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Abstract. Class-incremental learning (CIL) has attracted much at-
tention in deep learning due to the challenge problem of catastrophic
forgetting. Various methods have been proposed for CIL, including
exemplar-based class-incremental learning (EBCIL), non-exemplar
class-incremental learning (NECIL) and data-free class-incremental
learning (DFCIL). Without storing any information (such as exam-
ples and prototypes) about the old classes, DFCIL is obviously the
most challenging one. To address the problem of lacking informa-
tion in DFCIL and with the assumption that the learned represen-
tations are not linearly separable, we propose a method called IRP.
We use the L2-similarity classifier instead of the FC classifier, where
each weight vector represents a prototype that implicitly records in-
formation about the classes. We use representation-prototype dis-
tance minimization (RPDM) to solve the problem of loose repre-
sentation caused by overfitting. To alleviate the excessive deviation
of old prototypes under long-term CIL, we add prototype changing
limitation (PCL) and prototype momentum updating (PMU) in in-
cremental stages. In addition, we design a method for resampling
around old prototypes (RAOP) to maintain the decision boundary of
the old classes. Numerous experiments on three benchmarks have
shown that IRP is significantly superior to other DFCIL methods and
performs comparably to NECIL and partial EBCIL methods.

1 Introduction

Deep learning has made significant progress in visual recognition,
with accuracy comparable to or surpassing that of humans in daily
tasks such as facial recognition and autonomous driving. How-
ever, a large amount of labeled data is needed in the training pro-
cess to achieve these achievements. Furthermore, data is often non-
independent identically distributed (Non-IID), making it difficult to
obtain a large amount of training data at once in many cases. Usu-
ally, over time, more and more new data will be available, while old
data will gradually become unavailable due to storage limitations or
privacy protection. If we train a deep learning model with this kind
of streamed data, especially when the data has unlearned classes,
the model would be more inclined to adapt to new knowledge and
forget the old knowledge, which is the catastrophic forgetting prob-
lem faced by deep learning [24, 14]. To alleviate the catastrophic
forgetting problem, incremental learning has been proposed. Class-
incremental learning (CIL) [10, 27] is relatively tricky among numer-
ous incremental learning scenarios.
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Figure 1: Illustrattion of the representations learned by different clas-
sifiers on the MNIST [19]. (a) The assumption of linear separability
influences the FC classifier, and the intra-class distance is greater
than the inter-class distance. (b) When using only the L2-similarity
classifier, the learned representation has the same problem of loose
representation as the FC classifier. (c) RPDM effectively alleviates
the problem of loose representation in L2-similarity classifiers.

Many works have focused on storing and replaying a small por-
tion of samples from the old classes, namely the EBCIL method
[27, 2, 4, 11], which alleviates catastrophic forgetting through joint
training samples of the new and old classes. However, due to the
need to retain old samples, these EBCIL methods have to face
the storage pressure of old samples and cannot protect the privacy
and security of data, which is unsuitable for many practical sce-
narios. To address these shortcomings, recent works on CIL have
proposed several methods that only retain some processed informa-
tion of old classes (such as prototypes), namely the NECIL method
[38, 39, 37, 35, 16, 21, 23], which tries to alleviate the forgetting
problem by retaining the processed representation of old classes and
maintaining the decision boundary of the old classes. However, the
information of old classes is still extracted from the old samples. It
may still involve privacy and security issues, and as CIL progresses,
the capacity of old information increases linearly, which still brings
a storage burden. To completely overcome privacy threats and stor-
age pressures, a more difficult DFCIL [29, 6, 30] scenario is pro-
posed where old samples and information cannot be retained. In other
words, except for the model (encoder and classifier), the capacity
does not increase with the CIL stage.

DFCIL often has the worst performance among these three types
of CIL, and it is easy to recognize that this is because DFCIL does
not retain any samples and information from the old classes, which
makes the model more inclined to learn new classes and forget old
ones. In the incremental training process, the new and old classes
overlap in the embedding space, and it is difficult to maintain the
decision boundary of the old classes. Recently, some DFCIL works
have been inspired by generating old pseudo-samples based on the
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generative model [32, 13]. They introduce inversion [29, 6] into the
model, use the old model to generate pseudo-samples and alleviate
catastrophic forgetting through the joint training of pseudo-samples
and new samples. However, due to the poor quality of pseudo-sample
generation, it cannot effectively represent the old classes, resulting in
unsatisfactory model performance.

