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Abstract.  Large-scale vision-language models (LVLMs) pre-
trained on massive image-text pairs have achieved remarkable suc-
cess in visual representations. However, existing paradigms to trans-
fer LVLMs to downstream tasks encounter two primary challenges.
Firstly, the text features remain fixed after being calculated and can-
not be adjusted according to image features, which decreases the
model’s adaptability. Secondly, the model’s output solely depends on
the similarity between the text and image features, leading to exces-
sive reliance on LVLMs. To address these two challenges, we intro-
duce a novel two-branch model named the Instance-Wise Adaptive
Tuning and Caching (ATC). Specifically, one branch implements our
proposed C'onditionNet, which guides image features to form an
adaptive textual cache that adjusts based on image features, achiev-
ing instance-wise inference and improving the model’s adaptability.
The other branch introduces the similarities between images and in-
corporates a learnable visual cache, designed to decouple new and
previous knowledge, allowing the model to acquire new knowledge
while preserving prior knowledge. The model’s output is jointly de-
termined by the two branches, thus overcoming the limitations of ex-
isting methods that rely solely on LVLMs. Additionally, our method
requires limited computing resources to tune parameters, yet outper-
forms existing methods on 11 benchmark datasets.

1 INTRODUCTION

Large-scale vision-language models (LVLMs) are trained through
contrastive learning on a vast amount of image-text pairs. These
models map images and texts to the same space through textual en-
coders and visual encoders. LVLMs, for instance CLIP [25], ALIGN
[5], and ALBEF [18], have shown excellent performance in down-
stream tasks such as semantic segmentation [33, 39], object detec-
tion [21,35], VQA [28], and so on. However, LVLMs have a large
number of parameters, for example, the CLIP [25] model has 428
millions parameters, directly fine-tuning a model could potentially
compromise the valuable knowledge obtained during the large-scale
pre-training phase, and can pose a risk of over-fitting to the down-
stream task.

There are currently two main paradigms, as shown in Figure 2, to
address above issues: input-level prompt, such as CoOp [38], Co-
CoOp [37], and feature-level adapter, such as CLIP-Adapter [9],
TaskRes [34]. However, for input-level prompt, during the training
process, damage would be susceptible to prior knowledge, as demon-
strated by CoOp’s [38] 1-shot classification accuracy being lower
than the Zero-shot CLIP [25]. For feature-level adapter, due to the
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Figure 1: Performance comparison between Zero-shot CLIP [25],
CoOp [38], CLIP-Adapter [9], TaskRes [34] and our ATC on Ima-
geNet [6] with 16-shot settings.

excessive coupling of prior and new knowledge, the models’ ability
to learn new knowledge is limited. Additionally, both paradigms suf-
fer from the same problem, that is, the final classification result is
only dependent on the similarity between textual features and visual
features, leading to excessive reliance on LVLMs, and models’ per-
formance upper limit is determined by the LVLMs. Moreover, even
within the same category of images, there are differences in visual
features. Class-wise text features are not sufficient to cover the large
changes in appearance context and geometry of the current category,
making it impossible to adapt to the unique features of each test im-
age. Therefore, if only fixed class-wise text features are used as the
final classification criteria, the stability of the model will be compro-
mised. Neither paradigm provides a solution for this problem.

In response to the above-mentioned challenges, we propose a
novel two-branch model named ATC: one branch introduces the sim-
ilarities between train and val images, and employs training data
to create a learnable visual cache, which decouples old and new
knowledge and allows our method to retain previous knowledge of
LVLMs while maximizing the acquisition of new knowledge. The
other branch uses our proposed C'onditionNet to direct the visual
feature to generate textual biases, which are overlaid on the text fea-
ture to produce an adaptive textual cache. This cache automatically
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Figure 2: Exsiting paradigms. (a)lnput-level prompt style. Replace the originally discrete text or image with continuous, learnable vectors.
(b)Feature-level adapter style. Use an adapter after image or text features to fine-tune the features.

adjusts the text feature based on the image characteristics, achieving
instance-wise inference and enhancing the adaptability and general-
ization of the model. The final output of the model is a combina-
tion of the two branches, breaking the existing methods’ excessive
reliance on LVLMs. Additionally, our ATC only requires minimal
computing resources to be trained.

