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Abstract. Link prediction for Knowledge Graphs (KGs) aims to
predict missing links between entities. Previous works have utilized
Graph Neural Networks (GNNs) to learn specific embeddings of en-
tities and relations. However, these works only consider the linear ag-
gregation of neighbors and do not consider interactions among neigh-
bors, resulting in the neglect of partial indicating information. To ad-
dress this issue, we propose Deep Interactions-boosted Embeddings
(DInBE) which encodes interaction information to enrich the entity
representations. To obtain interaction information, we disentangle
the representation behind entities to learn diverse disentangled repre-
sentations for each entity. Then, we learn intra-interactions among
neighboring entities in the same component and inter-interactions
among different components based on these disentangled representa-
tions. With the help of interaction information, our model generates
more expressive representations. In addition, we propose a relation-
aware scoring mechanism to select useful components based on the
given query. Our experiments demonstrate that our proposed model
outperforms existing state-of-the-art methods by a large margin in
the link prediction task, and this verifies the effectiveness of explor-
ing interactions and adaptive scoring.

1 Introduction

Knowledge graphs (KGs) are collections of large-scale facts repre-
sented as structural triples, in the form of (head entity, relation, tail
entity), denoted as (u, 7, v), which reveal the relations between en-
tities. KGs such as DBpedia [1], Freebase [3], Wikidata [25], and
YAGO [20] have been created and widely used in massive intelli-
gence applications, including natural language processing [32], in-
formation retrieval [14], and recommender systems [9]. Despite al-
ready containing millions of facts, KGs are still incomplete, resulting
in poor performance in downstream applications. Therefore, the task
of link prediction on knowledge graphs is vital, as it predicts missing
facts and further expands existing knowledge graph.

In the field of literature, most state-of-the-art link prediction mod-
els are based on knowledge graph embedding. These models aim to
learn low-dimensional embedding for entities and relations, and can
be broadly classified into three types: translational models, bilinear
transformation models, and convolutional network-based models.

Despite their excellent performance, these models have one major
limitation - they ignore the meaningful graph topology information.
Consequently, Graph Neural Network (GNN) based models have be-
come an active research focus for link prediction. GNNs employ
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Figure 1. An example of a knowledge graph is shown, where different

colors depict a specific semantic aspects. The red dotted line denotes a
missing triplet.

layer-wise propagation to collect neighboring entity’s information
through a linear aggregation operation. This method improves the
expressiveness of the entity representation by utilizing the rich neigh-
boring information. However, such a linear aggregation assumes that
the neighboring entities are independent of each other, ignoring the
possible interactions between them.

Therefore, a straightforward approach is to compute the pairwise
interaction information between neighboring nodes and fuse it with
aggregated structural information [34]. However, this approach has
some limitations when applied to knowledge graphs as it would ne-
glect crucial information — the edge relation, which provides evi-
dence that two entities are connected. In addition, this approach cal-
culates the pairwise interactions between all neighbors, while some
interactions may be invalid in a given specific scenario. This arises
from the fact that an entity may have multiple aspects of semantics
and various entity-relation pairs focus on distinct aspects of entities.
In this context, these neighboring entity-relation pairs with the same
aspect of semantics form a component. Take the entity Kobe Bryant
as an example, it has three components: “family”, “occupation” and
“location”, when we have a query (Kobe, profession, ?), we often rely
on the interaction information between neighbors under the “occupa-
tion” component, i.e., the interaction information between (position,
Shooting guard) and (sport number, 24) and pay less attention to the
interaction information between neighbors from other components.