In addition, many CIL works pay too much attention to improving
the stability of the encoder while neglecting the vital role of classifier
in mitigating catastrophic forgetting. The general CIL uses a linear
layer as the classifier, known as the FC classifier. From the perspec-
tive of representation learning, using the FC classifier implies the
assumption that the representation learned by the model is linearly
separable, as shown in Fig. 1(a). This kind of representation can eas-
ily lead to the intra-class distance being more significant than the
inter-class distance and reducing the robustness of the model. When
learning for new tasks, the model tends to learn new classes, while
the old knowledge is quickly forgotten. As [11, 4] has noted, using
Cosine-similarity classifier instead of FC classifier can alleviate the
negative impact caused by class imbalance.

To address these issues, we propose the DFCIL method with im-
plicit representation of prototypes, called IRP1, which replaces the
FC classifier used in general CIL models with the L2-similarity clas-
sifier. Each weight vector of the L2-similarity classifier represents
the corresponding prototype, implicitly providing the model with old
information while avoiding the assumption of linear separability of
representations in FC classifier. Then, the representation-prototype
distance minimization (RPDM) is used to shorten the L2 distance
between the representations of new class and the new prototypes to
solve the problem of loose representation caused by the overfitting
of the L2-similarity classifier. In addition, we use prototype chang-
ing limitation (PCL) and prototype momentum updating (PMU) to
alleviate the problem of excessive deviation of the old prototypes
during the training process. Finally, a method of resampling around
old prototypes (RAOP) is proposed. The new classifier is jointly
trained by the resampled old prototypes and the new representa-
tions to maintain the decision boundary of old classes. In addition,
[38, 5, 12, 30] points out that self-supervised learning (SSL) can help
alleviate the problem of model overfitting in CIL and improve perfor-
mance. Therefore, our model uses the same SSL as [38] to alleviate
overfitting. In summary, our main contributions are as follows:

1. We propose a new DFCIL method which implicitly represents
the prototypes with an L2-similarity classifier while avoiding lin-
early separable assumptions of representation. Moreover, propose
a representation-prototype distance minimization (RPDM) mech-
anism to solve the problem of loose representation.

2. We propose a prototype changing limitation (PCL) and a proto-
type momentum updating (PMU) method to alleviate the exces-
sive deviation of the old prototypes.

3. We also propose a method for resampling around old prototypes
(RAOP) to maintain the decision boundary of the old classes.

4. Many experiments on three benchmarks have shown that our
method is significantly superior to the DFCIL methods and has
comparable performance to NECIL and partial EBCIL methods.

2 Related works

With the development of deep learning, the demand for incremental
learning of new knowledge in models is increasing. The focus of
incremental learning is to enable the model to have the ability to learn

1 IRP code is available at https://github.com/YTWWW/IRP

new knowledge without forgetting old knowledge and to achieve a
good balance between stability and plasticity. The class-incremental
learning (CIL) has always been one of the most challenging scenarios
in incremental learning.

CIL can be divided into three categories from the perspec-
tive of utilizing old data: exemplar-base class-incremental learn-
ing (EBCIL), non-exemplar class-incremental learning (NECIL) and
data-free class-incremental learning (DFCIL). The EBCIL has al-
ways been a hot topic in solving catastrophic forgetting, using joint
training of new and old samples to achieve a balance between sta-
bility and plasticity [27, 2, 4, 11]. Some works go further based on
sample replay, expanding the model during incremental learning and
utilizing additional modules to adapt to new tasks [33, 26, 1]. In addi-
tion, many works [4, 11, 27] have focused on using knowledge distil-
lation [9] to alleviate catastrophic forgetting in the encoder. Recently,
[11, 31] have focused on addressing the imbalance between old and
new classes, alleviating catastrophic forgetting in models from the
perspective of suppressing models that lean more towards new class.
Due to the need for the EBCIL method to retain some old samples
for each old class, the model capacity increases linearly with the CIL
process, which can cause significant storage pressure in the long-
term CIL process. Furthermore, the EBCIL method involves privacy
issues, and retaining old samples is not allowed in many practical
scenarios. These two problems prevent the EBCIL method from be-
ing well applied to practical tasks.