We benchmarked our ATC on 11 datasets covering various visual
recognition tasks such as classification for generic objects, scenes,
actions, and fine-grained categories, and specialized tasks such as
texture and satellite image recognition. Our results show that ATC
can effectively transfer pre-trained vision-language models to down-
stream tasks with limited data, and with better efficiency than exist-
ing methods, as demonstrated in Figure 1. In summary, our contribu-
tions can be summarized as follows:

e We utilized our proposed ConditionNet to guide image fea-
tures to fine-tune textual features and developed an adaptive tex-
tual cache that can be adjusted based on image characteristics,
thus achieving instance-wise inference and enhancing the model’s
adaptive capabilities.

e We developed a learnable visual cache that decouples new and
prior knowledge, enabling our ATC to attain maximum acquisition
of new knowledge while preserving previously acquired knowl-
edge.

e Our proposed two-branch structure reduces the over-dependence
on LVLMs adopted by existing methods. Code is available at
https://github.com/Susato9/ATC-main.

2 RELATED WORK
2.1 Large-Scale Vision-Language Models

Large-scale vision-language models (LVLMs) combine visual and
textual inputs, enabling them to process, understand, and generate
associations between images and natural language text, such as CLIP
[25], ALBEF [18], ALIGN [5] and BEiT-v3 [31]. These models are
pre-trained on large datasets containing text and images to develop
an understanding of both types of inputs. We will use CLIP [25] as
an example to elaborate on.

CLIP [25] is one of the most popular LVLMs and is pre-trained on
400 million image-text pairs using contrastive learning techniques
[3, 10]. Additionally, it exhibits strong zero-shot classification abil-
ity. The CLIP [25] model’s training methodology is grounded in two
assumptions: (i) text and images can complement each other’s in-
formation; (ii) different images and texts can be compared for sim-
ilarity. To achieve this goal, the CLIP [25] uses self-supervised and

contrastive learning methods to obtain model parameters by learning
the similarity relationship between images and text features. During
pretraining, CLIP [25] maps images and text to the same space to
update the model parameters by comparing the similarity of positive
and negative samples. During the inference stage, given an image
and a series of image captions, they are respectively processed by
the visual encoder and textual encoder to obtain the image feature
vector z and the text feature vector ¢. Then, their cosine similarity is
calculated using the following formula:

exp(sim(z,t;)/T)
Zj{zl exp(sim(z,t;)/T)

ply = i|z) = )

where sim(-, -) indicates cosine similarity, and 7 is the learned tem-
perature of CLIP [25]. Recently, researchers have found that utilizing
text supervision can greatly improve the visual representation ability
of models. Our work aims to transfer large-scale pre-trained vision-
language models to specific tasks via text supervision and a small
amount of training data.

2.2 Data-efficient Transfer Learning

Data-efficient transfer learning is a subfield of machine learning that
facilitates prior knowledge from pre-trained models to be applied to
new target tasks while employing limited training data. Given the fi-
nancial and temporal costs of acquiring and annotating sizable data,
data-efficient transfer learning has emerged as a prevalent research
domain. In this regard, pretrained models obtained from large-scale
datasets, such as ImageNet [6], by utilizing advanced hardware and
neural network structures might be used to expedite the target task’s
learning process. However, because of the discrepancy in data and
distributions between source and target tasks, achieving optimal per-
formance becomes a challenge, and several strategies are employed
in data-efficient transfer learning, such as meta-learning and data
augmentation.

Recently, new paradigms have emerged with the increasing num-
ber of large-scale vision-language models. CoOp [38] and CoCoOp
[37] proposed to replace the fixed prompt templates in large-scale
vision-language models with continuous and learnable vectors, and
fine-tune them based on downstream task data. CLIP-Adapter [9]
uses simple linear projection to adapt features to downstream tasks.
TaskRes [34] improves model performance by decoupling old and
new knowledge of large-scale vision-language models through a sim-
ple approach. In this work, we propose a new two-branch model for
data-efficient transfer learning that achieves better performance than
the aforementioned methods.
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Figure 3: The Pipeline of ATC. Our proposed model adopts a two-branch structure. The upper branch constructs a learnable visual cache by
applying an adjustable training matrix to all support image features. The lower branch features our proposed ConditionNet that generates
biases for the test image features, which adjusts the textual cache. Combining the two branches results in the production of the final output,
thereby addressing the limitations of existing methods that rely only on LVLMs.