Based on the aforementioned observations, we propose a frame-
work called Deep Interactions-boosted Embeddings (DInBE) for link
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prediction. DInBE is an end-to-end framework in which the encoder
learns the representation of entities and the decoder determines the
probability of a triplet being true through a relation-aware scoring
module. Specifically, our encoder is designed to learn both the struc-
tural representation and deep interaction representation of entities.
This deep interaction representation consists of intra-interaction and
inter-interaction, which are utilized to depict the interaction infor-
mation between neighbors within the same component and between
different components, respectively. To ensure that entity representa-
tions under different components are independent of each other, we
introduce orthogonality constraints between components. By doing
so, the representations are encouraged to be disentangled and better
able to characterize the aspect pertinent to a latent component of the
entity. Additionally, we utilize a relation-aware scoring mechanism
to select the most relevant aspects for the link prediction task, thereby
obtaining adaptive scores. By effectively incorporating rich and use-
ful interaction information into structural information, DInBE is able
to improve the performance of link prediction.
Our contributions can be summarized as follows:

e We propose a novel framework, called DInBE, that effectively
captures both intra-interaction and inter-interaction information to
enrich the structural information obtained from the linear aggre-
gation operation.

e We introduce a relation-aware scoring mechanism to better lever-
age different semantic aspects for the link prediction task.

e Experiments conducted on benchmark datasets show that DInBE
outperforms existing methods by a large margin and demonstrate
the effectiveness of exploiting interaction information.

2 Related Work

Non-graph Neural Methods for Knowledge Graphs. Non-graph
neural methods embed entities and relations into a latent semantic
space without utilizing intrinsic topological information. The pio-
neering model, TransE [4], regards the relation as a translational dis-
tance from the head to the tail entity for a triplet. Following this line
of research, a series of extended models have been proposed, such as
TransH [26] and TransR [13]. In addition, some models operate in
a complex space, such as RotatE [21], which exploits the rotation in
the complex domain to describe relations. Another line of research
measures the plausibility of a target triplet by calculating the seman-
tic similarity in the vector space. The most representative model for
this approach is RESCAL [16], which performs a bilinear product
on the entity embeddings and relation dense matrix. Based on this
schema, a number of studies have been conducted. For instance, Dist-
Mult [28] improves RESCAL by converting the dense matrix to a
diagonal matrix, and ComplEx [8] further extends DistMult to the
complex space. To obtain more deep and expressive representations,
convolutional neural networks (CNNs) are introduced due to their
strong learning ability and parameter efficiency. Specifically, ConvE
[7] applies a convolution over the 2D matrix obtained by reorganiz-
ing subjects and relations. HypER [2] simplifies 2D ConvE by uti-
lizing a hypernetwork to generate 1D relation-specific convolutional
filters.

Graph Neural Networks for Knowledge Graphs. Although these
approaches have been successful, there has been a lack of consider-
ation for structural information in knowledge graphs. Graph neural
network-based KG models [17, 18, 29, 5, 15, 24, 30] have attempted
to use more graph structure information and develop it into a mature
and flexible aggregation pattern that adapts to the characteristics of

complex knowledge graphs. R-GCN [17] is the first to apply graph
convolution network (GCN) [11] to the LP task, learning entity em-
beddings under different relations. WGCN [18] introduces learnable
relation-specific weights to different neighboring entities. However,
the above methods do not consider relation features during the aggre-
gation process. To address this problem, VR-GCN [29], TransGCN
[5], KBGAT [15] and CompGCN [24] recursively aggregate the rep-
resentations of neighboring entities and relations using composition
operators. For example, KBGAT concatenates entity and relation em-
beddings in a triplet to calculate the attention values. Then, the new
representation of an entity is obtained by summing every weighted
triplet representation. Although structural information is fully uti-
lized by performing linear aggregation, these methods assume that
the neighboring entities are independent of each other, with little dis-
cussion about the role of interaction information between neighbor-
ing entities in characterizing entities.

Table 1. Notations used in the paper.

