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Abstract. We present an approach to non-deterministic planning
under full observability via Answer Set Programming. The tech-
nique can synthesise compact policies, handle both fair and unfair
actions simultaneously, and readily accommodate control knowledge
and procedural domain constraints. We show that whereas compact
controllers may yield sub-optimal behavior under a naive executor,
optimality can be recovered under a smarter executor. The developed
planner is succinct, elegant, and directly implementable, thus pro-
viding higher confidence of its correctness and ease of elaboration.
Experimental results show that its performance is competitive.

1 Introduction

Automated AI planning [12, 16] studies representational and compu-
tational techniques for the synthesis of plans for autonomous agents
to achieve their goals. The planning system—a solver—takes as input
a model of a dynamic system, in terms of how actions can change the
system, and automatically builds a strategy for the agent to achieve its
goal from an initial world state. In fully-observable non-deterministic
(FOND) planning [8, 6], actions with alternative possible effects are
allowed at the representational level: the agent does not know which
outcome will occur when it executes an action, but it will be able to
observe the outcome once executed. Despite its conceptual simplic-
ity, FOND planning has proven to be a very powerful framework,
and it has been connected to very expressive problems in AI and CS,
like generalized planning [31], service/behavior composition [25],
and even general reactive synthesis [5].

Solving FOND planning problems is hard—it is EXPTIME-
complete [27]. To address this, some of the best performing FOND
planners (e.g., [22, 24, 23, 10, 19]) involve sophisticated search-
based algorithms implementing a collection of procedural tech-
niques. This makes it difficult to assess their correctness or elabo-
rate them, for example, to accommodate different types of fairness
notions. In addition, as argued in [13], planners that rely on classical
planners do not address the non-determinism directly, thus struggling
in settings where “risky” non-determinism can result in the compu-
tation of a high number of linear plans not leading to a full solution.

In this paper, we join efforts to develop declarative solvers for
FOND planning (e.g., [2, 13, 29]), and develop a solver whose
logic (and hence correctness) is directly accessible, is tolerant to
elaboration [21], and can reason globally about the impact of non-
deterministic decisions. Our planner is realised in the Answer Set
Programming (ASP) paradigm [14, 20], and is arguably the simplest
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FOND planning solver to date. We draw mostly from the SAT-based
approach in FOND-SAT [13], but also take ideas from the search-
based PRP approach [22]. From the former, we take the idea of com-
puting (compact) automata-type solutions via model construction;
from the latter, we share the use of regression to extract the rele-
vant aspects at each decision point in a controller. The use of ASP
in lieu of SAT solvers allow us to separate specification of the actual
planner from that of an instance problem, and to offload the ground-
ing to the ASP solver, thus yielding a lifted encoding of the planner
and taking advantage of advances in grounding techniques.

As with FOND-SAT, our planner aims to construct compact con-
trollers. We show, however, that more compact controllers may yield
sub-optimal behavior at execution time under a naive executor—runs
may be unnecessarily longer. We show then how to address this via
a smarter executor. This yields a more complete understanding of
compactness, optimality, and execution for FOND planning. We also
show that, due to its declarative nature, our planner can easily be ex-
tended to, for example, accommodate unfair actions, specify domain
control knowledge, or add optimisation features. We perform exper-
iments to compare our simple planner with PRP, PALADINUS, and
FOND-SAT. Those experiments confirm the findings [13] that model-
based solvers, like ours and FOND-SAT, perform worse on problems
where non-determinism does not impose a “risk,” but outperform
search-based solvers on problems where there are many miss-leading
classical plans that cannot be extended to a full policy solution.

2 FOND Planning

We present here the non-deterministic planning framework to be used
in the rest of the paper. Wlog, we use a STRIPS notation, in which
goals and action preconditions are positive atoms.

A Fully-observable non-deterministic (FOND) planning prob-
lem is a tuple P = 〈At, I, Act,G〉, where At is the set of proposi-
tional atoms describing the domain, I,G ⊆ At are the sets of atoms
describing the initial state and goal condition, resp., and Act is the
set of domain actions. An action a ∈ Act is defined by its precon-
dition Prec(a) ⊆ At and non-deterministic effects Eff(a) = e1 |
. . . | ek, with k ≥ 1, where each ei = 〈Add(ei),Del(ei)〉, with
Add(ei),Del(ei),⊆ At is a possible deterministic effect of the ac-
tion (expressed with add and delete sets): when action a is performed,
one of these effects will ensue, by the environment’s choice.1

1 This formalization of (non-deterministic) actions corresponds to 1ND Nor-
mal Form [26] with no nested conditional (deterministic) effects, and to the
usual (oneof e1 ... en) clauses in PDDL [15].

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230593

2818



The semantics of a FOND problem can be defined in terms of its
possible execution runs [12]. A domain state s ⊆ 2At is the set
(or conjunction) of propositional atoms that are true in the state. We
use S to denote the set of all possible states in P . The successor of
a state s given a specific (deterministic) effect e can be defined as
succ(s, e) = s \ Del(e) ∪ Add(e). We can generalize that to actions
a ∈ Act, to obtain all possible successor states, one per effect, af-
ter executing action a in a state s as follows: if s �|= Prec(a), then
succ(s, a) = ∅; otherwise succ(s, a) =

⋃
e∈Effa

{succ(s, e)}. An
execution run from state s ∈ S is a, possibly infinite, sequence of
states and actions of the form τ = s0a0s1a1s1 · · · skaksk+1 · · ·
such that s0 = s, and si+1 ∈ succ(si, ai), for all i ≥ 0.