3 METHOD

The overall pipeline of our proposed method is shown in Figure 3.
In this section, we will first review the challenges of current data-
efficient transfer learning based on LVLMs, and then specifically in-
troduce our proposed method, ATC.

3.1 Defects of Existing Data-efficient Transfer
Learning based on LVLMs

LVLMs possess massive parameters, and fine-tuning the model with
insufficient data presents a risk of over-fitting and causes damage to
model’s original knowledge. However, due to domain shift between
the training data of LVLMs and downstream tasks, transfer learning
is necessary. Thus, effective data-efficient transfer learning should
enable the model to acquire new knowledge substantively while up-
holding its previous knowledge. However, there are still some issues
that need to be addressed when applying LVLM-based data-efficient
transfer learning currently.

Methods that employ prompt engineering at input level, such as
CoOp [38] and CoCoOp [37], allow models to alter static text prompt
templates into continuous learnable prompt templates for adaptation
to new tasks. Nevertheless, using these methods could lead to loss
of some of CLIP’s original knowledge. For example, CoOp’s [38]
1-shot and 2-shot accuracy is inferior to CLIP’s [25] zero-shot accu-
racy, while the authors of CoCoOp [37] reported that the computing
resources and time consumed by the model during training are con-
siderable. Even though the visual and textual encoders are set with
fixed parameters, and the model only modifies a few parameters, sav-
ing the complete model’s gradient is resource-intensive during train-
ing for backpropagation. Similarly, Hyojin [1] and MaPLe [16] in-
troduced prompt engineering [15, 19, 20, 27] from natural language
processing into image processing, which sacrifices prior knowledge
and consumes resources for LVLMs to adapt to downstream tasks.

Approaches that fine-tune features on the feature side, such as
CLIP-Adapter [9] only utilize adapters after the visual or textual en-

coder, which maps new knowledge onto old knowledge in an exces-
sively coupled manner. Due to this excessive coupling, the learning
capacity for new knowledge is limited. Although TaskRes [34] de-
couples new and old knowledge by implementing learnable masks on
text features, the mask remains static after the completion of training,
leading to limited adaptability. Moreover, both paradigms inevitably
suffer from a problem where the final classification result only relies
on the similarity between visual and textual features, resulting in the
inadequate utilization of training data and excessive dependence on
LVLMs. Moreover, both paradigms have poor adaptability because
text features remain unchanged once calculated and cannot be ad-
justed based on image characteristics.

3.2 ATC

In response to the issues with existing methods, we propose a novel
two-branch model. On one branch, we use training data to construct
a learnable visual cache. On the other branch, we employ our pro-
posed C'onditionNet to adjust the adaptive textual cache. The final
result is jointly determined by these two branches. In the following
sections, we will provide a detailed introduction to our ATC.

3.2.1 ConditionNet

Even the visual features of images in the same category vary, class-
wise text features are insufficient to cover the significant changes in
the appearance and context geometry of the current category, mak-
ing it impossible to adapt to the unique features of each test image.
Therefore, if only fixed and invariant class-wise text features are used
as the final classification criteria, the model’s generalization and sta-
bility will be compromised. Therefore, to enable text features to au-
tomatically adjust based on the features of test images, we propose
ConditionNet. This network can generate textual biases to adjust
the textual cache by perceiving the features of test images. The pro-
posed Condition N et facilitates communication between image fea-
tures and text features, achieving adaptive adjustment of text cache
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during the testing process. By utilizing instance-wise inference, it
improves the model’s generalization and adaptability. Here, we use a
small number of parameters LSTM as the Condition Net.

