direction that the separability among classes
of a task is maximized, referred to as "task embedding". We gen-
erate channel attentions from the task embedding to adaptively
enhance channels that better discriminate different classes in dif-
ferent tasks.

• We propose a mutual attention module to adaptively locate the
discriminative parts in both images. The mutual attention module
establishes the correlations between the spatial positions of both
images, where the global discriminative information of the task
and all spatial positions of one image are incorporated to generate
attention on the spatial positions of another. In this way, the mu-
tual long-range dependencies and globally discriminative spatial
responses are captured.

• We incorporate the task excitation network (TEN) and mutual at-
tention module (MAM) into a joint discriminative model guided
by task embeddings to learn both channel-wise attentions and
spatial-wise attentions, and use the generated attentions to en-
hance the features. Experiments on three few-shot classification
datasets show the effectiveness of our method.

2 Related Work

2.1 Few-shot Image Classification

The problem of few-shot learning is how to learn useful informa-
tion for the current task from a small number of label samples in the
new class. Depending on what meta-knowledge is learned, existing
few-shot learning methods can be roughly divided into three cate-
gories: optimization based, parameter-generating based, and metric-
learning based. Optimization-based methods [9, 25] aim to learn
good initial model parameters so that the model can quickly adapt
to new tasks through a limited number of gradient update steps.
In their seminal work, MAML [9] presented a universal optimiza-
tion algorithm designed to identify a specific set of model parame-
ters that would generate significant performance enhancements on
a novel task using a limited amount of training data and a small
number of gradient steps. Reptile [25] introduced a modification to
MAML that entailed removing the re-initialization step for every
task, thereby rendering it more suitable for certain scenarios. This
variant of MAML was demonstrated to be effective in the absence
of task-specific re-initialization, as it converged towards a solution
that was in proximity to the manifold of optimal solutions for each
task. Parameter-generating based methods [23] learn an optimizer to
predict meta-parameters. Metric-learning-based methods [36, 32, 33]

embed input images into a common embedding space and learn a
distance metric to distinguish samples from new classes using the
nearest neighbor or nearest prototype-based classifier. An advan-
tage of metric-learning methods is that only a simple feed-forward
computation is required and no fine-tuning is needed on the target
tasks. LDAM [40] dynamically sample local information and based
on which to learn the position and channel-dependent relationship
which has never been explored before, while DC [42] calibrate the
distribution of few sample classes and use the expanded calibrated
inputs to improve the classification effect, and it achieved good re-
sults.

In our proposed approach, we have integrated ProtoNet [32], a
widely used metric-based framework to boost the generalization abil-
ity of the feature embeddings. Different from [32, 36, 33] where the
same feature extractor is applied to all support and query images
independently and hence all feature channels and spatial positions
are treated equally, our method adaptively adjusts the features to en-
hance the discrimination ability when comparing different query and
support samples. In [12], the cross attention network (CAN) also
adapts the features of each pair of query and support images using
the attention mechanism. Our method differs from CAN in three as-
pects. 1. CAN does not take into account the channel dimensions
of feature maps, while our method generates both channel-wise and
spatial-wise attentions to jointly identify discriminative features and
locations. 2. CAN only exploits local point-wise relations to high-
light the target object regions, while our method employs long-range
dependencies using non-local operations to capture the relationship
between support and query features interactively. 3. CAN produces
features that are based on sample-specific, while our method is based
on task-aware which can produce task-and-sample-specific features.
[3] proposed a baseline++ method that aims at reducing intra-class
variations by the cosine distances, the raise in inter-class separability
of our task embedding is paralleled by the reduction of within-class
variations. CAD [5] proposes a cross-attention module that computes
attention between the query and support to generate the feature maps,
however, it can only be conducted under the transductive setting since
it uses all the query image information to enhance the representations
of support images. Meanwhile, our method computes the channel and
spatial attentions by computing the similarity scores and can work
under the inductive setting.

Many few-shot learning methods that rely on prototypical net-
works have traditionally used L2 distance as a measure of the simi-
larity between two images. However, recent research has introduced
other distance metrics, such as Earth Mover’s Distance (EMD) and
Brownian Distance Covariance (BDC), which have led to promising
results. Meta Navigator [44] presents a search space covering pop-
ular few-shot learning algorithms and a differentiable searching and
decoding algorithm based on meta-learning for gradient-based op-
timization. It automates the selection of various few-shot learning
designs and addresses the limitations of few-shot learning by finding
good parameter adaptation policies for different stages in the net-
work.