A (tabular) policy π : S 
→ Act is a partial function stating which
action ought to be executed at a given state. We use Exec(π, s) to de-
note the set of all possible maximal execution runs when following
policy π from state s, that is, all runs τ from s such that ai = π(si),
for all i ≥ 0 and that cannot be further extended. There have been
several solution concepts for FOND planning depending on the fair-
ness assumptions imposed on the non-deterministic actions [8, 6].
Roughly speaking, a fair action is one in which (in all runs) all its
effects are guaranteed to occur infinitely often when the action is
executed infinitely many times in the same state [12, 30]. When all
actions are assumed fair, a strong-cyclic policy guarantees that the
agent, by “re-trying” when needed, eventually achieves the goal [6].
In turn, when no fairness can be assumed, a plan with acyclic execu-
tions that reaches the goal in a bounded number of steps—a strong
policy—is required. The Dual FOND hybrid variation has recently
been introduced to deal with domains that have both fair and unfair
actions/effects [4, 13, 29]. In that setting, a solution amounts to a pol-
icy whose “fair” executions w.r.t. the actions/effects assumed to be
fair (not necessarily all) are goal reaching. Lastly, we note that while
planning under non-determinism is EXPTIME-complete [27], effec-
tive optimized techniques and solvers have been developed, and is an
area of significant active work (e.g., [22, 19, 18, 24, 5, 13, 29, 23]).

3 FOND Planning as ASP

We propose an answer set logic program to compute solution poli-
cies for FOND planning problems. ASP [20] is closely related to SAT
solving in that it allows the specification of a (solution to a) problem
as a set of constraints, albeit in a more high-level specification lan-
guage that includes, among other constructs, negation-as-failure [7].
An ASP solver then computes so-called Answer Sets, which are sta-
ble models of the logic program [14]. Stable models provide a clean
and practical semantics of logic programs with negation as failure
with roots in AI non-monotonic reasoning theories, under which a
model can be seen as the possible “beliefs" that an agent associated
with program may have. As with SAT, there are competitive solvers
available, such as Clingo [11] or DLV [1]. Thus, following the ASP
declarative generate-and-check specification paradigm, our ASP pro-
gram transparently constraints policy controllers to those that are so-
lutions to the given FOND planning task; and we extract such con-
trollers from the stable models—answer sets—of the program, which
we compute using state-of-the-art Clingo [11] solver.

Our proposal borrows and integrates elements from previous
works on FOND planning. We follow FOND-SAT [13] SAT-based
approach, in that we aim to compute a sort of finite-state automaton
that compactly encodes a (strong-cyclic) solution policy. However,
we use the Answer Set Programming paradigm and the regression-
based technique used by PRP [22]. The use of ASP in lieu of SAT
solvers allows one to model FOND planning at a higher-level of

abstraction. Importantly, our solution separates the encoding of the
solver (i.e., the planning system) from that of an instance. Moreover,
it offloads the grounding to the ASP solver, thus yielding a lifted en-
coding of the planner and taking advantage of advances in grounding
techniques. In turn, like PRP [22] does, we use the regression tech-
nique [28] to focus the controller on the relevant domain features
at each decision step as its weakest-precondition.2 Finally, we note
that while FOND-ASP [29] is also an ASP-based FOND planner, it
explicitly operates on the domain state space, which is in practice
significantly larger than the controller state space.

From now on, we shall assume a FOND planning problem instance
P = 〈At, I, Act,G〉. Its encoding ΠP in ASP is a collection of facts
using the following atoms:

• atom(P): for each predicate P ∈ At.
• action(A): for each action A ∈ Act. In addition, to define an

action’s precondition and effects we use the following terms:

– prec(A, P): atom P is in precondition of action A.

– effect(A, Ei): associates an action with its i-th effect Ei.

– add(A, Ei, P): effect Ei of action A adds atom P.

– del(A, Ei, P): effect Ei of action A deletes atom P.

• init(P): predicate P ∈ I is true in the initial state.
• goal(P): predicate P ∈ G is in the goal condition.

Note that our encoding for actions does not require the “all out-
comes determinisation” approach used in FOND-SAT and PRP: we
encode actions directly with their non-deterministic effects.

In a nutshell, following [13], our ASP encoding aims to constrain
the way a finite number of controller states are annotated with do-
main actions and linked to each other, so that the resulting structure
amounts to a (strong-cyclic) solution policy for the FOND planning
task at hand. Whereas the domain action associated with a controller
state indicates the prescribed action to be executed, the links between
controller states represent the possible successor states, one per ac-
tion’s effects, of the controller upon execution of the prescribed ac-
tion. Note the difference between controller states and domain states:
the former stand for the state of the executor solving the problem; the
latter are concrete states of the planning domain. A key feature is that
a controller state can compactly prescribe the same action for (expo-
nentially) many domain states. The idea of using finite automata-like
structures for complex sequential decision-making is not new, and
has even been applied to decision-theoretic settings [17].