3.2.2 Adaptive Textual cache

We propose an adaptive textual cache that can fine-tune the text fea-
tures based on the characteristics of test images which disrupts the
paradigm of traditional methods, where the text features remain con-
stant once computed. Here is the process of constructing the adap-
tive textual cache. Firstly, the category labels of the entire dataset
are placed in a fixed manual prompt template (e.g., "a photo of a
{class}"), denoted by V, V = [v1,va, ..., v.], then, V is fed into the
textual encoder of the CLIP [25], Encoder_txt, to obtain the initial
textual cache Piy¢ = [t1,t2,...,t.] C RS4™. Here, ¢ represents
the number of categories in the dataset, and dim represents the out-
put dimension of the Encoder_txt. Calculating the cache only once
significantly reduces computational cost. Meanwhile, test image [ is
processed by the visual encoder, Encoder_img, resulting in image
features, frest C RYX%™ | the feature fies is fed to our proposed
ConditionNet, a model with few parameters, to generate textual

biases, textual_biases C RE*4™,
s = ConditionNet( frest) )
textual_biases = [s, s, ..., $| 3)

Overlaying the textual_biases onto the textual cache generates the
latest cache, Pyye C REX4™,

Prut = Proy + teatual_biases “4)

3.2.3 Learnable Visual cache

To eliminate the excessive reliance on LVLMs, we proposed a novel
branch, and constructed a learnable visual cache on this branch.
Through this cache, our ATC has achieved the decoupling of new and
existing knowledge, enabling the model to fully acquire new knowl-
edge while retaining prior knowledge. Without loss of generality, let
us consider an experiment with k shots and n classes, with n X k
training images that have undergone data augmentation, represented
as Squg. We obtain the initial visual cache by encoding the images
once, Pimg C R™FXdim,

Pimg = Encoder_img(Swg) = [11,1, 11’2, . e Ii,j, [N Ic,k] (5)
and generate a one-hot matrix of labels for all training data in ac-
cordance with the order of the images, denoted as label_values C
R™Fxe I, ; represents the visual features of the j — th image cor-
responding to the ¢ — th category. To enable the image cache to be
automatically adjusted for the task, we initialize a matrix of zeros,
denoted as visual_biases C R™**%™ which is automatically up-
dated during model training and aggregated with the original visual
cache.

Pimg = Pimg + visual_biases 6)
We incorporate the design concept of the Tip-Adapter [36] caching
model when creating the visual cache. Our method differs from Tip-
Adapter [36] in that Tip-Adapter [36] initializes a linear layer with
training data, while we overlay a learnable mask initialized at zero
on image features from the training data. Our method offers a larger
learning space for the model.

Given an image feature fi.s; C R'*%™, the final predicted prob-
ability distribution f C R*° is obtained through the above three
modules using the following formula:

f1=ftest ® ]5;”9 ® label_values @)
fo = frest ® Pl ®)
f=afi+pBf2 (O]

Here, ® represents the hadamard product of matrices, f1 represents
the cosine similarity between the fi.s+ and the visual cache, while
f2 represents the cosine similarity between the f.s; and the textual
feature cache. The variables « and /3 are weighting coefficients.

3.3 EXPERIMENT
3.4 Experiment Setup

We follow previous work [9, 34, 38] to conduct a few-shot evalua-
tion on 11 benchmark datasets, including ImageNet [6], Caltech101
[8], OxfordPets [24], StanfordCars [17], Flowers102 [23], Food101
[2], FGVCAircraft [22], SUN397 [32], DTD [4], EuroSAT [12],
and UCF101 [29]. These datasets cover various computer vision
tasks, specifically, ImageNet and Caltech101 are used for classifica-
tion of generic objects, while OxfordPets, StanfordCars, Flowers102,
Food101, and FGVCAircraft are used for fine-grained classification,
SUN397 is used for scene recognition, UCF101 is used for action
recognition, DTD is used for texture classification, and finally, Eu-
roSAT is used for satellite imagery recognition. We train the model
by randomly sampling 1/2/4/8/16 samples from each class in the
training data and test the model on the entire test dataset. During
the training process, the following cross entropy loss is utilized:

L = —[ylog(g) + (1 — y)log(1 — §)] (10)

Additionally, we performed domain generalization experiments
following the experimental settings of CoCoOp [37], Tip-Adapter
[36], and TaskRes [34]. For the domain generalization experiments,
we used ImageNet [6] as the source dataset and four datasets
ImageNet-V2 [26], ImageNet-Sketch [30], ImageNet-A [14], and
ImageNet-R [13] , which have certain domain differences from Ima-
geNet, as our target datasets.