In order to be closer to the actual situation, many work focus on a
more complicated scenario called NECIL, which preserves some old
information to alleviate catastrophic forgetting without saving old
samples. Some works attempt to add a generator and use its pseudo
old samples for joint training [32, 13]. Recently, [38, 39] have found
that only retaining the old prototypes can provide enough old infor-
mation for the model. While using knowledge distillation to alleviate
the encoder’s catastrophic forgetting, the decision boundary of the
old classes can be maintained through the joint training of old pro-
totypes and new representations. The NECIL method performs in-
cremental learning using information extracted from the old training
data, and does not require old samples. But the extracted information
may be still sensitive and the requirement of additional structures to
store the information of the old classes will increase the model ca-
pacity as the CIL stage progresses.

Some works explore the balance between stability and plasticity
in the DFCIL scenario. [29, 6] are inspired by generating old pseudo
samples based on the generative model. They introduce inversion[34]
and use the old model to generate pseudo samples. [30] attempt to
use multiple classifiers to deepen the understanding of old samples
by the encoder, to alleviate catastrophic forgetting. Unlike previous
works, we use the implicit representation of prototypes to implement
DFCIL.

3 Problem statement

CIL is a process in which a model continuously learns new knowl-
edge while preventing forgetting old knowledge. Given a continuous
data stream D, Dt = {Xt, Y t} is the dataset in task t, where X
is the sample set and Y is the label set. The class set in Dt is Ct,
and the number of classes is |Ct|. The datasets of different tasks are
not intersecting, that is, Di ∩ Dj = ∅, i �= j. When t = 0, it is
the initial stage and t > 0 is the incremental stage. The model can
only be trained using the current stage dataset Dt and tested using all
the trained datasets D0:t so far in the CIL process. On this basis, the
EBCIL allows for retaining a small number of old samples and train-
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Figure 2: Illustration of IRP. (i) IRP is a DFCIL method where the L2-similarity classifier implicitly provides prototypes for the model. (ii)
RPDM narrows the L2 distance between the representation and the corresponding prototype, solving the problem of loose representation in
L2-similarity classifier. (iii) PCL and PMU alleviate prototype offset. (iv) RAOP maintains the decision boundary of the old classes. (v) The
SSL transforms the k-class classification problem into the 4k-class classification problem.

ing the model together with Dt during training. The NECIL does
not allow the preservation of old samples but allows the preservation
of information about old classes beyond the storage model (encoder
and classifier) itself, such as prototypes. The DFCIL does not allow
for retaining old samples and information; only the model can be
retained.

4 Methodology

The framework of IRP is shown in Fig. 2. IRP is a DFCIL method
that does not explicitly store any old samples and information.
Firstly, the L2-similarity classifier replaces the FC classifier com-
monly used in CIL. Each weight vector of the L2-similarity classifier
represents the prototype of corresponding class. In the process of new
classes training, the new representations and the new prototypes are
used to calculate the representation-prototype distance minimization
(RPDM) to shorten the L2 distance between them and solve the loose
representation problem caused by the overfitting of the L2-similarity
classifier. Then, the old prototypes of the new and old classifiers are
constrained by prototype changing limitation (PCL) and update the
old prototypes by prototype momentum updating (PMU) method, to
alleviate the excessive deviation of the old prototypes. In order to
maintain the decision boundary of the old classes, we use the re-
sampling around old prototypes (RAOP) method to jointly train the
classifier with the resampled old prototypes and the new representa-
tions.

Similar to the previous CIL methods, we use the cross entropy
loss function to adapt the model to image classification tasks; use
knowledge distillation to alleviate catastrophic forgetting in the en-
coder; use the same SSL as [38] to alleviate the problem of overfit-
ting while making the current embedding space more compact and
leaving room for new classes.

In the following sections, we will provide the detailed description
of our main contributions.

4.1 Implicit representation of prototypes

In DFCIL, due to not retaining any old samples and information, the
representations of new classes will inevitably overlap and cover the

representations of old classes, resulting in the forgetting of the old
knowledge learned by the model. To address this issue, we use the
L2-similarity classifier instead of the FC classifier, implicitly provid-
ing the model with information of old prototypes while avoiding the
assumption of linear separability of representation in the FC classi-
fier.