2.2 Attention Module

Attention mechanism has been widely used in many fields such
as machine translation, natural language processing [7], and im-
age classification [13]. In recent years, many attention-based meth-
ods have emerged in the field of computer vision, such as squeeze-
and-excitation block [13], non-local attention block [37], and trans-
former [35]. Several recent studies have used attention mechanisms
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Figure 2: The diagram of the proposed TDMA for a 3-way 1-shot classification task with one query.

for few-shot learning [12, 43], they leverage self-attention and cross-
attention to generate better feature representations. MELR [8] pro-
poses a cross-episode attention module to take the attention between
the cross-episode into consideration. In [43], the feature embeddings
of instances are adapted to the target task using a transformer-based
set-to-set function. In [46], the cross non-local neural network is pro-
posed to capture the long-range dependency, which consists of sev-
eral simplified non-local blocks. In this paper, we develop a meta-
attention model to capture the task-aware discriminative information
on channel dimension and learn the mutual relationships on spatial
dimension, so that the model can quickly adapt to new tasks, even if
there is little supervised information in new tasks. Specifically, the
task embedding generates channel-wise attentions to select discrim-
inative channel features, then our mutual attention module incorpo-
rates the task embedding to capture discriminative mutual attentions
for each specific task.

3 Method

3.1 Problem Setting

Given the training set Dtrain = (Ii, yi) with C base classes, where
Ii is the i-th image sample and yi ∈ 1, · · · , C is its corresponding
label, few-shot learning aims at learning a model that can be quickly
adapted to new tasks with a few labeled samples. For an N -way K-
shot task in the testing phase, there are N classes that do not ap-
pear in the training set and only K labeled samples are available per
class. The NK labeled samples form the support set of this task.
The goal is to classify each unlabeled sample in a query set into one
of the N classes. Usually, the tasks are constructed from testing set
Dtest, where the classes in Dtest are disjoint with those in Dtrain.
To construct a task, N classes are randomly sampled. The support
set and query set are generated by sampling K and Q samples per
class, respectively. The performance of the few-shot learning model
is evaluated on these testing tasks.

3.2 Overview

The central concept of TDMA is depicted in Figure 2. Given a
few-shot classification task, TDMA initially extracts a task embed-
ding and then generates channel-wise attention to enhance the task-
discriminative channels that are discriminative for the current task.

For a pair of enhanced support and query feature maps, TDMA uti-
lizes a task-sensitive module to create sample-pair-specific mutual
attentions that pinpoint the discriminative regions within the feature
maps, resulting in sample-pair-specific feature maps for the query
and support. Finally, TDMA adopts the ProtoNet [32] to perform
classification for the adapted support and query features.

3.3 Task Embedding Extraction

For an N -way K-shot classification task, the support set is denoted
by (In

k , n = 1, · · · , N, k = 1, · · · ,K). For the k-th support image
In
k of the n-th class, we generate a number of S augmented im-

ages In
ks, s = 1, · · · , S from it by RandAugment [6] and Triv-

ialAugment [24]. In
k and all the augmentations In

ks, s = 1, · · · , S
are fed into a feature extractor backbone F (ω) to obtain the fea-
ture maps xn

k = F (In
k ;ω) ∈ R

C×H×W and xn
ks = F (In

ks;ω) ∈
R

C×H×W , s = 1, · · · , S, where C, H and W are the number of
channels, height and width of the feature map, respectively. We per-
form the global average pooling [19] on all the feature maps and
obtain the corresponding feature vectors xn

k and xn
ks, respectively.

For the n-th class, we calculate the mean of all feature vectors of
all the support images and their augmentations:

x̄n =
1

K(S + 1)

K∑

k=1

(xn
k +

S∑

s=1

xn
ks). (1)

The within-class covariance of the n-th class can be obtained as:

Γn =
1

K(S + 1)

K∑

k=1

((xn
k − x̄n)(xn

k − x̄n)T+

S∑

s=1

(xn
ks − x̄n)(xn

ks − x̄n)T ).