Notations  Descriptions

g knowledge graphs

V., R, T set of entities, set of relations, set of triplets

T set of negative triplets

Ty Initial features of entity u

xk Initial features of entity w in the k-th component
k composition features of entity v and relation r

h’U,T‘ 1 h k_ h

1n the k-th component

N (u) set of neighbors of entity u

N (u) set of u and its neighbors

Rou set of relations connecting v and v

T (u) set of neighboring entity-relation pairs of entity u
k the structural representation of entity w
u,stru in the k-th component

uk the intra-interaction representation of entity u
intra in the k-th component

uk the inter-interaction representation of entity
inters in the k-th component

hk the final representation of entity w in the k-th component

3 Methods

In this section, we introduce our proposed method in detail. The over-
all task is to score a triple (u,r,v) inaKG G = {V,R, T}, that is,
to predict the probability that the triple is true, where VV and R are
sets of entities and relations, 7 is the set of triplets. An overview
of our proposed method is shown in Figure 2. It mainly consists
of three parts: 1) structural features learning module to collect the
neighboring information through a linear aggregation, 2) interaction
features learning module to capture the intra-interaction information
and inter-interaction information of entities, 3) relation-aware scor-
ing mechanism to get the score of a target triple being true in a dy-
namic way. In Table 1, the main notations utilized throughout this
paper are summarized.

3.1 Structural Features Learning

This module is designed to facilitate the learning of disentangled rep-
resentations, in which each component contains distinct semantic as-
pects. The objective is to generate a representation for a given entity
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u that consists of K components, with each component representing
a distinct aspect of the entity, such as a person’s family. To achieve
this, we first project the initialized feature vector x,, into different la-
tent spaces. This enables each component to extract a unique aspect
from the entity feature, leading to a disentangled representation.

xﬁ:U(WE~xu)+bk. (1)

where the initial embeddings {xﬁ } 2(:1 are obtained from z,, using
K distinct projection matrix W = {W;, Wa,--- Wk}, o is the
activation function.

Obviously, the information contained is limited and therefore in-
sufficient to achieve disentanglement. To enrich the information, we
employ a message passing mechanism and establish an update rule
for the k-th component of z., as follows:

hE ow = 2 + AGGREGATE ({xf,\ﬁ € N(u)}) .

where AGGREGATE represents the neighborhood aggregation func-
tion. AV (u) is the set of neighboring entities.

In this way, hﬁystm contains information from the k-th aspect of
both entity v and all of its neighbors. While common aggregating
functions like mean pooling and sum pooling can be used, treating
each neighbor equally when determining one component of the rep-
resentation is not always the most sensible approach. Therefore, an
attention mechanism is employed to assign weights to each neighbor,
allowing for a more reasonable representation.

In the learning entity representation process, we should not only
aggregate neighboring entities as the relations they associated with
are of great significance to indicate which semantic aspect the neigh-
bors should belong to. Take the entity “Kobe Bryant” as an example,
it appears in the triplets (Kobe Bryant , position, Shooting guard ) and
(Kobe Bryant , wife, Vanessa Laine ), where position and wife can
depict the components of “occupation” and “family” respectively. To
this end, we propose to compose the neighboring entity and its con-
nected relation, and further learn a weight for them, which indicates
the significance of each neighboring entity-relation pair in represent-
ing the entity.

In this work, we learn the importance of each neighboring entity-
relation pair represented by bﬁ,r’v in the k-th component. Specifi-
cally, we combine the entity w with its neighboring entity-relation
pair and apply a LeakyReLU function to the combination to obtain
the absolute attention value of the entity-relation pair. This value in-
dicates the importance of the entity-relation pair and is defined as:

exp (U (p : hﬁ,r,v))
ZU'EN(U) Zr,eRv’u exp (O’ (p . hﬁ«,’f/w))

k
bu,r,u =

C)

Worw = W [0S, ] @

where || represents the concatenation operation, hE, hlg’r € R%
are the embeddings of the entity u and composition of entity v and its
associated relation r in the k-th component, and d is the embedding
size. W € R&¥*% and p e R¥ are training parameters. A (u)
represents the extended neighboring entities of entity » and is de-
noted as NV'(u) = N'(u) U u, and R, denotes the set of relations
connecting entities v’ and u. o represents the LeakyReL.U function.
After the above calculation, we get the attention score bﬁmv, which
represents the weight of the composition of neighboring entity v and

its connected relation  when describing the k-th semantic aspect of
the entity u.