In the t-th incremental stage, only Dt can be used for training,
where the old class set that the model has already seen is C0:t−1.
The new class set that has not been seen is Ct. Unlike FC classifiers,
L2-similarity classifiers use L2 distance as a metric. The process of
calculating classification probability is as follows:

pc(x
t) =

exp(−||wc − F (xt)||2)∑
c∈C0:t exp(−||wc − F (xt)||2) (1)

Where F is the encoder, w = [w1, w2, w3, · · · , w|C0:t|] is the weight
vector of the L2-similarity classifier and xt ∈ Xt is the new sample.
Image classification loss uses the standard cross entropy loss func-
tion, defined as:

LCE = − 1

|Xt|
∑

xt∈Xt

y(xt) · log p(xt) (2)

Where |Xt| represents the number of new samples, y(xt) is the la-
bel of xt, y(xt) ∈ Y t. The weight wc of the L2-similarity classifier
represents the prototype of class c in the embedding space. With-
out explicitly storing the prototypes, the L2-similarity classifier still
implicitly provides the prototypes for the model, thus overcoming
the difficulty of DFCIL lacking old information. The essence of the
L2-similarity classifier is to shorten the L2 distance between the
representations and the corresponding prototypes, that is, to mini-
mize ||w(x) − F (x)||2. As shown in Fig. 1(b), the representation is
loose when only the L2-similarity classifier is used instead of the FC
classifier, which is caused by the overfitting. To address the prob-
lem of loose representation in L2-similarity classifiers, we propose
a representation-prototype distance minimization as a regularization,
described in section 4.2. For the convenience of understanding, we
will refer to the weight vector wc of class c in the L2-similarity clas-
sifier as the prototype of class c.
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4.2 Representation-prototype distance minimization
(RPDM)

During the experiment, it was found that simply using the L2-
similarity classifier to replace the FC classifier does not achieve ideal
results. Representations of some samples are far from their corre-
sponding prototypes, which will lead to a loose representation of
classes. So, within incremental learning, the decision boundary of
the old classes will gather around the old prototypes, making it im-
possible to effectively classify the old representations far away from
the old prototypes. This is the loose representation problem faced
by the L2-similarity classifier. To address this issue, we use the
representation-prototype distance minimization to shorten the L2 dis-
tance between the representations and the corresponding prototypes,
which is defined as:

LRPDM =
1

|Xt|
∑

xt∈Xt

||w(xt) − F (xt)||2 (3)

Where |Xt| represents the number of new samples, w(x) represents
the weight vector of classifier corresponding to the class to which
sample x belongs. As shown in Fig. 1(c), the RPDM effectively
shortens the L2 distance between the representations and the cor-
responding prototypes so that the representations can be clustered
around the corresponding prototypes to solve the problem of loose
representation. Thus, when the new classes arrives and the decision
boundary of old classes is compressed, the old representations are
not easy to classify wrongly as it is close to the corresponding proto-
types.

4.3 Prototype changing limitation (PCL)

Inspired by the idea of limiting encoder changes through knowledge
distillation [9, 27, 4], we improve the stability of the model by lim-
iting the changes of old prototypes in the L2-similarity classifier.
Specifically, we use the L2 distance between the old prototypes in the
new classifier and the prototypes in the old classifier as a constraint
to alleviate the severe deviation phenomenon of the old prototypes
when only new data is available. The PCL is defined as:

LPCL =
1

|C0:t−1|
∑

c∈C0:t−1

||wt
c − wt−1

c ||2 (4)

Where |C0:t−1| represents the number of old classes, and wt
c is the

weight vector corresponding to class c in the classifier of stage t. By
minimizing this loss function, we limit the excessive deviation of the
old prototypes in the incremental learning process. On the one hand,
the old prototypes play a role in occupying the new embedding space
for the old classes and improving the stability of the model. On the
other hand, the appropriate deviation of the old prototypes can leave
room for the new classes, improve the plasticity of the model, and
finally achieve a better balance between the plasticity and stability of
the model.

4.4 Prototype momentum updating (PMU)

In the CIL process, there are often multiple incremental stages. The
old prototypes are prone to excessive deviation during the training
process due to the lack of constraints from old samples, making them
no longer representative. In the experiment, we found that even if the
PCL is used to constrain the old prototypes, catastrophic forgetting
problems still inevitably occur in the long-term CIL process. Inspired

by [7], we applied the momentum update to the L2-similarity classi-
fier to alleviate the excessive deviation of the old prototypes through
this slow update process. Specifically, after each batch of training,
we use the PMU method to update the old prototypes:

W t
C0:t−1

= α ·W t−1 + (1− α) ·W t
C0:t−1

(5)

We set α = 0.5 in the experiment.