3.5 Baseline models

For the few-shot classification experiment, we compare our approach
with Zero-shot CLIP [25], Linear-Probe CLIP [25], CoOp [38], Tip-
Adapter-F [36], TaskRes [34], and TaskRes* [34]. Both Zero-shot
CLIP and Linear-Probe CLIP [25] utilized the same handcrafted
prompt template, such as "a photo of a {class}", while CoOp [38]
replaced the fixed handcrafted prompt template with a continuous
learnable template. Tip-Adapter-F [36] represents a variant of Tip-
Adapter [36] that utilizes a small amount of data to train a caching
model. TaskRes [34] improves the classification performance of
models by augmenting the text features with a learnable matrix ini-
tialized at zero, while TaskRes* [34] further boosts the performance
by enhancing the classifier based on TaskRes [34].

For the domain generalization experiment, we compare our
approach with Zero-shot CLIP [25], Linear-Probe CLIP [25],
CLIP+CoOp (M=16) [38], CLIP+CoOp (M=4) [38], TaskRes* [34].
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Figure 4: Main results of few-shot learning on 11 datasets. Our approach ATC consistently shows better performance over previous baselines
across different training shots, the top-left is the averaged accuracy over the 11 datasets.

3.6 Performance Comparison

few-shot learning The primary experimental results, as de-
picted in Figure 4, showcase a comparison between our proposed
1/2/4/8/16-shot experimental outcomes and the state-of-the-art few-
shot transfer learning techniques based on CLIP [25], including
Linear-Probe CLIP [25], CoOp [38], Tip-Adapter-F [36], TaskRes
[34], and TaskRes* [34]. Our method achieves the highest average

classification accuracy on 11 datasets, as indicated in the upper left
corner of the Figure 4 , and notably outperforms other algorithms on
prominent datasets such as ImageNet, OxfordPets, Food101, FGV-
CAircraft, SUN397, especially on Food101, where other methods
fail to demonstrate satisfactory results. Remarkably, our approach
achieves the highest accuracy on eight datasets out of eleven, exclud-
ing StanfordCars, Flowers102, and EuroSAT, upon conducting 16-
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Table 1: Performance comparison on generalization (from ImageNet to ImageNet-V2/-Sketch/-A/-R) with multiple CLIP visual back-
bones. Our proposed method achieved the highest average accuracy across four different visual backbones.

Source Target
Method Vision backbone = ImageNet -V2 -sketch -A -R Average
Zero-shot CLIP [25] 58.18 51.34 33.32 21.65 56.00 40.58
Linear-Probe CLIP [25] 55.87 45.97 19.07 12.74 34.86 28.16
CLIP+CoOp(M=16) [38] 62.95 55.11 32.74 22.12 54.96 41.23
CLIP+CoOp(M=4) [38] ResNet-50 [11] 63.33 55.40 34.67 23.06 56.60 42.43
TaskRes* [34] 65.73 57.00 34.43 21.50 58.13 42.77
Ours 66.10 56.78 35.39 22.19 59.25 43.40
Zero-shot CLIP [25] 61.62 54.81 38.71 28.05 64.38 46.49
Linear-Probe CLIP [25] 59.75 50.05 26.80 19.44  47.19 35.87
CLIP+CoOp(M=16) [38] 66.60 58.66 39.08 28.89 63.00 4741
CLIP+CoOp(M=4) [38] ResNet-101 [11] 65.98 56.80 40.40 29.60 64.98 47.95
TaskRes* [34] 68.73 60.00 40.30 28.00 64.80 48.28
Ours 69.28 61.20 41.55 30.51 67.81 50.27
Zero-shot CLIP [25] 62.25 54.79 40.82 29.57 65.99 47.79
Linear-Probe CLIP [25] 59.58 49.73 28.06 19.67 47.20 36.17
CLIP+CoOp(M=16) [38] 66.85 58.08 40.44 30.62 64.45 48.40
CLIP+CoOp(M=4) [38] ViT- B/32 [7] 66.34 58.24 41.48 31.34 65.78 49.21
TaskRes* [34] 69.17 59.47 40.87 29.70 66.27 49.08
Ours 69.45 61.09 42.10 32.13 68.82 51.04
Zero-shot CLIP [25] 66.73 60.83 46.15 47.717 73.96 57.18
Linear-Probe CLIP [25] 65.85 56.26 34.77 35.68 58.43 46.29
CLIP+CoOp(M=16) [38] 71.92 64.18 46.71 48.41 74.32 58.41
CLIP+CoOp(M=4) [38] ViT- B/16 [7] 71.73 64.56 47.89 49.93 75.14 59.38
TaskRes* [34] 73.90 65.85 47.70 49.17 75.23 59.49
Ours 74.34 66.02 48.89 50.38  77.38 60.67