Next, we describe the ASP program—the planning system—
encoding the constraints on a controller solution. Unlike SAT-based
approaches to planning, the ASP planning system is generic, in that
it is a fixed program that is evaluated together with the facts ΠP en-
coding a problem instance. The following atoms are used to encode
the constraints on a candidate controller with k+1 states (remember
these are controller states, not domain states):

• state(I): denotes a controller state with number I where 0 ≤
I ≤ k. The term state(0..k) defines the controller states.
States 0 and k are reserved for the initial and final state, resp.

• holds(S, P): atom P ∈ At is required to hold in a state S.
• policy(S, A): policy prescribes action A in state S.
• next(S1, E, S2): State S2 is the successor of state S1 as a

result of effect E (of the action prescribed in S1).
• reachableG(S): goal is reachable from state S.

2 This yields an arguably more natural encoding than that of FOND-SAT,
which is based on propagating negative atoms forward. Nonetheless, we
explain later that a simple change yields the FOND-SAT style approach.

N. Yadav and S. Sardina / A Declarative Approach to Compact Controllers for FOND Planning via Answer Set Programming 2819



1 state(0..k)
2 {policy(S, A): action(A)} = 1:- state(S), S != k.
3 {next(S1, E, S2): state(S2)} = 1 :-
4 policy(S1, A), effect(A, E).
5
6 holds(S, P):- policy(S, A), prec(A, P).
7 holds(S1, P):- next(S1, E, S2), holds(S2, P),
8 policy(S1, A), not add(A, E, P).
9 -holds(S2, P):- next(S1, E, S2),

10 policy(S1, A), del(A, E, P).
11 -holds(0, P) :- atom(P), not init(P).
12 holds(k, P) :- goal(P).
13
14 reachableG(S):- state(S), S=k.
15 reachableG(S):- next(S, _, S1), reachableG(S1).
16 :- not reachableG(S), state(S).

Figure 1: The CFOND-ASP planner Π(k), parametrized by k ≥ 0.
Atoms policy/2 in stable models stand for a compact controller.

The Answer Set Program Π(k) in Figure 1 is the generic FOND
planner imposing constraints on a candidate controller with k ≥
0 controller states. The program follows the generate-and-check
methodology, and is therefore succinct and mostly self-explanatory,
but let us quickly go over the main parts. First, the choice rules in
lines 2 and 3 “generate" candidate controllers, by annotating each
non-goal controller state with an domain action and defining a suc-
cessor (controller) state for each effect of the action, respectively.

The next five rules define when a predicate must hold true in the
domain when the controller is in a state. The first rule (line 6) indi-
cates that all preconditions of an action are required in a controller
state where the action is executed. The rule in line 7 implements a
one-step regression: an atom holds in a (controller) state, if an ef-
fect of the action executed in that state does not make the predicate
true, and it is (already) required in the successor state. The third rule
(line 9) states that a predicate cannot be required to hold true in a
controller sate if it may be the resulting state of an effect that deletes
that predicate. Informally, these three rules identify the weakest pre-
condition at each controller state, that is, the minimum conditions
required for the controller (at the state) to guarantee goal reachabil-
ity. It is interesting to observe that this is realising, albeit in a purely
declarative manner, the regression phase performed by PRP on weak
plans to obtain policy rules with respect to the relevant aspects of the
domain states. The last two rules for holds/2 describe the require-
ments for the initial and goal controller state.

The final three rules in the planner (lines 14-16) “check" that the
controller generated adhere to one of the usual characaterizations of
strong-cyclic policies: the goal is reachable from any policy state.
Like [29], we take advantage of the minimality property of stable
models and the first-order features of ASP to define reachability di-
rectly, thus dispensing us from the need to encode numbers to capture
distances to the goal, as done by FOND-SAT. This will also support
elaborations of solution concepts in a more parsimonious manner.

To solve a FOND planning task P , we check for a stable model on
program ΠP ∪ Π(k), starting with bound k = 0 and incrementally
increasing it until one is found. A stable model M defines a controller
CM with (k+1) states (0 . . . k) that is a solution to P . The controller
starts in its state 0, when in state n, it executes the action CM (n) and
evolves to its successor state succCM (n, e) depending on the effect
e ∈ Eff(CM (n)) that ensues. As done with policies in Section 2, a
controller C from a state s yields a set of enacted executions runs
Exec(C, s) of the form τ = (s0, n0)a0(s1, n1)a1(s2, n2) · · · , such
that (i) s0a0s1a1s2 · · · is an execution run; (ii) for each i ≥ 0, ai =

C(ni) and ni+1 ∈ succC(ni, e), for some e ∈ Eff(ai) and si+1 =
succ(si, e); and (iii) if finite, it cannot be further extended with C.
Then, as standard, C is a strong-cyclic controller solution for P iff
every fair enacted controlled run τ ∈ Exec(CM , I) is goal reaching.

Theorem 1 Let P be a FOND planning problem and M be a stable
model of ASP program ΠP ∪ Π(k), for some k ≥ 0. Then, CM is a
strong-cyclic controller solution for P .

Proof idea. By reaching a contradiction if a run τ ∈ Exec(CM , I)
would not reach the goal. First, if τ were finite, it would imply that a
controller state was reached which prescribes an action (this should
always happen due to choice rule in line 2) that is not executable in
the domain. This could not happen due to line 6 in Π(k) for holds/2
which requires all preconditions of a prescribed action to be guaran-
teed at the controller state. Second, if τ were infinite, because τ is
fair, it would imply that the controller itself includes a subset of states
that are disconnected from the goal state k. This is not possible due
to integrity constraint in line 16.