(2)

The overall intra-class scatter is the weighted average of covari-
ances of all the support classes:

Γw =
N∑

n=1

pnΓn, (3)
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where pn = 1
N

is the prior probability of n-th class in the task. The
inter-class scatter can be calculated as follows:

Γb =

N−1∑

n=1

N∑

n′=n+1

(x̄n − x̄n′)(x̄n − x̄n′)T . (4)

Γw and Γb measure the intra-class compactness and the separabil-
ity among different classes, respectively. We apply Linear Discrim-
inative Analysis (LDA) [10, 27] to capture the most discriminative
projection v:

v = argmax
w

tr(wTΓbw)

tr(wTΓww)
. (5)

Here tr represents the trace of the matrix. The solution of Eq.(5)
is the most dominant generalized eigenvector of the matrix Γ−1

w Γb

w.r.t. the largest eigenvalue. By projecting all feature vectors of all
classes with v, the ratio of the inter-class scatter over the intra-class
scatter is maximized, i.e., the separability of different classes is max-
imized. Therefore, v encodes the most discriminative information
among classes in the task. We use v as the task embedding to guide
the extraction of channel-wise and spatial attentions for comparing
different query and support images.

LDA

FC
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u
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Figure 3: Task excitation network(TEN).

3.4 Task Excitation Network

The task excitation module is used to generate discriminative
channel-wise attentions from the task embedding v, which has a sim-
ilar architecture to the squeeze and excitation (SE) module [13]. As

shown in Figure 3, this module has three inputs: task embedding v,
query feature xq and support feature xn

k . Specifically, it contains two
fully connected (FC) layers each followed by a sigmoid activation.
Different from the SE module, it takes the task embedding v as the
input instead of the average pooling operation. The channel-wise at-
tention u is calculated as follows:

u = σ(Wv) = σ(W2W1v), (6)

where σ denotes the sigmoid function, W1 ∈ R
C×C

r and W2 ∈
R

C
r
×C are the weights of the two FC layers, and r is the scaling

ratio, which is usually set as a constant. This equation is designed to
fine-tune the task embedding into the channel attention.

The learned channel-wise attention u assigns larger weights to
those discriminative channels for the task. u is applied to the fea-
ture maps of both support and query images. The enhanced feature
map zn

k for the support feature map xn
k is calculated as:

zn
k = xn

k ⊗ u+ xn
k , (7)

where ⊗ is the channel-wise multiplication.
A query image Iq is first fed into the backbone F (ω) to obtain

the query feature map xq = F (Iq;ω) ∈ R
C×H×W , which is also

enhanced by the channel-wise attention u as follows:

zq = xq ⊗ u+ xq. (8)

Then the output of the enhanced query and support image fea-
tures, xq and xn

k , are rendered more discriminative through channel
weighting facilitated by the task embedding.

3.5 Mutual Attention Module

Locations of objects and discriminative parts differ in images and
tasks. The relevant regions in an image are also different when com-
pared to other images in different tasks. We design a task-aware
mutual attention module to locate the most discriminative regions
adaptively in each specific pair of support and query images for each
specific task by establishing their mutual spatial-wise relationships.
Specifically, mutual attention means the learned query attention to
the support feature map and the learned support attention for the
query feature map, thus different pairs of support and query images
have different mutual attention. Besides, for the task-specific mutual
attention calculation, the mutual attention module engages the task
embedding with the support or query feature map to locate the dis-
criminative part of the image. We design the task-sensitive mutual
attention module to locate the discriminative regions adaptively in
each specific pair of support and query images for each specific task
by establishing their mutual spatial-wise relationships as shown in
Figure 4.

Once guided by the task embedding, there is an expectation that
the query and support images will engage in mutual learning. In light
of the aforementioned, a mutual learning model was developed to
facilitate bi-directional knowledge transfer between the query and
support images, which can be formulated as follows:

ẑq = softmax(
Wθz

n
k (Wφzq)

T

√
d

)� (Wgzq) + zq, (9)

ẑn
k = softmax(

Wθzq(Wφz
n
k )

T

√
d

)� (Wgz
n
k ) + zn

k , (10)

where � is the element-wise multiplication, and d is the dimen-
sion of the image feature. Wθ , Wφ, and Wg are weight matrices
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Figure 4: The task-sensitive mutual attention module(MAM).

to be learned. ẑq and ẑn
k are the output of the spatial-enhanced

feature maps for the support and query feature map respectively.
Wθz

n
k (Wφzq)

T and Wθzq(Wφz
n
k )

T are the similarity matrices be-
tween the query and support. For query features, the element-wise
multiplication between Wθz

n
k (Wφzq)

T and Wgzq means the fea-
tures need to be enhanced for the query. Spatial attention is obtained
through computing attention for all of the spatial points (hw) in the
feature map.

