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Abstract. Unsupervised relation extraction (URE) aims at discov-
ering underlying relations between named entity pairs from open-
domain plain text without prior information on relational distribution.
Existing URE models utilizing contrastive learning, which attract
positive samples and repulse negative samples to promote better sep-
aration, have got decent effect. However, fine-grained relational se-
mantic in relationship makes spurious negative samples, damaging
the inherent hierarchical structure and hindering performances. To
tackle this problem, we propose Siamese Representation Learning
for Unsupervised Relation Extraction – a novel framework to simply
leverage positive pairs to representation learning, possessing the ca-
pability to effectively optimize relation representation of instances
and retain hierarchical information in relational feature space. Ex-
perimental results show that our model significantly advances the
state-of-the-art results on two benchmark datasets and detailed anal-
yses demonstrate the effectiveness and robustness of our proposed
model on unsupervised relation extraction. We have released our code
at https://github.com/gxxxzhang/siamese-ure.

1 Introduction

Relation Extraction (RE) is the task of extracting semantic relation
between entity pair from raw text. For example, given the sentence

“ChatGPT is created by OpenAI, a research organization dedicated
to creating and promoting friendly AI that benefits humanity”, and
the entity pair (ChatGPT, OpenAI), RE model can predict the pre-
define relationship “created_by” and extract the corresponding triplet
(ChatGPT, created_by, OpenAI) for downstream tasks, such as web
search [35], knowledge base construction [1] and question answering
[5]. Existing RE methods which are restricted to specific relation types
have achieved good performance with annotated data. Nevertheless,
with the rapid emergence of large, domain-specific text corpora (e.g.,
sports news, social media content, scientific publications) and new
relation types in the real world, these methods face many challenges.
On the one hand manually establishing and maintaining the ever-
growing relation require expert knowledge and are time-consuming,
on the other hand these methods are hard to scale up to newly emerged
relations. Unsupervised relation extraction is promising and received
widespread concern since it does not require prior information on
relation distribution to reduce the reliance on labeled data and can
discover new relation types in raw text.

Traditional unsupervised relation extraction approaches are based
on variational autoencoder (VAE) architecture [20, 27, 28, 37]. These
methods train the relation extraction model as an encoder that gen-
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erates relation classifications. A decoder is trained along with the
encoder to reconstruct the encoder input based on the encoder gen-
erated relation classifications. However, joint training for two net-
works (encoder and decoder) and requiring the exact number of re-
lation classes during the training period of the encoder make model
unstable. Different from treating relations as latent variables, the
clustering-based approaches learn semantic relational representation
from high-dimensional embeddings and adopt unsupervised cluster-
ing algorithms to recognize relation classes in feature space. In this
process, the main challenge is how to learn semantic representation
of instances in the relational feature space.

Elsahar et al. [10] extracts KB types and NER tags of entities as
well as re-weighted word embeddings from sentences, then adopts
Principal Component Analysis (PCA) to reduce feature dimensional-
ity that can alleviate the problem of features sparsity, and finally uses
Hierarchical Agglomerative Clustering (HAC) to cluster the feature
representations. Because integrating word embeddings in a rule-based
way, the method heavily rely on hand-craft features and make many
simplifying assumptions and its feature space is lack of semantic infor-
mation. Liu et al. [18] formulate URE using a structural causal model
and conduct Element Intervention to eliminate spurious correlations,
which intervenes on the context and entities respectively to obtain the
underlying causal effects of them and learn the causal effects through
instance-wise contrastive learning.

The core idea of instance-wise contrastive learning is to pull
together the representations within positive instances while push-
ing apart negative ones. However, negative examples are com-
monly sampled from the batch or training data at random due
to the lack of ground-truth annotations. In relation extraction, the
relational semantic tend to be more fine-grained and based on
a potential hierarchical structure [38]. For example, the relations