The aggregated representation of the entity u is the sum of its
neighboring entity-relation pairs weighted by their attention values.
Now, we formulate the definition of the AGGREGATE function as
follows:

AGGREGATE = o

Yo DL Wy | O

v EN (u) T ER 1y

3.2 Interaction Features Learning

Intra-interaction. The semantic of an entity comprises various se-
mantic aspects, each of which represents different properties of the
entity. In particular, the intra-interaction information, i.e., the inter-
actions between neighbors, is highly indicative of entity properties.
Therefore, we propose a transformer-based approach to capture the
interactions of entity w in the k-th component. Specifically, we firstly
construct a set 7 (u) containing entity-relation pairs. These pairs are
formed from the neighboring entities of entity u and their associated
relations.

T(u) = {(r7v)|(u,r, v) € T} (6)

And Then, we feed 7 (u) into a Nei2seq module, which un-
packs these elements within 7 (u) and converts it into a sequence
(v1,v2,...,v;). It should be noted that when converting the set
T (u) to a sequence, we only ensure that the relative location of the
relation r and the entity v in the entity-relation pair (r,v) remains
unchanged. In contrast, the order of entity-relation pairs is arbitrary
since there is no inherent order among neighbors. Afterwards, this se-
quence is concatenated with the global node [CLS] to explicitly pre-
serve global information, as in [33]. Thus, we obtain the final input
sequence (Uels, U1,v2,...,v;) of the transformer. Finally, we feed
the input sequence into transformer layers to encode the features and
represent the [CLS] as the intra-interaction representation of entity
u. This approach allows us to obtain node-pair information, such as
entity-relation, entity-entity, and relation-relation pairs interactions.

Inter-interaction. Unlike intra-interaction, which focuses on the in-
teraction information within a component, inter-interaction captures
the interaction information between components. When an entity u
has K different components, it will generate K — 1 different inter-
action information under each component. These K — 1 interaction
information pieces contribute differently to the semantic represen-
tation of the entity under the current component. To make reason-
able use of this K — 1 interaction information, we employ an atten-
tion mechanism to dynamically control the contribution of K — 1
inter-interaction information under the current component. Specifi-
cally, we consider the intra-interaction features and apply a attention
mechanism to assess the importance of inter-interaction in learning
the inter-interaction feature of entity u in the k-th component.

ik k ik k
att;nters = f |:u;b'nter|‘uintrai| ) @)

ik i k
Uinter = Wintra X Wintra, (8)

where || represents concatenation, f* is a feedforward neural net-
. . . . 2xd
work that is parameterized by a weight matrix W}“ € R™ 7k, fol-

lowed by a nonlinearity.
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Figure 2. An overview of our proposed DInBE (this example assumes that there are 3 latent components). which consists of three key modules: 1) structural
features learning; 2) interaction features learning; 3)relation-aware scoring mechanism. Each color represents a specific component and different components
keep individuals with each other by the orthogonality constraint. The final prediction result depends on all components of the entities and is adaptive to the
given relation.

We aggregate information from inter-interaction ulk, . tothe k-th
component of u:

ik ik
Ainters * Uinter

i€{1,2,--- ,K} and i#k

(&)

Uinters = 01

where o1 is a nonlinearity, * denotes multiplication. ok, canbe
seen as contribution of the inter-interaction u%*,,.. and is generated
by applying a softmax function on atti®, ..

3.3 Relation-aware Scoring Mechanism

After obtaining the structural features and intra/inter-interaction fea-
tures of entities under the k-th component, we concatenate them to
form the final entity representation h*. The overall process is shown
in Algorithm 1. To this end, we adopt the following manner to pro-
duce:

(10)

To obtain relation-aware scores, we begin by calculating the score
of each candidate triplet under each component. We then derive the
final scoring result by considering the attention between the query
relation and the component. Specifically, for a given query relation
q, a head entity u, and a candidate tail entity v, we compute the score
of the triplet under the k-th component as follows:

where f is a scoring function, such as transE [4], DistMult [28] and
ConvE [7]. In this work, we exploit the ConvE as the scoring func-
tion, i.e.,

k k .k ok
hu = |:h'u.,st'ru7 uintersyuintra} .