The proposed mutual attention module captures the spatial-wise
correspondences and inter-dependencies between two feature maps
with the guidance of channel-wise attention. The learned discrimina-
tive attention can effectively locate the relevant areas that appear to-
gether between the support and query images, regardless of whether
these highly relevant areas are associated with objects from seen
classes or new classes, and hence can be generalized to new classes.

3.6 Classification and Model training

For a pair of support image In
k and a query image Iq , the mutual

attention module generates the re-weighted support feature map ẑn
k

and query feature map ẑq , respectively. The same query image has
different attention maps when comparing different support images.
We then employ the Euclidean distance d(·, ·) to measure the simi-
larity between ẑq and ẑn

k . In the training stage, we follow the metric-
learning-based method [32] to calculate the prototype of the n-th
class by averaging the feature maps of the support, and we use ẑn

.

to denote the prototype of the support image features. Then the pro-
totype of and support feature map could be used to minimize the
classification loss on the query set of the training episodes. The clas-
sification loss is defined as Eq.(11):

L =
1

||Q||
||Q||∑

q=1

−log
exp(−d(ẑq, ẑ

yq
. ))∑

n∈N exp(−d(ẑq, ẑn
. ))

, (11)

where ẑn
. = 1

K

∑K
k=1 ẑ

n
k , ẑn

. is the prototype embedding of n-th
class. ||Q|| is the number of query images per episode. yq is the cor-
responding label of the ẑq .

Algorithm 1 A single episode update for training TDMA

Input: A N -way K-shot episode with support images In
k and

query images Iq
Initialize: feature extractor backbone F (ω), weights of convolu-
tional layers Wθ , Wφ, Wg

for e in {E1, · · · , EE} do

for i in {1, · · · , N} do

1. Generate augmentations for support images In
ks;

2. Extract features xn
ks, xn

k , xq for In
ks, In

k , Iq by F (ω),
respectively;
3. Calculate the task embedding v using In

ks by Eq.(1)-
Eq.(5);
4. Compute the enhanced support and query feature map zn

k

and zq by the task embedding v using Eq.(6)-Eq.(8);
4. Calculate the mutual attention feature maps ẑn

k , ẑq by
Eq.(9)-Eq.(10)
5. Calculate LT using Eq.(11)
6. Update F (ω), Wθ , Wφ, Wg with respect to LT

end for

end for

For the testing stage, The predicted label for the query image xq is
calculated as follows:

ŷq = argmax
y∈N

exp((−d(ẑq, ẑ
y
. ))∑

n∈N exp(−d(ẑq, ẑn
. ))

. (12)

3.7 Overall TDMA Algorithm

To ensure reproducibility, we provide a complete outline of the algo-
rithm for Few-Shot Learning (FSL) with our TDMA, as depicted in
Algorithm 1. With the learned model, we can carry out inference on
the test episodes.
Complexity Analysis. The complexities of the task embedding ex-
traction, the task excitation network, and the mutual attention module
are O(C3), O(C2), and O(H2W 2C), respectively.

4 Experiments

Datasets. We evaluate the proposed method on three widely-used
datasets, including miniImageNet [36], tieredImageNet [30] and
FC100 [44]. The first two datasets are subsets of ILSVRC-12 [31], in
which the image size is 84×84. MiniImageNet contains 100 classes,
which are divided into a training set of 64 classes, a validation set of
16 classes, and a test set of 20 classes. TieredImageNet contains 608
categories(779,165 images) and is divided into a training set of 351
classes, a validation set of 97 classes, and a test set of 160 classes.
FC100 is a few-shot classification dataset consisting of 100 distinct
object classes derived from CIFAR100 [15], with each class being
represented by a collection of 32×32 color images, amounting to 600
samples per class. Following the prior work [44] for task splits, we
partitioned the dataset into training, validation, and testing subsets,
containing 60, 20, and 20 classes, respectively.

Evaluation Metrics. In line with previous works, we take the 5-
way 1-shot/5-shot FSL evaluation setting. The evaluation process
random sample 5 classes for each episode with 1-shot/5-shot and 15
query images per class, thus every test episode has 75 query images
and 5 or 25 support image(s). The results are reported on average 5-
way classification accuracy (%, top-1) over randomly sampled 2,000
test episodes as well as the 95% confidence interval. As the task ex-
citation network and mutual attention module cope with each sample
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independently, our TDMA is evaluated under a strict inductive set-
ting.