“per:stateorprovinces_of_residence”, “per:countries_of_residence”
and “per:cities_of_residence” in one benchmark dataset share the
same parent semantic on /people/residence, which means that they
belong to the same semantic cluster from a hierarchical perspective.
Naturally, instances may have highly similar semantics in a batch
but contrastive learning pushes these representations apart as long as
they are from different original instances, regardless of their seman-
tic similarities. To alleviate the dilemma which instance-wise con-
trastive learning unreasonably pushes apart those sentence pairs that
are semantically similar, Liu et al. [19] propose hierarchical exemplar
contrastive learning. The model leverages Hierarchical Propagation
Clustering to obtain hierarchical exemplars from relational feature
space and further utilizes exemplars to hierarchically update relational
features of sentences and is optimized by performing both instance and
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Figure 1: Overall architecture of our model. Instances will be fed into encoder with different dropout masks z and z′ to obtain feature pairs, then
transmitted into Non-linear Mapping g(·) and d(·) respectively. We use ones to predict other ones to optimize encoder. Besides, in relational
semantic clustering, we mining nearest neighbors of each sample with semantic clustering loss.

exemplar-wise contrastive learning through Hierarchical Exemplar
Contrastive Loss and propagation clustering iteratively. Nonetheless,
the method still utilize traditional instance-wise contrastive learning
loss to retain the local smoothness in relational feature space dur-
ing training period and use an iterative way to obtain hierarchical
exemplars will cause error accumulation [24].

In this paper, we attempt to propose a Siamese network architec-
ture, only using positive pairs for representation learning, to eliminate
adverse effect of spurious negative samples. Siamese networks are
able to learn similarity metrics of relations from labeled data of pre-
defined relations, and then transfer the relational knowledge to identify
novel relations in unlabeled data [33]. Therefore, we intend to use
Siamese architecture to construct positive pairs and learn relation
representations in unsupervised setting. For the most part, owing to
lack of labeled data, the network is easy to collapse (i.e., all outputs
“collapsing” to a constant). To avoid that ,we introduce entity type,
which provide a strong inductive bias for relation extraction [28], as
prior information. Furthermore, followed by Chen and He [7], we
use the analogous network architecture to further prevent to collapse.
To recognize different relations, we through traditional unsupervised
clustering algorithms (e.g., k-means clustering algorithm) to clus-
ter learned representation in relational feature space. Nevertheless,
naively applying these clustering algorithms on the obtained features
can lead to cluster degeneracy [6]. We propose relational semantic
clustering module that mining nearest neighbors of each instance in
feature space. The module can support model learn more discrim-
inative representations under semantic clustering loss, so that the
learned representation is cluster-friendly and obtain better clustering
performance.

Our main contributions are the following: (1) We propose a novel
representation learning framework for unsupervised relation extrac-
tion. Furthermore, our model is much simpler than existing self-
supervised learning models that apply empirical data augmentation

and complicated network architecture. (2) We explore Relational
Semantic Clustering module, encoding the relational semantic into
the representations via unsupervised clustering. We efficiently con-
duct representation learning and unsupervised clustering in a unified
framework. (3) We conduct extensive experiments on two datasets and
achieves better performance than the existing state-of-the-art meth-
ods. Meanwhile, our ablation analysis shows the impacts of different
modules in our framework.

2 Model

We aim at developing a joint model that leverages the beneficial prop-
erties of self-supervised learning to improve unsupervised relation
extraction. As illustrated in Figure 1, our model consists of three
modules: Relation Instance Encoder, Siamese Representation Learn-
ing and Relational Semantic Clustering. The encoder module uses
instances as input which are composed of natural language sentences
and entity pairs, and then employs the pre-trained model to output
entity-level feature pair sets H and H′ for all instances. The learn-
ing module is structured as Siamese architecture and takes pair sets
respectively as input. We use similarity representation loss, which
measure the cosine similarity of positive pairs, to enforces the re-
lational feature of instances that have similar semantics to be more
close in feature space. In clustering module, we mining nearest neigh-
bors of each sample in relational feature space to learn discriminative
representations under semantic clustering loss that can yield better
clustering performance.