V(saw) = f(vec(([hE; ) * w))We)hy. (12)

where h% and g are 2D reshaped embeddings of hX and ¢ respec-
tively. w denotes a set of filters of a 2D convolutional layer, * de-
notes the convolution operator and vec(-) is a vector concatenation
and W, € R¥ is the weight matrix.

After obtaining the score of each triplet under each component, we
proceed to adaptively fuse the scores based on the relations. This is
because the best-matched component representation should be closer
to the given relation embedding, as noted by [27]. To achieve this, we
assign a weight to the results obtained from each component.

B = softmax Wikl - Wah, ) (13)

where Bffw represents the importance of the k-th component of

. . 4
entity u to query relation ¢. W1 € R%* &, W, € R%*% are pa-
rameter weight matrices. Finally, we can get the final scores for a
given query and a candidate tail entity:

k k
Yu,q,0) = Zﬁ(u,q)w(uvqw) (14)
k

3.4 Full Objective

Link prediction. In the training procedure, we leverage a standard
cross entropy loss with label smoothing [22]. This is defined as:

N

Z (y(u,r,vi) . IOg (w(u,r,v)) +

i=1

L= Y —;]

(u,r,v)ET
(1 - y(u,r,vi)) lOg (1 - w(u,r,v))) 3

15)
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in which

1 for (u,r,v) €T,
y(ua Ty ’U) = +
0 for (u,r,v) €T,

Here 7 is a set of negative triplets created by corrupting the positive

triplets set 7. The N denotes the number of entities.

Algorithm 1: The proposed encoder, with K components.

Input: x,, € R%n (the feature vector of entity ), and
{z, € R%n : (u,r,v) € T} (its neighbors’ feature
vectors).
Output: h* € Réut (entity u’s representation under
component k).
1 forie {u}U{v: (u,r,v) € T}do
2 fork=1,2,..., Kdo
3 zF — o(WTzi +bi);
// Initialize the representations of
entity ¢ under each component.

4 fork=1,2,...,Kdo

s | h%sera < ¢+ AGGREGATE

({xﬁ,Vv €{v:(u,mv) € T}}) // Update.
6 fork=1,2,..., Kdo

7| T(u) < {(r,0)|(u,r,0) € T}

8 seq,, < Nei2Seq (T (u)), // Convert the
neighboring entity-relation pairs
into a sequence.

s | UL 1ra < transformer (vers, seqy, )
10 forj=1,2,..., Kdo
ik j k
u Uinter <~ Uintra X Uintras
ik k[ gk k _ .
att] ors — f [umt”Hum”a] Jfork=1,...,K;
jl jk
12 [attinte'rs7 ot attinters] —

inters? "

i1 ik
softmax ([att’v . attznters} )

k gk gk
3 Ujnters < 01 (ZjG{I,Q,m K} andj#k NXinters * Uinter

14 hu <~ [hu,strua Uinters) uintra]
s Return h”

—

—

Orthogonality constraint. To enhance the disentangled informa-
tiveness as well as to reduce the redundancy between components,
we impose an orthogonality constraint to encourage the representa-
tions of different aspects to be sufficiently independent. The orthogo-
nality constraint effectively disentangles information of each compo-
nent and prevents them from contaminating each other. Specifically,
let A%, and A7, be the disentangled representations from the i-th and
j-th components, respectively. The orthogonality constraint loss be-
tween them is defined as follows:

T2
i g
hy b,
F

; (16)

Leonstraint = ‘

where || - ||% is the squared Frobenius norm.

Joint training strategy. The final learning objective of our work is
defined as the combination of the link prediction loss and orthogo-
nality constraint loss:

E = ['lp + )\Lconst'raintq

where A controls the orthogonality constraint. By this joint training
strategy, our model is capable of modeling interactions while captur-
ing the adaptive representations of entities.

Table 2. Summary statistics of datasets.