For completeness, it is straightforward to construct a controller Cπ

for a strong-cyclic tabular policy solution π such Exec−(Cπ, I) =
Exec(π, I), where Exec−(C, s) is like Exec(C, s) but with all con-
troller states removed from the enacted runs. To do so, we associate
a unique controller state to each domain state reachable by π from
initial state I—an explicit controller. However, we show that any
strong-cyclic tabular policy π will be represented by some solution
controller which uses only relevant parts of π and therefore whose
size may be smaller than π. The set of execution traces resulting from
such a controller will be a subset of the execution traces of the given
tabular policy solution. To that end, and following PRP’s approach to
generalize its policies, consider the regression operator R(s) on do-
main states relative to the FOND task P [28]: (i) R(s) = G, if s |=
G; and (ii) R(s) = Prec(a) ∪⋃

e∈Eff(π(s)) R(succ(s, e)) \ Add(e),
otherwise. In our case R(s) is a partial state defined by the exact
set of predicates that must hold in state s for the goal to be reach-
able from s via π—the relevant predicates.3 Next, let Nπ(P) =
|{R(s) : s ∈ S is reachable from π in P}| be the number of differ-
ent relevant partial states for π.

Theorem 2 Let π be a strong-cyclic tabular policy solution for
FOND planning task P . Then, there exists a stable model M of pro-
gram ΠP ∪Π(Nπ(P)), such that Exec−(CM , I) ⊆ Exec(π, I) and
CM is a strong-cyclic controller solution for P .

Proof idea. We show how to construct CM from π. The set of
controller’s states is {R(s) : s ∈ S is reachable from π in P}. The
action associated with a state is given by: C(R(s)) = π(s), if there
are two s, s′ ∈ S such that R(s) = R(s′) then pick any. The suc-
cessor of state n from effect e for action C(n) is R(succ(s, e)). By
construction, we have that Exec−(CM , I) ⊆ Exec(π, I). To show
CM is a strong cyclic controller solution for P: (i) the regression
operator ensures that if an action is applicable in a state s then it is
also applicable in partial state R(s); (ii) goal is reachable in (all fair
traces) from a state s that is reachable in P following π. As a result,
goal will also be reachable in induced traces following actions as per
CM from a state R(s) in the controller.

Observe that a compact controller may have a size even smaller
than Nπ(P). In cases where the solution policy π decides on actions

3 Note this is also analogous to π-reduced states in FOND-SAT [13], but
we further restrict relevancy up to until the first step when a future needed
proposition (precondition or goal condition) is added (and not later deleted).
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based on irrelevant facts a compact controller may be such that it ig-
nores the largest irrelevant part of the policy π. This happens in cases
where there are two states s and s′ such that R(s) = R(s′). The
completeness proof is indifferent to which state (s or s′) is ignored.

While we argue that specifying the constraints of a controller
based on weakest-preconditions, as in the spirit of PRP, is more nat-
ural and intuitive, one can readily encode FOND-SAT approach by
simply replacing the rule in line 7 with the following one:

1 -holds(S2, P) :- next(S1, E, S2), -holds(S1, P),
2 policy(S1, A), not add(A, E, P).

Under this rule, instead of propagating the weakest-preconditions
backwards, atoms that may be false are propagated forward.

Dual FOND: Integrating fair and unfair actions One of the key
advantages of realising a solver from its logical specification is that
one can more easily extend it to support other features and solu-
tion concepts. Integrating fair with unfair actions has proven to be
very challenging for algorithm-based techniques [4], and hence most
those planners do not support the mixture. In our case, we can di-
rectly import the ideas from FOND-ASP [29] to account for domains
mixing both types of actions, except now operating on the controller
state space rather than in the much larger domain state space. So,
assuming unfair actions are specified using the unfair/1 atom, we
simply replace lines 14 to 16 with the following ones:

1 terminates(k).
2 terminates(S) :- policy(S, A), not unfair(A),
3 next(S, _, S1), terminates(S1).
4 terminates(S) :- policy(S, A), unfair(A),
5 terminates(S1): next(S, _, S1).
6
7 :- state(S), not terminates(S).

The last integrity constraint requires every controller state to be
deemed terminating, that is, eventually reaching the goal state. The
goal state is trivially terminating. If the action prescribed in a con-
troller state is fair, then the state is guaranteed to terminate if any
successor is terminating. On the other hand, if the action prescribed
is an unfair one, one cannot rely on all effects arising by re-trying
sufficiently often and, hence, termination of the controller state is
guaranteed only if all successor states are deemed terminating.

4 Controller Compactness and Optimality

We now discuss two different properties of our FOND controllers,
namely, compactness and optimality of execution. One of the key
advantages of model-based techniques such as FOND-SAT [13] and
the one proposed here is the ability to compute compact controllers.
These are controllers whose sizes can be exponentially smaller than
the reachable state space when enacted in the planning domain;
see [13] for an example. Intuitively, compactness results from gen-
eralising planning states by only considering facts that must hold in
all possible evolutions to a state. For instance, at each location in the
Tireworld domain one may end up with a flat tire and may need repair
by using a spare tire in that location. However, on reaching the next
location one does not need to remember if a spare tire has been used
or not in any previous locations. This information is not essential to
decide on next action(s) to reach a goal state.