2.1 Relation Instance Encoder

The Relation Instance Encoder aims to obtain relational features from
instances. We use instances X as inputs that each xi ∈ X is com-
posed of a sentence si = {w1, .., wn} with n words, hi = (hs

i , h
e
i )

representing the start and end position of head entity, and ti = (tsi , t
e
i )
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representing the start or end position of tail entity in the sentence.
Same as the previous work, named entities in the sentences have
been recognized in advance. We employ pre-trained BERT [8] model,
which has strong performance on extracting contextual information,
as encoder f to map relation instance xi to embedding. However,
BERT always induces a non-smooth anisotropic semantic space of
sentences [16] , which is easier make model to collapse. To this end,
we add entity types as prior information in head and tail entities as
[hs

i ], [h
e
i ], [t

s
i ], [t

e
i ] and inject them to each instance xi:

xi = [w1, . . . , [h
s
i ], . . . , wi, . . . , [h

e
i ], . . . , [t

s
i ], . . . , [t

e
i ], . . . , wn]

(1)
then get the token embedding:

e1, ..., en = fθ(x1, ...,xn) (2)

where θ is the learnable parameters in the encoder. We use the embed-
dings with position of [hs

i ] and position of [tsi ] as outputs to obtain the
entity-level feature hi ∈ 2 · Rd:

hi = ehead ⊕ etail (3)

We follow the data augmentation used in SimCSE [11] to construct
positive pairs. Specifically, we only feed the same input xi to the
encoder twice with different dropout masks, which placed on fully-
connected layers as well as attention probabilities, and we can obtain
two different embeddings as positive pairs. We denote positive pair
as hi = fθ (xi; z) and h′

i = fθ (xi; z
′), where z and z′ is the

different dropout masks.

2.2 Siamese Representation Learning

We use Siamese network which can naturally introduce inductive
biases for modeling invariance to learn relational similarity metrics.
However, Siamese networks suffers from the problem of model col-
lapse, where the model converges to a constant value and the samples
all mapped to a single point. Besides, it is difficult to learn a reason-
able distance in feature space without negative samples. Followed by
Chen and He [7], we attempt to use the similar approach to address
this issue. As shown in Figure 1, positive feature pair hi and h′

i of one
instance are processed by the same encoder network f with different
dropout masks z and z′. Then we use the MLP g(·) to map feature
pair to gi and g′i respectively:

gi, g
′
i = gφ

(
hi, h

′
i

)
(4)

where φ is the learnable parameters in the non-linear mapping net-
work. And then, the non-linear mapping network d(·) is applied on
one side, and we denote the feature as d′i = dψ(g

′
i), ψ is the learnable

parameters. Meanwhile, a stop-gradient operation is applied on the
other side. The model maximizes the similarity between both sides
to learn relation representation under similarity representation loss.
Similarity Representation Loss

Given a training set X = {x1,x2, . . . ,xn} of n instances, Relation
Instance Encoder can obtain two augmented relational features for
each input sentences by feed the same input to the encoder twice
with different dropout masks. In this process, we obtain feature sets
H = {h1,h2, . . . ,hn} and H′ = {h′

1,h
′
2, . . . ,h

′
n}. We mini-

mize negative cosine similarity between positive pair:

LRl =
1

2

[D(
d, stopgrad(g′)

)
+D(

d′, stopgrad(g)
)]

(5)

where stopgrad(·) is use stop-grad strategy that gradient does not back-
propagate. The cost is described as a symmetrized form since pairs

from the Siamese network. For each part of the loss, we minimize
their negative cosine similarity:

D(d, g′) = − 1

n

n∑

i=1

di
‖di‖2 · g′i

‖g′i‖2
(6)

for a mini-batch of N instances,where i ∈ [1, N ] and ‖·‖2 is �2-norm.

2.3 Relational Semantic Clustering

One of the main obstacles for our model is difficult learn a discrim-
inative representation without negative samples. Be enlightened by
Van Gansbeke [30], we assume that in a excellent relational feature
space, each sample with their nearest neighbors have similar rela-
tional semantic and belong to the same relation class. We propose
Relational Semantic Clustering to learn discriminative relational rep-
resentations and conduct clustering and representation learning in a
unified framework. Specifically, for each instance xi, we mine its K
nearest neighbors according to each representation hi and define the
set Nxi as the output features of neighboring samples corresponding
to each xi in the dataset. Then, we use similar semantic clustering
loss to attract instances and their neighboring samples to approach
each other. Simultaneously, different instances are separated in feature
space.
Similar Semantic Clustering Loss

Like adaptive clustering [34], we aim to learn a clustering function
Φσ - parameterized by a neural network. The neural network classifies
each instance xi and its mined neighbors Nxi together with the learn-
able parameters σ. The function Φσ terminates in a softmax function
to perform a soft assignment over the clusters C = {1, . . . , C}, with
Φσ (xi) ∈ [0, 1]C . The probability of instance xi being assigned
to cluster c is denoted as Φc