Dataset Entities  Relations Train Dev Test
WNISRR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 3. Details of hyperparameters used for link prediction task.

Hyperparameter Values

Number of encoding layer {1,2}

Learning rate {0.01,0.001,0.005}
Dropout {0.1,0.2,0.3,0.4,0.5}
Numer of component (FB15k-237) {1,2,3.4,5,6}
Number of component (WN18RR)  {1,2,3,4}

4 Experiments
4.1 Experimental Configuration

Datasets. We conduct extensive experiments on common link pre-
diction datasets gathered from the literature to evaluate the perfor-
mance of our proposed method. Specifically, we use WN18RR [7]
and FB15k-237 [23], which exclude the inverse relation triplets from
the test set to address the issue of data leakage. We use the original
data split for all datasets. Table 2 provides a summary of the datasets’
statistics.

Evaluation Protocol. To assess the effectiveness of DInBE, we uti-
lize the standard link prediction metrics, as recommended in previous
studies. These metrics include Mean Rank (MR), Mean Reciprocal
Rank (MRR), and Hits@k. The MR metric computes the average
rank value of the test triplets, whereas MRR evaluates the average
of the reciprocal of the rank. Hits@k calculates the percentage of
all correct answers with a rank lower than or equal to k. A higher
MRR and Hits@k score indicates that the rank is more accurately
predicted, while a smaller MR suggests that the model is performing
well.

Experimental Settings. In our implementation, we select hyper-
parameters by performing grid search on the validation dataset.
Specifically, we set the dimensions of entities and relations as 200
for both the input and output layers, and we find that the optimal
number of components K is 4 for FB15k-237 and 2 for WN18RR.
During training, we set the following hyperparameters: a batch size
of 256, a dropout [19] rate of 0.3, a learning rate of 0.001, and a label
smoothing of 0.1, as described in [22].

For all experiments, we initialize all training parameters with
Xavier and use Adam [10] as the optimizer to train our model. In
addition, we employ an early stopping strategy based on the con-
vergence behavior of the validation set. The model is implemented
using PyTorch and runs on a server equipped with an NVIDIA RTX
A6000.

Baselines. We compare our model to several state-of-the-art meth-
ods, including TransE [4] from translational distance models, Dist-
Mult [28] from semantic matching models, CompGCN [24], SACN
[18], r-GAT [6], DisenKGAT [27], MRGAT [12] and Corln [31]
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Table 4. Performance comparison of different models on WN18RR and FB15k-237 dataset. We mark the best results with boldness and get the results for all
the baseline methods from their previous papers (’-’ indicates missing values).

WNI8RR FB15k-237
Model MRR MR  Hits@10 Hits@3 Hits@1 MRR MR Hits@10 Hits@3 Hits@1
TransE 0.226 3384 0.501 - - 0.294 357 0.465 - -
DistMult 043 5110 0.49 0.44 0.39 0.241 254 0.419 0.263 0.155
SACN 0.47 - 0.54 0.48 0.43 0.35 - 0.54 0.39 0.26
CompGCN 0.479 3533 0.546 0.494 0.443 0.355 197 0.535 0.39 0.264
r-GAT 0.492 - 0.578 0.506 0.449 0.368 - 0.558 0.405 0.276
DisenKGAT 0.486 1504 0.578 0.502 0.441 0.368 179 0.553 0.407 0.275
MRGAT 0.481 - 0.544 0.495 0.449 0.355 - 0.539 0.392 0.266
Corln 0.479 3321 0.575 0.498 0.447 0.369 170 0.558 0.405 0.275
DInBE(LSTM) 0.49 1830 0.598 0.510 0.458 0.373 186 0.56 0.409 0.275
DInBE(Transformer) 0.491 1783 0.599 0.512 0.458 0.375 163 0.561 0.411 0.273
Table 5. Experimental results on prediction by relation type on the FB15k-237 dataset.
CompGCN DisenKGAT DInBE
Task Relation Type | MRR  Hits@10 | MRR Hits@10 | MRR Hits@10
1-to-1 0.457 0.604 0.501 0.625 0.557 0.703
1-to-N 0.112 0.19 0.128 0.248 0.121 0.236
Predicting tail entity N-to-1 0471  0.656 | 0486  0.659 | 0.492  0.653
N-to-N 0.275 0.474 0.291 0.496 0.306 0.502
1-to-1 0.453 0.589 0.499 0.641 0.535 0.653
1-to-N 0.779 0.885 0.789 0.889 0.772 0.889
Predicting head entity N-to-1 0.076  0.151 | 0.086 0.8 | 0.101  0.202
N-to-N 0.395 0.616 0.402 0.629 0.402 0.635