4.5 Resampling around old prototypes (RAOP)

IRP is a DFCIL method, which cannot preserve the old prototypes
and use it to maintain the decision boundary of the old classes
like NECIL methods [38, 39]. Inspired by [38], we use the resam-
pled prototypes of the old classifier and the new representations to
jointly feedback to the L2-similarity classifier to maintain the deci-
sion boundary of old classes. Specifically, when the new incremental
stage comes, we feed the resampled prototypes of the old classifier
to the new classifier and use cross entropy as the loss function:

LRAOP = − 1

|Kt|
∑

kt∈Kt

y(kt) · log p(kt) (6)

Among them, p represents the calculation of classification probabil-
ity by the L2-similarity classifier. The definition of the resampled
prototypes K is as follows:

Kt = W t−1 + e · r (7)

Among them, e ∼ N(0, 1) is a Gaussian noise with the same di-
mension as the representation. r is used to control the magnitude of
uncertainty in resampling. Specifically, the calculation method for
scale r is as follows:

r =
1

|X0| · ||e||2
∑

x0∈X0

||w(x0) − F (x0)||2 (8)

Specifically, we only calculate r in the initial stage and use the same
r in subsequent incremental stages.

4.6 Self-supervised learning (SSL)

To alleviate the overfitting in the model, we introduce the same SSL
as [38] for IRP. Specifically, for each class, rotate the samples by 90,
180, and 270 degrees and expand them into three newly expanded
classes. Then, the expanded samples and the samples themselves are
combined as training data to train the model. For the t-th incremental
stage, we do not care about the classes extended in the 0 : t−1 stage
but only focus on the old classes in the 0 : t − 1 stage and the new
and extended classes in the t stage. In short, this SSL method extends
the original k-class classification problem to a 4k-class classification
problem.

4.7 Final objective

As shown in Fig. 2, our final optimization objective consists of 5
items:

Lt
TOTAL = Lt

CE + Lt
RPDM + Lt

PCL + λ · Lt
RAOP + Lt

KD (9)

λ is the loss weight, which we set λ = 10 in the experiment. Among
them, Lt

KD is a knowledge distillation function used to alleviate
catastrophic forgetting in the encoder, defined as:

Lt
KD = ||F t(xt)− F t−1(xt)||2 (10)
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Table 1: The average top-1 accuracy of different incremental protocols in the CIFAR100, TinyImageNet and ImageNet-Subset. Where T
represents the number of incremental stages, and E represents the number of samples retained for each old class. The ∗ indicates that the
data result was replicated in its initial paper or [39, 6]. Bold represents the optimal result and underline represents the suboptimal result.The
subscript 32 represents that ResNet-32 [8] is used as the backbone of this result.

Methods
CIFAR100 TinyImageNet ImageNet-Subset

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

NECIL
(E = 0)

EWC∗(PNAS’17) 24.5 21.2 15.9 18.8 15.8 12.4 - 20.4 -
LwF-MC∗(CVPR’17) 45.9 27.4 20.1 29.1 23.1 17.4 - 31.2 -
MUC∗(ECCV’20) 49.4 30.2 21.3 32.6 26.6 22.0 - 35.1 -
SDC∗(CVPR’20) 56.8 57.0 58.9 - - - - 61.1 -
PASS (CVPR’21) 65.3 63.3 59.4 49.7 46.7 41.7 67.5 64.9 56.4
IL2A∗(NeurIPS’21) 66.0 60.3 57.9 47.3 44.7 40.0 - - -
SSRE (CVPR’22) 66.1 65.5 62.0 50.3 49.1 48.3 - 67.5 -

DFCIL

ABD∗
32(ICCV’21) 62.4 59.0 - 44.6 41.6 - - - -

R-DFCIL∗
32(ECCV’22) 64.8 61.7 - 48.9 47.6 - - - -

R-DFCIL (ECCV’22) 62.6 59.5 50.4 51.6 49.7 43.4 63.3 60.6 51.7
IRP (ours) 68.5 68.3 63.1 51.9 51.3 46.5 68.3 67.1 59.4

Table 2: Comparison of average top-1 accuracy with EBCIL methods under different incremental protocols on the CIFAR100, TinyImageNet
and ImageNet-Subset. The ∗ indicates that the data result was replicated in its initial paper or [39, 20, 33].