σ(xi). We learn the weights of Φσ by
minimizing the following objective:

LCl = − 1

|X|
∑

xi∈X

∑

k∈Nxi

log 〈Φσ(xi),Φσ(k)〉+ λ
∑

c∈C
Φ′c

σ log Φ′c
σ

(7)
where 〈·〉 denotes the dot product operator. The first term in Equation 7
imposes Φσ to make consistent predictions for each instance xi and its
neighboring samples Nxi . However, the dot product will be maximal
when the predictions are one-hot (confident) and assigned to the same
cluster (consistent). To avoid Φσ from assigning all samples to a single
cluster, we include an entropy term(the second term in Equation 7):

Φ′c
σ =

1

|X|
∑

xi∈X

Φc
σ(xi). (8)

which spreads the predictions uniformly across the clusters C and
encourages the classifier to scatter a set of instances into different
classes.

2.4 Iterative Joint Training

In early training period, we only optimize LRl in Siamese Repre-
sentation Learning module to drive instances with similar semantic
get closer in feature space. After several warm-up epochs, instances
have acquired reasonable semantic representations. We introduce Re-
lational Semantic Clustering module to further refine the semantic
representations and enable them to be more discriminative. In sum-
mary, our overall objective is:

L = LRl + ηLCl (9)
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Figure 2: The relation distribution in the NYT+FB dataset. The or-
dinate represents the number of sentences in each relation type in
the dataset.The x-axis is the relations sorted according to the number
of sentences contained. For ease of observation, the x-axis label is
omitted.

where η is a loss coefficient. Our approach involves the combined
utilization of the Siamese Representation Learning module and the
Relational Semantic Clustering module through an iterative procedure.
This joint usage enables model to achieve a well-separated representa-
tion of distinct instances in the learned feature space while preserving
local invariance for each individual instance.

3 Experiments

In this section, we first describe two relation extraction datasets for
training and evaluating the proposed method, then detail the baseline
models for comparison, and then expound the implementation details
and hyperparameter configuration, finally we conduct a comprehen-
sive and detailed analysis of our model.

3.1 Datasets and Evaluation Metrics

Datasets. Following previous work [28, 19], we conduct experi-
ments on two relation extraction datasets – NYT+FB [20] and TA-
CRED [39] with different constructing settings. The former is gener-
ated via distant supervision while the latter is manually annotated cor-
pus, which is extremely challenging to model. The NYT+FB dataset
is obtained by using Freebase to label the corpus of the New York
Times corpus. That is, if the entity pair that appears in a sentence also
appears in Freebase [4], then this sentence is automatically labeled
as the relation stored by Freebase. After filtering out some sentences
using syntactic patterns, there are 2 million sentences in the dataset, of
which 41,000 are labeled with meaningful relations1. Of the 41,000
tagged sentences, 20% are used as validation set, and 80% are used as
test set. The TACRED dataset is a large-scale crowd-sourced relation
extraction dataset following the TAC KBP relation schema that covers
42 relation types. We remove the instances labeled as no_relation
and use the remaining 21,773 instances including 41 relation types
for training and evaluation.
Evaluation Metrics. B-cube (B3) [3], V-measure [26] and Adjusted
Rand Index (ARI) [13] are used as evaluation metrics for different
models. Specifically, B3 contains the precision and recall metrics to
correspondingly measure the correct rate of putting each sentence
in its cluster or clustering all samples into a single class, which are
defined as follows:

B3
Prec. = E

X,Y
P (g(X) = g(Y )|c(X) = c(Y ))

B3
Rec. = E

X,Y
P (c(X) = c(Y )|g(X) = g(Y ))

Table 1: Hyper-parameter values used in our experiments.

Hyper-parameters value

optimizer SGD
learning rate 1e-5
weight_decay 1e-4
momentum 0.9
batch size 64
warm-up epochs L 5
dropout rate r 0.1
number of nearest neighbors K 20
loss coefficient η 0.5

Then B3 F1 is computed as the harmonic mean of the precision and
recall.