Feature Extractor. To ensure a fair comparison with prior lit-
erature, our proposed TDMA method employs the commonly used
ResNet-12 [11] as the underlying feature extractor. To expedite the
training process, we initialize the feature extractor by pretraining it
on the training partition of each dataset following the common prac-
tice, which has been observed in numerous prior studies [43, 45].

Table 1: The mean accuracy (%, top-1) results of the standard FSL
along with a 95% confidence interval on the miniImageNet. The top
two results are presented in bold and underlined format respectively.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [9] Conv4 48.70 ± 1.84 63.11 ± 0.92
MatchingNet [36] Conv4 43.56 ± 0.84 55.31 ± 0.73
ProtoNet [32] Conv4 49.42 ± 0.78 68.20 ± 0.66
ECSF [29] Conv4 49.07 ± 0.43 65.73 ± 0.36
BOIL [26] Conv4 49.61 ± 0.16 66.45 ± 0.37
IEPT [45] Conv4 56.26 ± 0.45 73.91 ± 0.34
LDGP [38] Conv4 56.32 ± 0.28 72.64 ± 0.26
CAN [12] ResNet-12 62.64 ± 0.66 78.83 ± 0.45
FEAT [43] ResNet-12 66.78 ± 0.20 82.05 ± 0.14
infoPatch [20] ResNet-12 67.04 ± 0.63 83.63 ± 0.29
CNL [46] ResNet-12 67.96 ± 0.98 83.36 ± 0.51
BML [48] ResNet-12 67.67 ± 0.45 82.44 ± 0.29
ConstellationNet [41] ResNet-12 64.89 ± 0.23 79.95 ± 0.17
IEPT [45] ResNet-12 67.05 ± 0.44 82.90 ± 0.30
DMF [39] ResNet-12 67.76 ± 0.46 82.71 ± 0.31
RENET [14] ResNet-12 67.60 ± 0.44 82.58 ± 0.30
SetFeat [2] ResNet-12 68.32 ± 0.62 82.71 ±0.46
Meta-Baseline [4] ResNet-12 63.17 ± 0.23 79.26 ± 0.17
NCA NC [16] ResNet-12 62.55 ± 0.12 78.27 ± 0.09
POODLE [17] ResNet-12 67.80 83.50
PAL [22] ResNet-12 69.37 ± 0.64 84.40 ± 0.44

TDMA(ours) ResNet-12 70.42 ± 0.46 84.52 ± 0.30

Table 2: The mean accuracy (%, top-1) results of the standard FSL
with a 95% confidence interval on the tieredImageNet. The top two
results are presented in bold and underlined format, respectively.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [9] Conv4 51.67 ± 1.81 70.30 ± 1.75
ProtoNet [32] Conv4 53.31 ± 0.89 72.69 ± 0.74
ECSF [29] Conv4 48.19 ± 0.43 65.50 ± 0.39
IEPT [45] Conv4 58.25 ± 0.48 75.63 ± 0.0.46
BOIL [26] Conv4 48.58 ± 0.27 69.37 ± 0.12
LDGP [38] Conv4 58.43 ± 0.38 76.17 ± 0.34
CAN [12] ResNet-12 66.22 ± 0.75 82.79 ± 0.48
FEAT [43] ResNet-12 70.80 ± 0.23 84.79 ± 0.16
Rethink-Distill [34] ResNet-12 71.52 ± 0.69 86.03 ± 0.49
infoPatch [20] ResNet-12 71.51 ± 0.52 85.44 ± 0.35
DMF [39] ResNet-12 71.89 ± 0.52 82.71 ± 0.31
RENET [14] ResNet-12 71.61 ± 0.51 85.28 ± 0.35
BML [48] ResNet-12 68.99 ± 0.50 85.49± 0.34
Meta-Baseline [4] ResNet-12 68.62 ± 0.27 83.74 ± 0.18
IEPT [45] ResNet-12 72.24 ± 0.50 86.73 ±0.34
NCA NC [16] ResNet-12 68.35 ± 0.13 83.20 ± 0.10
POODLE [17] ResNet-12 70.42 85.26
PAL [22] ResNet-12 72.25 ± 0.72 86.95 ± 0.47

TDMA(ours) ResNet-12 72.57 ± 0.51 86.02 ± 0.16

Figure 5: Ablation result of class activation mapping visualization on
a 5-way 1-shot task with one query, we only show 2-way of it.