shot experiments. Furthermore, our proposed method outperforms
Zero-shot CLIP [25] on all 11 datasets, as depicted in Figure 5, as
compared to the Zero-shot CLIP [25], our approach has significant
improvement in accuracy.

ATC vs zero-shot CLIP in few-shot learning

EuroSAT
Flowers102
DTD
FGVCAircraft
StanfordCars
UCF101
SUN397
ImageNet
Caltech101
OxfordPets

Food101

T T
0 10 20 30 40 50
Absolute improvement (%)

Figure 5. Comparison with Zero-shot CLIP [25] in few-shot set-
ting. On 11 benchmark datasets, our method demonstrates a signifi-
cant improvement in accuracy compared to Zero-shot CLIP.

3.6.1 Domain Generalization

The primary objective of this experiment is to assess the model’s
generalization ability. We randomly select 16 samples per class from
ImageNet as training data and independently test our model on the
entire test sets of variants ImageNet datasets, including ImageNet-
V2, ImageNet-Sketch, ImageNet-A, and ImageNet-R. We compare
our experimental results with those of other state-of-the-art few-shot

transfer learning techniques, including Zero-shot CLIP [25], Linear-
Probe CLIP [25], CLIP+CoOp(M=16) [38], CLIP+CoOp(M=4)
[38], and TaskRes* [34]. Our method achieves the highest average
accuracy on all four datasets by using different visual backbone net-
works except for ResNet-50 [11], as shown in the summarized re-
sults in Table 1. When used as the visual encoder, ResNet-50’s [11]
encoding dimension is 1024, while other visual backbone networks
have an encoding dimension of only 512, which results in unsatis-
factory performance. Therefore, using ResNet-50 [11] as the visual
backbone network requires the model to learn more parameters when
constructing the adaptive textual cache and ConditionNet, leading
to some degree of over-fitting on the source dataset. Furthermore,
as illustrated in Figure 6, our approach demonstrated excellent gen-
eralizability as evidenced by its higher accuracy on all four target
datasets compared to Zero-shot CLIP [25].

3.6.2 Ablation Study

In this section, we mainly conducted ablation experiments on the
two main modules we proposed adaptive textual cache and learnable
visual cache and four different visual backbone networks, namely
ResNet-50 [11], ResNet-101 [11], ViT-B/32 [7], and ViT-B/16 [7],
using different weighting coefficients o and /3. The experiments were
conducted primarily on the ImageNet dataset.

Adaptive Textual cache We conducted ablation experiments on
adaptive textual cache by comparing it with fixed textual cache. Table
2 summarizes the experimental results, indicating that using adaptive
textual cache improves accuracy across 1/2/4/8/16-shot experiments,
effectively validating the efficacy of this module.

Learnable Visual cache The effectiveness of the learnable visual
cache is validated through experiments. We conducted ablation ex-
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Figure 6: Comparisions with Zero-shot CLIP [25] in domain gen-
eralization. Our ATC has achieved improvement in accuracy com-
pared to zero-shot CLIP on four benchmark datasets by using differ-
ent visual backbone networks.

Table 2: Ablation Study of adaptive textual cache.In different few-
shot experimental settings, utilizing an adaptive textual cache is ben-
eficial in enhancing the model’s performance.