However, it turns out that compact controllers can yield subopti-
mal behavior under a naive execution: there are runs that could have
been done in a shorter manner. To demonstrate that, consider a ver-
sion of the Tireworld domain in which the action go(x, y) to drive
from location x to location y may not only produce a flat tire, but

0 1 2 3 g
go(1, 2) change(2) refuel go(2, 3)

C1

0 1 2 3 g

4

go(1, 2) : l∧f change(2) refuel go(2, 3)

go(1, 2) : l

go(1, 2)

go(1, 2) : f
change(2)C2

Figure 2: Case where compactness can lead to suboptimality. Con-
troller C1 is more compact, but can yield longer executions than C2.

Algorithm 1 SmartExecutor(C, s)

1: open ← {k}
2: loop

3: A ← {C(n) | n ∈ open, s |= R(n)}
4: if A �= ∅ then return A else

5: open ← {n | e ∈ Eff(C(n)), succC(n, e) ∈ open}
6: end if

7: end loop

also leave the fuel tank below an acceptable threshold. Fortunately,
actions change and refuel can fix both issues.

Consider next a domain with three locations 1, 2 and 3 in a straight
line shape, each allowing refueling and one spare tire change. The
smallest controller C1 requires only 5 states; see Figure 2. Observe
that such controller does not keep a track of the status of tire and fuel,
and hence produces a conformant-type plan that changes the tire and
refuels always, regardless whether necessary or not. In turn, while
having one more state, controller C2 tracks the non-deterministic ef-
fects of an low fuel tank (l) and a flat tire (f ), and can more efficiently
decide what is needed or not, if anything. As one can see, if driving
goes smoothly, controller C2 will get to the goal in two driving ac-
tions, whereas C1 will require four, two being unnecessary!

Recovering optimality. The fact that more efficient controller can
be obtained with larger number of controller states poses a challenge:
there appears to be a trade-off between compactness and execution
optimality. It turns out, however, that the more efficient executions
can indeed be recovered under a smarter executor. In a nutshell, this
smarter executor may “fast-forward” its behavior when possible.

Algorithm 1 presents a smart executor that skips unnecessary ac-
tions when possible. In a nutshell, such an executor “jumps" to any
controller state n that is closer to the goal k and such that the cur-
rent domain state satisfies the regression R(n)—the sufficient con-
ditions that must hold in the domain so that the controller can guar-
antee goal reachability from its state n. The regression R(n) with
respect to a controller C with (k + 1) states, where n is now a
controller state, can be defined analogously to how it was defined
for domain states in Section 3: (i) R(k) = G; and (ii) R(n) =
Prec(C(n)) ∪⋃

e∈Eff(C(n)){R(succ(n, e)) \ Add(e)}, otherwise.
Procedure SmartExecutor could yield many possible applicable

actions when these are possible and equidistant from the goal state in
the controller. We say that π is a smart (tabular) policy for controller
C if π(s) ∈ SmartExecutor(C, s), for all s ∈ S. Informally, a
smart policy captures an efficient way of executing the controller.
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Now, to compare runs in terms of “efficiency,” we say that run τ ′

is a sub-run of run τ , denoted τ ′ � τ , if τ ′ can be derived from τ by
replacing substring of the form sa0s1 · · · ams in τ with just s, that
is, by projecting out an unnecessary sub-run in τ .

Theorem 3 Let C be a strong-cyclic controller solution for P and
τ ∈ Exec−(C, I) a run under C. Let τ ′ be the shortest maximal
execution run in P such that τ ′ � τ of P . Then, there exists a smart
policy π+

C for C such that τ ′ ∈ Exec(π+
C , I).

Proof idea. To show existence of such a smart policy, take any
subsequence that is part of τ but not in τ ′. Suppose s1a1s2 in τ ′

maps to a subsequence s1a
′
1 . . . s1a1s2 in τ . Let n1 and n′

1 be the
controller states associated with the same domain state s1 such that
C(n1) = a1 and C(n′

1) = a′
1. Since τ ′ is maximal and shortest, n1

is closer to goal state than n′
1. Hence, on domain state s1 the smart

controller will have that C(n1) ∈ SmartExecutor(C, s1).

Thus, by executing it smartly, we can keep the smallest controller
efficient. Note that executing a controller C smartly is linear on the
size of the controller. While our controllers, like those of FOND-SAT,
may be exponentially smaller than the explicit tabular policies, they
may still be exponential on the original domain in the worst case.

5 Optimisations for compact FOND ASP planner

We improve the core planner in Figure 1 with three diverse efficiency
optimisations. First, we add symmetry breaking with respect to tran-
sitions in a controller. We then show, theoretically, the existence of a
lower bound to the size of a controller, which can be used to reduce
the number of steps one has to iterate to look for a solution. Finally,
we take the advantage of the declarative nature of CFOND-ASP and
show how control knowledge can be easily accommodated.