Backbone Methods
CIFAR100 TinyImageNet ImageNet-Subset

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20 T = 5 T = 10

EBCIL
(E = 20)

ResNet-18

iCaRL-CNN∗(CVPR’17) 51.1 48.7 44.4 34.6 31.2 27.9 - 50.5
iCaRL-NCM∗(CVPR’17) 58.6 54.2 50.5 45.9 43.3 38.0 - 60.8
EEIL∗(ECCV’18) 60.4 56.1 52.3 47.0 45.0 40.5 - 63.3
UCIR∗(CVPR’19) 63.8 62.4 59.1 49.2 48.5 42.8 - 66.2
BiC∗(CVPR’19) 66.6 60.3 - - - - - -
WA∗(CVPR’20) 64.0 57.9 - - - - - -
PODNet∗(ECCV’20) 67.3 64.0 - - - - - 74.3

ResNet-32

UCIR∗(CVPR’19) 63.2 60.1 - - - - 70.8 68.3
w/ AANets∗(CVPR’21) 66.8 65.3 - - - - 72.6 69.2
Mnemonics∗(CVPR’20) 63.3 62.3 - - - - - 71.4
w/ AANets∗(CVPR’21) 67.6 65.7 - - - - 72.9 71.9
PODNet∗(ECCV’20) 64.8 63.2 - - - - - 74.3
w/ AANets∗(CVPR’21) 66.3 64.3 - - - - 77.0 75.6

DFCIL ResNet-18 IRP (ours) 68.5 68.3 63.1 51.9 51.3 46.5 68.3 67.1

5 Experiments

5.1 Datasets and Setting

Datasets. To evaluate the performance of our method, we conducted
comprehensive experiments on three datasets: CIFAR100 [17],
TinyImageNet [18] and ImageNet-Subset [3]. CIFAR100 contains
100 classes of images, with a total of 60000 images of 32 × 32
size. Each class contains 500 training images and 100 test images.
TinyImageNet contains images from 200 classes, with pixel sizes
of 64 × 64, and each class contains 500 training images and 50 test
images. ImageNet-Subset contains 100 classes. Each class contains
about 1300 training images and 50 test images. We follow the
settings of [38] and use 1993 as a random seed to select ImageNet-
Subset from Imagenet1K [3].

Incremental protocols. We use the classic CIL protocol to
train the initial stage with a portion of the data and divide the re-
maining data equally to train the incremental stages. For CIFAR100
and ImageNet-Subset, three different task partitioning configurations

are used: (1) 5 phases: 50 classes are used in the initial stage and 10
classes are used in each incremental stage; (2) 10 phases: 50 classes
are used in the initial stage and 5 classes are used in each incremental
stage; (3) 20 phases: 40 classes are used in the initial stage and 3
classes are used in each incremental stage. For TinyImageNet, three
different task partitioning configurations are used: (1) 5 phases:
100 classes are used in the initial stage and 20 classes are used in
each incremental stage; (2) 10 phases: 100 classes are used in the
initial stage and 10 classes are used in each incremental stage; (3)
20 phases: 100 classes are used in the initial stage and 5 classes are
used in each incremental stage.

Compared methods. We chose some of the most advanced
DFCIL and NECIL methods for comparison. To better demonstrate
the performance of IRP, we referred to [38, 39] to select some classic
EBCIL methods for comparison. The methods for DFCIL include
ABD [29] and R-DFCIL [6]. Methods for NECIL include EWC
[16], LwF-MC [21], MUC [23], SDC [35], PASS [38], IL2A [37]
and SSRE [39]. Methods for EBCIL include iCaRL [27], EEIL [2],
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(a) CIFAR100 (5 phases) (b) CIFAR100 (10 phases) (c) CIFAR100 (20 phases)

(d) TinyImageNet (5 phases) (e) TinyImageNet (10 phases) (f) TinyImageNet (20 phases) (g) ImageNet-Subset (10 phases)

Figure 3: Trend of top-1 accuracy in the CIFAR100, TinyImageNet and ImageNet-Subset.

UCIR [11], Mnemonics [22], AANets [20], WA [36] and PODNet
[4].