Textual cache  1-shot  2-shot  4-shot  8-shot  16-shot

Fixed 61.79 62.45 63.23 64.42 65.72

Adaptive 62.02 62.80 63.72 65.03 66.10
+0.23  +0.35 +0.49  +0.61 +0.38

periments on the ImageNet dataset to compare our method of con-
structing visual caches by adding learnable biases with the methods
of constructing fixed caches and using learnable linear layers in Tip-
Adapter-F [36], the experimental results are presented in the Table
3. The experimental results are as follows: from the experimental re-
sults, it can be seen that our proposed method of constructing caches
outperforms the linear layer initialization in Tip-Adapter-F, demon-
strating the effectiveness of our proposed method.

Table 3: Ablation study of learnable visual cache. Under various
few-shot experimental settings, constructing a learnable visual cache
by adding biases can greatly enhance the model’s performance.

Visual cache 1-shot ~ 2-shot  4-shot  8-shot  16-shot
Fixed 61.87 62.39 62.78 63.75 64.68
Learnable linear layer ~ 61.96  62.31 62.78  64.49 65.84
Adding biases 62.02 62.80 63.72 65.03 66.10
+0.06 +0.49 +0.94  +0.54 +0.26

Vision Backbone Furthermore, we conducted few-shot experi-
ments on ImageNet dataset for different visual backbone networks,
including ResNet-50 [11], ResNet-101 [11], ViT-B/32 [7] and ViT-
B/16 [7]. The experimental results are presented in the Table 4, which
demonstrates that our method outperforms other methods across all
visual backbone networks.

aand 8 Based on the Figure 3 and Formula 9, the final classifica-
tion probability is obtained by combining two branches, with o and
[ as the corresponding weighting coefficients. We conducted sepa-
rate experiments on these coefficients. When we varied o, we fixed
B at 1, and when we varied 3, we fixed « at 1. According to the

Table 4: Results of CLIP visual backbones on 16-shot ImageNet.

Method ResNet-50  ResNet-101  ViT-B/32  ViT-B/16
Zero-shot CLIP [25] 58.18 61.62 62.05 66.73
CoOp [38] 62.95 66.60 66.85 71.92
CLIP-Adapter [9] 63.59 65.39 66.19 71.13
Tip-Adapter-F [36] 65.44 68.56 68.65 73.69
TaskRes [34] 64.75 67.70 68.20 73.07
TaskRes* [34] 65.73 68.73 69.17 73.90
Ours 66.10 69.10 69.65 74.34
+0.37 +0.37 +0.48 +0.44

experimental results, the highest accuracy was achieved when both
coefficients were set to 1. To validate our findings, we conducted 16-
shot experiments using ResNet-50 [11] on the ImageNet dataset, the
result of experiment are present in Table 5.

Table 5: Ablation study of o and [. The best performance is
achieved when « and 3 are both equal to 1.

@ 0.00 0.50 1.00 1.50 2.00
accuracy 58.18  65.03 66.10 65.89 6598
B8 1.00 1.50 2.00 2.50 3.00
accuracy  66.10  66.01 6592 6575 64.26

4 Conclusion, Limitations and Future Work

Our proposed method aims to address the primary issue of data-
efficient transfer learning found in LVLMs. We propose a new two-
branch model called ATC. In the first branch, We constructed a learn-
able visual cache from the training data, which enables the decou-
pling of new and old knowledge. This allows our model to acquire
new knowledge while retaining the prior knowledge of LVLMs. In
the second branch, the proposed ConditionNet guides visual fea-
tures to generate textual biases that are overlaid on the text feature,
creating an adaptive textual cache. This cache automatically adjusts
the text feature based on the image feature, providing strong adapt-
ability. The final output of the model combines the two branches,
reducing the existing methods’ over-reliance on LVLMs, and our ap-
proach generates higher accuracy on 11 datasets compared to previ-
ous methods.

However, our proposed method has one primary limitation, an in-
crease in training data will result in an visual cache expansion, lead-
ing to a higher number of parameters and resource consumption.

The integration of vision-language, and multimodal pre-training
is a growing field and requires further research and exploration to
efficiently transfer various large-scale models to downstream tasks.
We anticipate that the empirical findings and insights we present here
can lay the groundwork for future research on efficient adaptation
methods for emerging fundamental models, which still require more
investigation.
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