from deep neural network models. TransE and DistMult treat each
relation as translational distance and a diagonal matrix, respectively.
CompGCN and SACN successfully encode the structural informa-
tion of entities. -GAT and DisenKGAT implicitly learn the disentan-
gled representations through encoding KG multiple times. MRGAT
and Corln explicitly separate the neighbors into several components
based on relations and learn disentangled representations.

4.2  Main Results

Comparison with baselines. The results of the comparison ex-
periment are presented in Table 4. Our model’s performance is su-
perior to all baseline models with respect to most metrics on the
WNI18RR and FB15k-237 datasets, which demonstrates the effec-
tiveness of our approach in considering interaction information. Neu-
ral network models outperform non-neural models on the FB15k-237
and WN18RR datasets due to their ability to capture complex se-
mantic information between entities. Also, our approach outperforms
neural network models that solely learn structural information, as
it also incorporates interaction information that characterizes entity
properties.Furthermore, we observe that methods employing implicit
grouping of neighboring entities through learning outperform those
that explicitly group neighboring entities. And we also see that the
learning of intra-interaction features using LSTM and transformer
models results in statistically significant improvements compared to
baseline approaches. Interestingly, the transformer approach shows
greater gains than the LSTM-based approach, as it excels at extract-
ing interactive features with its impressive capabilities.

In particular, our proposed method DInBE, achieves a signifi-
cant improvement in MRR, Hits@3, and Hits@10 on the FB15k-

237 dataset, which we attribute to the richer interaction information
available on complex knowledge graphs. The FB15k-237 dataset has
more varied relations and richer neighbors than the WN18RR dataset
(19 vs. 2 neighbors per entity on average), making it more representa-
tive of real-world scenarios. Therefore, the improvement on FB15k-
237 validates the effectiveness of considering interaction informa-
tion.

Performance by relation category. In this section, we explore the
performance of our model under various types of relations, including
1-to-1, 1-to-N, N-to-1, and N-to-N relations. Our study focuses on
the FB15k-237 dataset, which offers diverse relation types. Table 5
presents our method’s superior performance in predicting both head
and tail entities. Notably, all models that learn disentangled represen-
tations perform better than the model that only learns structural rep-
resentations. This indicates that graph neural networks handle com-
plex relations well.

We also observe that predicting tail entities under 1-to-1 and N-
to-1 relation types and predicting head entities under 1-to-1 and 1-
to-N relation types have higher performance than the other two rela-
tion types. This suggests that existing models are capable of captur-
ing simple relations such as combination and inversion effectively.
In contrast, the performance of all models in predicting tail entities
under 1-to-N relation types and head entities under N-to-1 relation
types is the lowest, indicating that existing models struggle to distin-
guish between more similar entities.

In contrast, our model leverages interaction information and dis-
entangles entity representations, resulting in richer and more distin-
guishable semantic representations. Therefore, our method outper-
forms other models in different types of relations.
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4.3 Ablation Study

As the proposed method consistently outperforms all kinds of base-
line, we investigate the impact of each module of the model to
analyze it deeply and comprehensively. To be more specific, we
conduct ablation studies on the presence of disentangled features
learning (called DInBE w/o Disentangle), interaction features learn-
ing (called DInBE w/o Inters) and orthogonality constraint (called
DInBE w/o Constraint). Table 6 shows the ablation results for dif-
ferent modules in our models, we can find that all variants of DInBE
perform worse than the original DInBE, which demonstrates the ef-
fectiveness of each module.