V-measures contains the homogeneity and completeness, which
is analogous to B3 precision and recall. These two metrics penalize
small impurities in a relatively “pure” cluster more harshly than in
less “pure” ones:

VHomo. =1−H(c(X)|g(X))/H(c(X))

VComp. =1−H(g(X)|c(X))/H(g(x))

ARI is a normalization of the Rand Index, which measures the
agreement degree between the cluster and golden distribution. This
metric ranges in [-1,1]. The larger the value, the more consistent the
clustering result is with the real situation.

3.2 Baselines

To evaluate the effectiveness of our method, we select the following
unsupervised relation extraction models for comparison with standard
evaluation metrics: 1) rel-LDA [36], a generative model that consid-
ers the unsupervised relation extraction as a topic model.We choose
the full rel-LDA with a total number of 8 features for comparison
in our experiment. 2) March [20], a VAE-based model learned by
self-supervised signal of entity link predictor. 3) UIE [27],a discrim-
inative model that adopts additional regularization to guide model
learning. And it has different versions according to the choices of
different relation encoding models (e.g., PCNN). We report the results
of two versions—UIE-PCNN and UIE-BERT (i.e., using PCNN and
BERT as the relation encoding models) with the highest performance.
4) EType [28], a simple and effective method relying only on entity
types. The same link predictor as in March [20] is employed and two
additional regularizers are used. 5) SelfORE [12],a self-supervised
framework that bootstraps to learn a contextual relation representa-
tion through adaptive clustering and pseudo label. 6) EIURE [18],
a contrastive learning framework that intervenes on the context and
entities respectively to obtain the underlying causal effects of them.
7) HiURE [19], is the state-of-the-art method that derive hierarchical
signals from relational feature space using cross hierarchy attention
and effectively optimize relation representation of sentences under
exemplar-wise contrastive learning.

3.3 Implementation Details

In order to do a fair comparison with baseline method, we adopted
the setting by clustering all samples into 10 relation super-classes.
In the process of training of our model, we used the development
set to manually search part of the hyper-parameters, Table 1 shows
our best parameter settings. In our implementation, we adopt the
pre-trained Bert-Base-Cased model to initialize parameters for
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Table 2: Main results on two relation extraction datasets.The results of all baseline are reproduced in liu et al. [19], MLPs refers to two mapping
networks in Representation Learnin module and Semantic Clustering refers to Relational Semantic Cluster module in our model.

Dataset Model
B3 V-measure

ARI

F1 Prec. Rec. F1 Hom. Comp.

NYT+FB

rel-LDA[36] 29.1±2.5 24.8±3.2 35.2±2.1 30.0±2.3 26.1±3.3 35.1±3.5 13.3±2.7
March[20] 35.2±3.5 23.8±3.2 67.1±4.1 27.0±3.0 18.6 ±1.8 49.6±3.1 18.7±2.6
UIE-PCNN[27] 37.5±2.9 31.1±3.0 47.4±2.8 38.7±3.2 32.6±3.3 47.8±2.9 27.6±2.5
UIE-BERT[27] 38.7±2.8 32.2±2.4 48.5±2.9 37.8±2.1 32.3±2.9 45.7±3.1 29.4±2.3
EType[28] 41.9±2.0 31.3±2.1 63.7±2.0 40.6±2.2 31.8±2.5 56.2±1.8 32.7±1.9
SelfORE[12] 41.4±1.9 38.5±2.2 44.7±1.8 40.4±1.7 37.8±2.4 43.3±1.9 35.0±2.0
EIURE[18] 43.1±1.8 48.4±1.9 38.8±1.8 42.7±1.6 37.7±1.5 49.2±1.6 34.5±1.4
HiURE[19] 44.3±0.5 39.9±0.6 49.8±0.5 44.9±0.4 40.0±0.5 51.2±0.4 38.3±0.6
Our w/o MLPs 40.5±0.6 35.9±0.5 46.5±0.8 43.3±0.4 38.2±0.2 50.0±0.5 31.0±0.5
Our w/o Semantic Clustering 41.9±0.3 36.8±0.3 48.8±0.4 44.7±0.8 39.3±0.2 51.8±0.9 32.1±0.7
Our 44.9±0.4 39.5±0.3 52.1±0.7 45.7±0.6 40.0±0.3 53.2±0.8 39.6±0.3