Evaluation metrics. We report three CIL metrics for measur-
ing the quality of the methods: average top-1 accuracy, indicator of
stability and plasticity (ISP) and harmonic accuracy (HA) [25]. The
calculation of average top-1 accuracy includes all stages (including
the initial stage), reflecting the overall incremental performance.
The indicator of stability and plasticity reflects the balance between
stability and plasticity at each incremental stage. The ISP of the t-th
incremental stage is defined as ISP t = Avgt

2·(Avgt−1−Pastt)
, in which

Avgt and Lastt are the average top-1 accuracy and accuracy of
the old classes in the t-th incremental stage, respectively. There is a
positive correlation between ISP and the balance between stability
and plasticity. The HA at t-th incremental stage is HAt =

2·At
b·At

i

At
b
+At

i
,

where At
b is the top-1 accuracy of initial classes and At

i is the top-1
accuracy of incremental classes. Both ISP and HA represent a bal-
ance between stability and plasticity, but the focus is different. With
the highest average accuracy possible, ISP focus on maintaining the
performance of old classes, while HA expects small differences in
performance between incremental and initial classes.

Implementation details. For a fair comparison, we follow the
experimental settings of [39]. All experiments without specific
instructions default to using ResNet-18 [8] as the backbone. At the
same time, the batch size is set to 128. For CIFAR100 and TinyIma-
geNet, use Adam [15] as the optimizer, set the initial learning rate to
0.0015, and set the weight decay to 5e-5. When training CIFAR100,
40 epochs are trained in each stage, and the learning rate is divided
by 10 at the 35 epoch. When training TinyImageNet, 20 epochs are
trained in each stage, and the learning rate is divided by 10 at the
15 epoch. For ImageNet-Subset, SGD [28] is used as the optimizer
in the initial stage, with a learning rate of 0.1 and weight decay of
5e-5. 160 epochs are trained, and the learning rate is divided by 10 at
80, 120, and 150 epochs, respectively. In the incremental stages, use
Adam as the optimizer, set the initial learning rate to 0.0015, and set
the weight decay to 2e-5. 70 epochs are trained in each stage, and the
learning rate is divided by 10 at the 35 epoch. All the experiments
are repeated three times, and the average results are reported.

(a) IRP (ours) (b) PASS

(c) SSRE (d) R-DFCIL

(e) ISP (f) HA

Figure 4: The trend of past, new and average top-1 accuracy of three
models on CIFAR100 (T = 10) in subfigures (a), (b), (c) and (d).
In the t-th stage, the past and new accuracy account for |C0:t−1|

|C0:t| and
|Ct|
|C0:t| of the average accuracy, respectively. Since |C0:t−1| is much
greater than |Ct|, maintaining the past accuracy is more important
than improving the new accuracy. The best scenario is to prioritize
alleviating the decrease in past accuracy while improving new accu-
racy as much as possible. Subfigure (e) illustrates the quantification
of stability and plasticity at each incremental stage, where the y-axis
represents ISP. Subfigure (f) illustrates the harmonic accuracy of each
incremental stage.
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5.2 Comparative results

As shown in Table 1, IRP is significantly superior to other DFCIL
methods and has comparable performance with the most advanced
NECIL method SSRE [39]. It proves that IRP effectively alleviates
the catastrophic forgetting problem without explicitly storing any old
samples and prototypes, allowing the model to achieve a good bal-
ance between stability and plasticity. Specifically, IRP outperforms
the state-of-the-art DFCIL method in the three task partitioning
of the CIFAR100. It even improves by a margin of 2.4%, 2.8%,
and 1.1% compared to the state-of-the-art NECIL method SSRE
[39], respectively. In addition, on the TinyImageNet and ImageNet-
Subset, IRP exhibits better performance than DFCIL methods and
comparable to NECIL methods. Since EBCIL allows partial sample
retention, the performance is often the best among the three types of
CIL. We choose some classic and high-performance EBCIL methods
as a comparison to better demonstrate the excellent performance
of IRP, as shown in Table 2. Most EBCIL methods use ResNet-32
as the backbone for training the CIFAR100. In order to compare
more comprehensively with EBCIL methods, we included the
results of ResNet-18 and ResNet-32 when referencing these EBCIL
results. It can be seen that on the CIFAR100 and TinyImageNet,
DFCIL method IRP performs better than the classic EBCIL methods.

Trend of accuracy. In order to more intuitively see the perfor-
mance of different methods, we demonstrated the trend of accuracy
on three datasets. As shown in Fig. 3, IRP has the slowest decline in
accuracy and has good class-incremental learning ability on the CI-
FAR100 and TinyImageNet. Slightly inferior to the state-of-the-art
NECIL method SSRE [39] on the ImageNet-Subset.