Symmetry breaking. Observe that the encoding in Figure 1 is
free to connect any two controller states with a transition and there-
fore can produce two different controllers C and C′ such that their
induced traces are the same (that is, Exec−(C, I) = Exec−(C′, I)).
We define two constraints to breaks this symmetry. The first con-
straint on line 1 in Figure 3 enforces an ordering on how states are
connected via transitions. For an intuitive understanding of this con-
straint consider three states n1, n2, and n3 such that n1 > n2 > n3.
Suppose that n3 is a successor of n1, then it should not be the case
that there is no transition to n2 from a state with a number lesser than
or equal to that of n1. In other words, in the case described above,
since n2 is smaller than n3, n1 should have n2 as the next avail-
able successor if available. We note that this constraint was part of
the FOND-SAT implementation but not described in the paper. This
constraint is unable to break symmetry with respect to transitions
due to non-deterministic effects. Hence, we introduce a new second
constraint (line 3 in Figure 3) that enforces an ordering between suc-
cessor states due to different effects of an action. We use a simple
lexicographic ordering between multiple effects of an action by us-
ing the term lex where given two effects Ei and Ej the predicate
lex(Ei,Ej) is true if i < j.

1 :- next(I,_,J), J > I, J > 1, not goalState(J),
2 not next(K,_,J-1): state(K), K<=I.
3 :- lex(E1, E2), next(S, E1, J1), next(S, E2,

J2), S<J2<J1, not goalState(J1), {next(S,
E3, J2): lex(E3, E2), not goalState(J2)}=0.

Figure 3: Symmetry breaking rules.

Weak plan backbones. Current model-based techniques for
FOND planning iteratively check for existence of a controller by
incrementing the number of available states. The underlying solver
(that is, sat solver in case of FOND-SAT and an ASP solver in our
case) proves unsatisfiability for iterations 1 to k − 1 where k is the
size of a compact solution controller. One way to improve the speed
of these planners is to start the iterative process with a number l
where it is always guaranteed that 1 ≤ l ≤ k. The number l will
be a provable lower bound on k (the size of the controller). We show
that such a lower bound always exists and is actually the size of a
shortest weak plan for the planning instance. We call such a plan a
“backbone". As a consequence of Theorem 1, a shortest weak plan
always exists in a controller (it is the shortest path from the initial
controller state 0 to its goal state k).

The next result shows that the size of the shortest weak plan is a
lower bound on the size of a controller.

Theorem 4 Let πw be a shortest weak plan for a FOND problem P .
If the length of πw is l, then the smallest controller C that is a strong
cyclic controller solution for P will have at least l + 1 of states.

Proof idea. We will use proof by contradiction. Suppose
there exists a strong cyclic controller C∗ for P where C∗

has m ≤ l states. Next, consider the shortest trace τ =
(s0, n0), a0, . . . ak−1(sk, nk) ∈ Exec(C∗, I). Therefore, we know
that there exists a weak plan of length k in P . Since C∗ has m states,
we have that k < m ≤ l. That is, P has a weak plan shorter than
πw: a contradiction as πw is a shortest weak plan in P .

Control knowledge. Another way to boost the efficiency of
FOND planning is to embed control knowledge in the solving pro-
cess. Here we discuss two types of control knowledge. First, con-
straints on eliminating actions that undo the effect of a previous ac-
tion from policy consideration. Second, addition of knowledge that
arises from the domain itself.

We restrict the modelling of undo to deterministic actions. The
atom det(A) denotes that action A is deterministic. We say that
two deterministic actions A1 and A2 have a mismatch in the context
of undo, if A1 adds an atom P but A2 does not delete P (line 1 in Fig-
ure 4), or if A1 deletes P and A2 does not add P (line 2 in Figure 4).
Actions where add and delete effects do not mismatch are considered
undo actions (line 3 in Figure 4). Given a state n and its successor
n′, we eliminate policy tuples that prescribe undo actions to n and
n′ (line 4). We note that this approach is sound but incomplete in
identifying all undo actions, as there may exist undo actions involv-
ing non-deterministic effects. However, this would require additional
domain knowledge on effects that are not considered a failure.

1 notUndo(A1,A2):- add(A1,_,P), not del(A2, _,P).
2 notUndo(A1,A2):- del(A1,_,P), not add(A2, _,P).
3 undo(A1, A2) :- det(A1), det(A2), not

notUndo(A1, A2), not notUndo(A2, A1).
4 :- 1{policy(S2, A2): policy(S1, A1), state(S1),

state(S2), undo(A1, A2), next(S1,_,S2)}.

Figure 4: Rules to model deterministic undo actions.

Next we discuss two examples of including domain specific
knowledge in the CFOND-ASP planner. First, a domain may have
atoms that should always be false (or true) in every solution. The
listing below adds the knowledge that an atom P should always be
false: a controller should never prescribe an action that may make
it true. This is relevant, for example, in the MINER domain where a
person should never be dead.

1 :- state(S), holds(S, P).
2 :- policy(S, A), add(A,_, P).
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Figure 5: Distribution of solve times for CFOND-ASP-Base (without
control knowledge) and CFOND-ASP-KB (with control knowledge).
The median of the distributions is labelled in the respective box plots.

Second, we model the ability to repair in cases of failure. In these
cases on has to identify the type of failure (e.g., a flat tire) and what
is required for repair (e.g., a spare tire). We use the term possible
to identify actions that may lead to failure. The listing below adds
the knowledge that if a policy prescribes an action that may lead to a
failure then necessary atoms required for its repair should also hold
in that state. This is useful in domains such as SPIKY TIREWORLD
and TRIANGLE TIREWORLD, where a tire may become flat.