TACRED

rel-LDA[36] 35.6±2.6 32.9±2.5 38.8±3.1 38.0±3.5 33.7±2.6 43.6±3.7 21.9±2.6
March[20] 38.8±2.9 35.5±2.8 42.7±3.2 40.6±3.1 36.1±2.7 46.5±3.2 25.3±2.7
UIE-PCNN[27] 41.4±2.4 44.0±2.7 39.1±2.1 41.3±2.3 40.6±2.2 42.1±2.6 30.6±2.5
UIE-BERT[27] 43.1±2.0 43.1±1.9 43.2±2.3 49.4±2.1 48.8±2.1 50.1±2.5 32.5±2.4
EType[28] 49.3±1.9 51.9±2.1 47.0±1.8 53.6±2.2 52.5±2.1 54.8±1.9 35.7±2.1
SelfORE[12] 47.6±1.7 51.6±2.0 44.2±1.9 52.1±2.2 51.3±2.0 52.9±2.3 36.1±2.0
EIURE[18] 52.2±1.4 57.4±1.3 47.8±1.5 58.7±1.2 57.7±1.4 59.7±1.7 38.6±1.1
HiURE[19] 55.8±0.4 57.8±0.3 54.0±0.5 59.7±0.6 57.6±0.5 61.9±0.6 40.5±0.4
Our w/o MLPs 53.6±0.8 45.6±0.6 65.0±1.2 59.5±0.7 51.9±0.5 69.8±1.1 44.0±0.9
Our w/o Semantic Clustering 56.1±0.3 47.7±0.2 68.1±0.8 64.1±0.7 56.2±0.8 74.6±1.3 48.4±0.6
Our 59.5±0.6 49.4±0.4 74.9±0.8 66.7±0.8 58.1±0.6 78.5±0.9 50.6±0.5

Figure 3: Influence of the used number of neighbors K.

Relation Instance Encoder and set dropout rate r = 0.1 to generate
positive pairs. The output entity-level features hi and h′

i possess the
dimension of 2 · Rd, where R

d = 768. For Siamese Representation
Learning, we use Non-linear Mapping g(·) and d(·) in our network
and use SGD with 1e-5 learning rate to optimize the loss. The g(·)
has layer normalization (LN) [2] applied to each fully-connected (fc)
layer, including its output fc. Its output fc has no ReLU. This MLP
has 3 layers. The d(·) has LN applied to its hidden fc layers. Its output
fc does not have LN or ReLU. This MLP has 2 layers. For Relation
Semantic Clustering, we set warm-up epochs L = 5 and number of
nearest neighbors of each instance K = 20. In the evaluation period,
we simply adopt the pre-trained models for representation extraction,
then cluster the evaluation instances based on these representations.

3.4 Results

We summarize the performances of our method and seven baseline
models in Table 2. All of these models are evaluated on identical
test set to show their performance. From the experimental results,
we can see that our method significantly outperforms baselines. For
NYT+FB dataset, compared with the previous SOTA model, our
method improves V-measure F1 by 1.6%, and ARI by 5.7%, but
the B3 F1 score is only by 0.6%. The reason why the performance
gain is minuscule in NYT+FB is that the dataset contains numerous
wrongly labeled instances in the train and test sets. These instances are

unable to reflect the real performance of the model, and the number of
samples in different relations is very unbalanced. As shown in Figure
2, the relation distribution is similar to a long-tailed distribution.
Besides, most relations only have several samples that make a lot
of noisy nearest neighbors to hurt performance when use mining
nearest neighbors in Relation Semantic Clustering. For TACRED,
compared with the previous SOTA model, our method improves B3 F1
by 3.7%, V-measure F1 by 7.0%, and ARI by 10.1%. It is worth noting
that the score of precision and recall in B3 seems to be extremely
disequilibrium. By definition, precision measure the correct rate of
putting each sample in its cluster and recall measure the correct rate
of clustering all samples into a single class. Therefore, the results
indicate that most of the samples from corresponding relations are
clustered in the same cluster.
Ablation Study. To study the contribution of different components
in the proposed method, we conduct an ablation study on each com-
ponent. For fair comparisons, the other settings remain the same as
the main model. From Table 2, we can see that in both NYT+FB and
TACRED, the model’s performance is degraded if any component
is removed, indicating that both modules are important for the final
model performance.