4.1 Main Results

As shown in Table 1 and 2, TDMA remarkably outperforms the state-
of-the-art inductive few-shot learning methods on miniImageNet and
obtains competitive results on tieredImageNet. Table 3 shows that we
also achieve comparable results on FC100. In experiments conducted
on miniImageNet and tieredImageNet, TDMA exhibits a consider-
able performance advantage over two other attention-based method-
ologies, CAN and FEAT. We would compare the attention mecha-
nism employed in these different methods. The attentions learned
by FEAT mainly focus on the support images of all classes; CAN
generates cross-attentions between the support and query images by
emphasizing the similar parts across spatial positions but does not
take the overall task into consideration, causing the risk that com-
mon parts may not be related to the foreground areas and the task.
Differently, Conversely, our proposed TDMA method leverages task
embeddings to identify distinctive spatial regions, thereby yielding
superior performance in comparison to CAN and FEAT.

Table 3: The mean accuracy (%, top-1) results of the standard FSL
with a 95% confidence interval on the FC100. The top two results
are presented in bold and underlined format, respectively.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [9] Conv4 38.1 ± 1.7 50.4 ± 1.0
ProtoNet [32] Conv4 41.54 ± 0.76 57.08± 0.76
E3BM [21] ResNet-12 43.2 ± 0.30 60.2 ± 0.30
Centroid [1] ResNet-12 45.83 ± 0.48 59.74± 0.56
Rethink-Distill [34] ResNet-12 44.6 ± 0.70 60.9 ± 0.60
ConstellationNet [41] ResNet-12 43.8 ± 0.20 59.7 ± 0.20
infoPatch [20] ResNet-12 43.8 ± 0.40 58.0 ± 0.4
MixtFSL [48] ResNet-12 44.89 ± 0.63 60.7± 0.60
PAL [22] ResNet-12 47.2 ± 0.6 64.0± 0.60

TDMA(ours) ResNet-12 45.09 ± 0.41 60.82 ± 0.41

Table 4: Ablation study of the components in on miniImageNet.

TDMA w/o MAM w/o TEN

5-way 1-shot 70.42±0.46 69.58±0.46 69.95 ± 0.46
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Figure 6: The first row of the map corresponds to a single query image, with the final row representing the support images. The intermediate
rows depict the heat map for the query and support, respectively. Specifically, the leftmost support image in the fourth row belongs to the same
class as the query image, with the heat map primarily highlighting the bird’s head. In contrast, for other image pairs, the attention map is more
dispersed, with attention being directed towards diverse image regions that aid in differentiation.

Ablation study. On top of the base method, TDMA contains two new
modules: TEN and MAM. Table 4 shows that TEN and MAM can
improve the model’s discrimination ability. Figure 5 illustrates the
activation maps [47] of the base method and TDMA. "query origin"
and "support" are the query and support images respectively, "query
base" means the attention maps of the query generated by the base
method, and "query TDMA" means the attention maps of query cal-
culated by our TDMA. It can be seen that the activation maps of the
query image generated by the base model are quite similar even when
the support images are different. By contrast, the attention learned by
TDMA focuses on dog ears in the query image when the support im-
age is a lion picture. That is to say, TEN and MAM are capable of
extracting task-specific features and spatial regions that possess dis-
criminative qualities, facilitating the classifier’s ability to distinguish
between different classes.

4.2 Visualization Analysis

TDMA produces task embedding to guide the learning of spatial-
wise mutual attention, aiding in identifying the distinguishing fea-
tures within images. Inspired by Class Activation Map (CAM) [47],
we create an attention map to establish associations between query
and support images, with a one-to-one correspondence between each
pair. Figure 6 depicts the heat map, where high-intensity regions cor-
respond to discriminative regions, except for the first support image,
which emphasizes similarity with the query image.

5 Conclusion

This paper introduces TDMA, a novel approach for few-shot image
classification, which involves extracting a task embedding to cap-

ture the most discriminative direction to differentiate between var-
ious support classes. Channel-wise attentions are generated based
on this task embedding to emphasize relevant and informative fea-
tures for each task. Additionally, TDMA employs a mutual atten-
tion module to refine selected features in query and support image
pairs, thus enhancing model discriminative ability. Extensive evalua-
tions on benchmark datasets demonstrate that TDMA achieves com-
petitive performance on these datasets over existing state-of-the-art
methods. Overall, our results show the effectiveness of our proposed
method in addressing the few-shot image classification problem.
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