Stability-Plasticity balance. To better demonstrate the bal-
ance between the stability and plasticity of the model, we record
the accuracy of new and old tasks at each stage. As shown in Fig.
4(b-d), SSRE [39], PASS [38] and R-DFCIL [6] maintain high
accuracy of new classes during the CIL process, while the accuracy
of old classes decreases rapidly, resulting in the model having
high plasticity and low stability. On the contrary, due to the large
proportion of old classes in the total class, IRP tends to maintain
the stability of old classes, with relatively low accuracy of new
classes and low forgetting of old classes. At the end of incremental
learning, IRP achieved higher average top-1 accuracy. Furthermore,
we quantitatively compared these four methods using indicator of
stability and plasticity (ISP) and harmonic accuracy (HA). As shown
in Fig. 4(e-f), the ISP and HA of IRP is significantly superior to the
other three methods in most incremental stages, showing a better
balance between stability and plasticity.

5.3 Ablation study

The model proposed in this article consists of a total of six parts:
L2-similarity classifier, representation-prototype distance minimiza-
tion (RPDM), prototype changing limitation (PCL), prototype mo-
mentum updating (PMU), resampling around old prototypes (RAOP)
and self-supervised learning (SSL). To demonstrate the effectiveness
of these methods, we conducted ablation experiments on the CI-
FAR100. The detailed results of the ablation experiment are shown in
Table 3. We can see that: (1) If the L2-similarity classifier is not used
to replace the FC classifier, the results will ultimately collapse. (2)

Table 3: Ablation study of IRP on CIFAR100.

Classifier

� RPDM
� PCL
� PMU
� ROAP
� SSL

CIFAR100

T = 5 T = 10 T = 20

Last Avg Last Avg Last Avg
FC ♦ � � � � 13.6 28.0 11.8 18.9 11.3 16.0
L2 ♦ � � � � 28.7 47.2 28.8 41.6 29.0 35.5
L2 � � � � � 59.6 68.6 58.4 67.4 50.0 63.0
L2 � � 	 � � 59.3 68.3 57.6 67.2 41.8 58.2
L2 � � � 
 � 57.7 67.8 56.7 67.1 48.6 62.0
L2 � � � � 54.1 64.1 51.4 62.5 36.7 53.9
L2 � � � � � 59.4 68.5 59.1 68.3 50.9 63.1

Table 4: Top-1 accuracy of updating old prototypes with different
methods on CIFAR100. "Normal" represents normal backpropaga-
tion updates.

Update Methods
CIFAR100

T = 5 T = 10 T = 20

Last Avg Last Avg Last Avg
Normal 59.0 68.0 57.9 67.6 39.0 57.5
Frozen 59.1 68.0 57.7 67.6 49.7 63.1

PMU(α = 0.1) 59.2 68.6 58.0 67.4 49.4 62.8
PMU(α = 0.5) 59.4 68.5 59.1 68.3 50.9 63.1
PMU(α = 0.9) 58.8 68.0 58.2 67.6 50.1 63.6

The RPDM brings a 25.2% performance improvement to the model.
It can be seen from Fig. 1(b-c) that using RPDM can solve the prob-
lem of loose representation, resulting in improved performance. (3)
Both PCL and PMU contribute to alleviating excessive deviation of
prototypes. After using PCL and PMU separately, the accuracy of
long-term class-incremental learning such as 10 and 20 phases im-
proved by a margin of 0.5% and 3%, respectively. (4) After using
RAOP to maintain the decision boundary of old classes, the over-
all performance is improved by a margin of 1%. (5) SSL brings a
6.5% performance improvement to the model. To better illustrate the
impact of updating the old prototypes on model performance, we at-
tempted multiple different updating methods and compared them, as
shown in Table 4. It can be seen that using PMU to update the old
prototypes significantly improves the performance of the model.

6 Conclusion

This paper proposes a new DFCIL method, called IRP, to solve the
catastrophic forgetting problem from three aspects: classifier, allevi-
ating the deviation of old prototypes, and maintaining the decision
boundary of old classes. Firstly, the L2-similarity classifier is used to
replace the FC classifier commonly used in CIL, implicitly providing
the old prototypes for the model, and the representation-prototype
distance minimization is used to solve the problem of loose repre-
sentation. Then, update the old prototype using prototype changing
limitation and prototype momentum updating to alleviate its exces-
sive deviation. In particular, we feed the resampled old prototypes
back to L2-similarity classifier to maintain the decision boundary of
the old classes. The experimental results show that IRP is signifi-
cantly superior to other DFCIL methods and achieves comparable
performance compared to the most advanced NECIL and some clas-
sic EBCIL methods.
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