DInBE w/o Disentangle. After removing the disentangled features
learning module, the Hits@ 10 and MRR value reduces. This is be-
cause, without disentangled semantic representation, our model be-
comes limited to calculating the pairwise interaction information of
neighboring entities and directly incorporating them into structural
information without selection. Such excessively rich interaction in-
formation may bring a lot of noise, thus affecting the performance
of the model. From Table 6, we notice that removing this module
has less impact on the WN18RR dataset as compared to the FB15k-
237 dataset. This attributes to the fact that the FB15k-237 dataset
includes 237 relation types, making it ideal for tackling issues of
multi-relation entanglement. In contrast, WN18RR only has 11 rela-
tion types, with each entity representing an extremely narrow mean-
ing.

DInBE w/o Interactions. Based on the results from Table 6, we ob-
serve a significant decrease in performance when interaction features
are not considered. The analysis of the interaction features learning
module reveals that it can capture rich interaction information that
plays a crucial role in indicating an entity’s characteristics. How-
ever, without this interaction information, our model degrades into
pure exploitation of structural information, leaving interactions un-
explored.

DIN w/o Constraint. To further facilitate the semantic decoupling
of entities, we make use of orthogonality constraint to ensure that
each component is independent. Intuitively, the absence of separa-
bility constraints can easily lead to aggregated information interfer-
ing with each other, and thus scenarios are not representative of a
given relation. We notice that the removal of the orthogonality con-
straint results in an average reduction of 0.35% on MRR. This result
suggests that considering the independence between components is
useful in learning interaction information.

4.4 Impact of component number

In this section, we investigate the impact of varying the number
of components on model performance. The appropriate components
should be closely related to the real dataset facts. The experimental
results for the FB15k-237 and WN18RR datasets are summarized in
Figure 3. We observe that when the number of disentangled compo-
nents is 1, our model essentially becomes a typical model using struc-
tural features and intra-interaction features. The interaction informa-
tion is the combination of all neighbors and has not been filtered,
which results in poor performance. Specifically, in the FB15k-237
dataset, increasing the number of disentangled components signifi-
cantly improves all metrics. The optimal choice is around 4, which
is correlated with the “semantic number” of most entities. When
K > 4, the model’s performance dramatically declines. This is likely

because the most useful information can be classified into several se-
mantic aspects, and it is challenging to achieve good disentanglement
if the number of components is greater than the number of semantic
aspects.

In contrast, the WN18RR dataset has a straightforward and finely-
grained meaning. As a result, only a small number of components
need to be learned. The best selection for K is about 2, and with an
increase in the K value, the model’s performance drops considerably.

Table 6. Result of ablation study

WNI8RR FB15k-237
Model MRR Hits@10 MRR Hits@10

w/o disentangle | 0.483 0.587 0.366 0.553

w/o interactions | 0.484 0.590 0.369 0.556

w/o constriant 0.487 0.596 0.372 0.56

DInBE [ 0.491 0.599 0.375 0.561
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Figure 3. Impact of component number K.

5 Conclusion

In this paper, we propose a novel model called DInBE for link pre-
diction on knowledge graphs, which augments the expressiveness
of previous GNN by considering the interactions between neigh-
boring entity-relation pairs based on the disentangled representa-
tions. DInBE learns the disentangled representations for each entity
and leverages them to learn the intra-interaction information among
neighbors in the same component, as well as inter-interaction infor-
mation among different components, resulting in powerful entity rep-
resentations. We further propose a relation-aware scoring mechanism
to score triplets. The experiments on two benchmark datasets demon-
strate our proposed DInBE significantly outperforms several existing
state-of-the-art methods for the link prediction task, and verify the
effectiveness of capturing interaction information to rich the repre-
sentations. We also prove the efficiency of different modules through
extensive experiments. Future work will consider further exploring
semantic information in relations and encoding high-order interac-
tions among neighbors.
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