1 :- state(S), policy(S, A), possible(A, F),
required(P, F), not holds(S, P).

6 Experimental Results

To demonstrate the effectiveness of our proposed approach we first
show the efficiency gained by incorporation of proposed optimisa-
tion techniques, such as estimation of minimum controller size and
use of control knowledge. Then, we will compare our ASP-based
approach against state-of-the art FOND planners PALADINUS [23],
FOND-SAT [13], and PRP [22]. (We do not report FOND-ASP as it
often runs out of memory when enumerating the domain state space.)
In all experiments we aim to compute strong cyclic solutions and set
a maximum controller size of 100 for controller-based approaches.

The set of FOND benchmarks includes the new domains intro-
duced in [13], namely DOORS, ISLANDS, MINER, TIREWORLD
SPIKY, and TIREWORLD TRUCK. The other classical FOND do-
mains tested include ACROBATICS, BEAM WALK, BLOCKSWORLD,
CHAIN OF ROOMS, EARTH OBSERVATION, ELEVATORS, FAULTS,
FIRST RESPONDERS, TIREWORLD, TRIANGLE TIREWORLD, and
ZENOTRAVEL. We only considered planning instances that are solv-
able. The total number of solvable instances are 210 for the new
FOND domains and 348 for the classical FOND domains.

Lower bound on controller size: We compare the average size
of a backbone with the average size of a compact controller for dif-
ferent domains to estimate how close is this bound. Table 1 shows
this information for domains where the compact ASP planner solved
at least 10 instances. In our approach, ASP-based classical planner
PLASP [9] was used to compute the “backbones” for lower bound on
controller size. As one would expect the backbone size was smaller
than the controller size for all instances.

We note that the time spent by the ASP solver increases non-
linearly with an increase in the number of controller states. Hence,
utilising backbone size is not expected to significantly improve the
coverage of the planner. This is consistent with the observation that
on average the lower bound is closer to the controller size for clas-
sical FOND domains than new FOND domains. However, this does
not necessarily translate to higher number of solved instances. In-
stead, it helps in reducing the time spent on proving unsatisfiability
in the initial iterations. If the subsequent iterations are expensive the
planner would need other optimisation techniques (such as domain
knowledge) to improve its performance. Another benefit of estimat-
ing minimum controller size is to avoid a large number of unsatisfia-
bility iterations if a classical planner does not return a solution.

Domain n
∑ |C|/n ∑ |B|/n

Doors 15 19.00 9.20
Earth observation 10 19.20 10.90
Faults 45 14.93 7.44
First Responders 47 10.57 9.53
Islands 60 8.20 4.00
Miner 50 20.42 7.69
Spiky Tireworld 11 23.00 8.00
Tireworld 11 6.45 4.00
Tireworld Truck 74 15.26 4.81

Table 1: Comparison of the average size of controller (
∑ |C|/n) and

backbone (
∑ |B|/n).

Control knowledge: At the outset, providing additional domain
knowledge is expected to improve efficiency. However, these addi-
tional constraints may be redundant (if the solver has learnt them).
Moreover, addition of new facts or constraints may lead to increase
in memory consumption. We used two versions of the ASP plan-
ner, with (named CFOND-ASP-KB) and without control knowledge
(named CFOND-ASP-Base). Both were run with 2 threads. The do-
mains for undo actions included ACROBATICS, BLOCKSWORLD (15
instances), ELEVATORS, FIRST RESPONDERS, ISLANDS, MINER,
SPIKY TIREWORLD, TIREWORLD TRUCK, and domain specific
knowledge was used for MINER and SPIKY TIREWORLD.

Figure 5 shows the distribution of solve times for six of the se-
lected domains across instances that were solved by both these plan-
ners. We exclude results of the remaining domains as the coverage
was low (see Figure 6). We used Wilcoxon paired test to check
significance of the difference in solve times between CFOND-ASP-
Base and CFOND-ASP-KB. There was improvement in solve times
for the domain of SPIKY TIREWORLD (p = 0.00391). As result
of this CFOND-ASP-KB solved 2 more instances as compared to
CFOND-ASP-Base, thus resulting in improved coverage. Addition of
control knowledge for MINER resulted in reduction in solve times
(p = 0.00015), however, there was a slight reduction in cover-
age (1 instance out of 50) with addition of knowledge due to the
effect on memory. In the domains of TIREWORLD TRUCK, FIRST
RESPONDERS, and BLOCKSWORLD adding undo actions had no ef-
fect (the difference was not significant, p > 0.2). Finally, for IS-
LANDS addition of control knowledge yielded an increase in solve
times (p < 0.00001). We note that the ASP solver is already fast on
the ISLANDS domain and addition of domain constraints resulted in
extra processing for the solver.

Comparison with other planners: We used two versions of our
compact ASP planner.4 The first one named CFOND-ASP1 did not
use any optimisations and used a single thread. The second version
named CFOND-ASP2 estimated the minimum controller size, made
use of control knowledge in certain domains (see above for the se-
lected domains), and used two threads. We used CFOND-ASP1 for
a fair comparison with other single threaded planners. We compared
our approach with state-of-the art FOND planners PALADINUS (la-
belled PALAD), FOND-SAT, and PRP (labelled PRP). FOND-SAT re-
lies on the choice of a sat solver and is bundled with minisat as the de-
fault. However, for a fair comparison we used FOND-SAT with both
minisat (labelled FSMST) and glucose (labelled FSGLU).

All planners were run on Nectar Research Cloud computing ma-
chines, each with 64GB memory and 32 AMD EPYC-Rome (2.24
GHz) CPU Processors. A memory limit of 4GB and a time limit of
4 hours was enforced by using the system utility systemd-run.
In addition, a CPU limit of 100% was used for CFOND-ASP1,
FOND-SAT, PALADINUS, and PRP, and a limit of 200% was used for
CFOND-ASP2. We also set a heap limit of 3GB (75% of the memory

4 Available at https://github.com/ssardina-research/cfond-asp
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Figure 6: Benchmarking results for planners on solvable FOND instances for strong cyclic planning. Planners CFOND-ASP1, CFOND-ASP2,
FSGLU, FSMST, PALAD, and PRP correspond to base compact ASP, compact ASP with 2 threads and control knowledge (where available),
FOND-SAT with Glucose/MiniSAT, PALADINUS and PRP, respectively. Coverage is depicted in boxes, distribution of run times is shown as
colour coded points, and the mean of the distribution of solve times is denoted marked on a vertical line.

limit) for JVM when running PALADINUS. In absence of this (limit
on the JVM heap) PALADINUS exceeded the memory limit on a sig-
nificantly higher number of instances.

Figure 6 shows the distribution of all instances that were solved by
the planners. We evaluate planners first on the coverage and second
on differences in solve time if more than one planner had the highest
coverage. We used Wilcoxon paired test to check significance of the
difference in solve times between planners. Planner CFOND-ASP2
outperformed all other planners in 4 out of the 5 new FOND domains
(first row of Figure 6). In ISLANDS CFOND-ASP1, CFOND-ASP2
and FOND-SAT achieved 100% coverage, however, CFOND-ASP2
had the fastest solve times (p =< 0.0001 for CFOND-ASP2 vs
CFOND-ASP1 and CFOND-ASP2 vs FSMST). CFOND-ASP2 had
the highest coverage in the SPIKY TIREWORLD domain. Though
in this domain PALADINUS solved most instances quicker than
CFOND-ASP2, it does this at the expense of higher memory re-
quirement, and as a result had a lower coverage than CFOND-ASP2.
In TIREWORLD TRUCK, CFOND-ASP1, CFOND-ASP2, and FSGLU
obtained 100% coverage, however, CFOND-ASP2 had the fastest
solve times (p < 0.0001 for CFOND-ASP2 vs CFOND-ASP1 and
CFOND-ASP2 vs FSGLU). All model-based solvers achieved maxi-
mum coverage in the MINER domain. CFOND-ASP2 was the fastest
solver (p < 0.0001, CFOND-ASP2 vs rest), the difference in solve
times was not significant between CFOND-ASP1 and FSGLU (p =
0.093). Finally, in the DOORS domain CFOND-ASP2, FSGLU, and
PRP achieved 100% coverage however PRP was the fastest (p <
0.001 for PRP vs CFOND-ASP2 and PRP vs FSGLU). We note that
in ISLANDS, TIREWORLD TRUCK, and MINER CFOND-ASP1 came
second in place after CFOND-ASP2. (Note: FOND-ASP [29] ran out
of memory in TIREWORLD TRUCK already in the fourth instance.)
In the domains where CFOND-ASP2 did well, we also compared
it against a version of FOND-SAT with Kissat [3], a state-of-the-
art sat solver. The CFOND-ASP2 planner outperformed Kissat-based
FOND-SAT in the domains of ISLANDS and SPIKY-TIREWORLD.

In the classical FOND domains PRP outperformed all other plan-
ners. In TIREWORLD, though all planners achieved 100% coverage,

PRP was the fastest (p < 0.001, PRP vs rest). There was no sig-
nificant difference between solve times of CFOND-ASP2, FSMST,
and FSGLU (p > 0.2). In ACROBATICS, PRP and PALADINUS per-
formed equally well (there was no significant difference in solve
times, p > 0.2). PRP achieved 100% coverage in rest of the classi-
cal FOND domains. This is partly because these domains allow fast
computation of repairable weak plans by PRP [13]. In these domains
if we compare within the model-based approaches, FOND-SAT and
CFOND-ASP2 achieved similar coverage results.

7 Conclusions

We presented a FOND planning system in Answer Set Programming.
While extremely succinct and declarative, the system is competitive
against the state-of-the art planners in domains with meaningful non-
determinism [13]. In addition, due to its high-level declarative na-
ture, the ASP-based planner proposed is easily amenable for elabo-
ration, including incorporating optimisation features, control knowl-
edge, and alternative solution concepts (e.g., integrating unfair ac-
tions). We also provided lower bounds on the size of any solution
controller, and used that to speed up the solving process. Finally, we
demonstrated that controllers, while compact in nature, could yield
suboptimal behavior—longer than necessary runs—and showed how
to overcome this by resorting to a smarter executor.

One can extend the proposed approach in diverse ways. First, one
could look at alternate controller specifications that utilise the “multi-
shot” solving technique from ASP. One could also look at generating
more meaningful weak plans and incorporating knowledge such as
essential actions—landmarks—that must be executed in every policy.
Finally, one could model user preferences over controllers, by taking
advantage of the optimisation features of existing ASP solvers.
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