3.5 Detailed Analysis

Hyperparameter Analysis. On account of the importance of two
hyperparameters dropout rate r and number of nearest neighbors K
which is in the encoder module and cluster module respectively, we
conduct a detail analysis on them. Firstly, to further study the role of
dropout rate in relation instance encoder for data augmentation, we try
out different rates and report the performance of B3 F1 on NYT+FB
and TACRED. As shown in Table 3, we observe that all the variants
underperform the default dropout rate r = 0.1 of Transformers [31].
Using small dropout rate will introduce small divergence so that
it is difficult for our model to learn discriminative representation,
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Table 3: Effects of different dropout rates r on the NYT+FB and
TACRED development sets.

Dataset / r 0.01 0.05 0.1 0.15 0.2 0.5

NYT+FB 41.3 42.1 44.3 44.1 43.8 41.5
TACRED 50.4 52.1 58.7 57.6 57.1 51.1

while large dropout rate will make more noise and prejudice similar
semantic information. Secondly, we study the influence of number of
nearest neighbors K in cluster module for mining nearest neighbors
and report the accuracy and F1 score on two datasets. As shown in
Figure 3, the accuracy (left),which is the correct rate of that nearest
neighbors with their corresponding samples are all come from same
relation, is gradually decrease with the increase of K. However, the
result of B3 F1 score (right) is not very sensitive to the value and even
remain perform well when increasing K to 50, despite the increasing
value will introduce more noise. This is beneficial, since we do not
have to fine-tune the value on new raw text.
Visualization of Relation Representations. In this experiment, to
intuitively show the effectiveness of our model to learn representa-
tions in relational feature space, we visualize the representations of
the instances in TACRED datasets with t-SNE [29] and randomly se-
lect 4 relations from the test set. As shown in Figure 4, we color each
instance according to its ground-truth relation label and we can ob-
serve that the proposed model without Relation Semantic Clustering
(left) gives general results and does not provide discriminative cluster
assignments. For example, the instances with black and red colors
may have similar syntactic or surface features and clustering them di-
rectly will lead to a poor result. When we use clustering module in our
model, model with full module (right) can learn more discrimintaive
features and each relation is mostly separate from others.

Figure 4: Visualizing contextualized entity-level features after t-SNE
dimension reduction on TACRED.

Analysis on Clustering Results. Due to the number of clusters
is lower than the number of true relations, different relations are
likely to be clustered into same relation class. We attempt to have
a detailed analysis on clustering results from TACRED to further
verify whether different relation types in same cluster group have
similar semantic or not. Specifically, we select the largest and smallest
cluster group, the two most typical groups, which contain the most
and least number of samples, to conduct detailed analysis. We find
the top 5 real relations that appear most frequently in each of these
two cluster groups. The 5 relation types in the former are: “per:
cities_of_residence, per: countries_of_residence, per: origin, per:
stateorprovinces_of_residence, per: city_of_death”; The 5 relation
types in the latter are: “org: country_of_headquarters, org: members,
org: stateorprovince_of_headquarters, org: member_of, org: parents.
The findings of the analysis have led to the conclusion that these
relation types in the same cluster have analogous relational semantics
and a potential hierarchical structure. Furthermore, we count the

Figure 5: Statistics of samples in clusters and classes from the largest
and smallest group.

exact number of samples based on their true relation types in each
cluster group. As shown in Figure 5, in the largest cluster group
(left), the number of samples from different relation types is nearly
and these samples occupy the vast majority of their corresponding
relation types, which indicate that the cluster is a fine super-class. On
the contrary, the most frequent relation type dominants the smallest
cluster group (right), while other types only have one or few samples
in this cluster, which indicate that the cluster is very pure and have
less small impurities.

4 Related Work

Self-supervised Learning Self-supervised learning enables AI sys-
tems to learn from orders of magnitude more data, which is important
to recognize and understand patterns of more subtle, less common
representations of the world. Specifically, self-supervised learning
tries to learn an encoder that extracts generic feature representations
from unlabeled datasets. Early work focuses on solving different artifi-
cially designed pretext tasks that does not require any supervision and
can be easily constructed on the dataset, such as predicting neighbor
words [21], generating neighbor sentences [14] for textual data, and
denoising [32], colorization [15], adversarial generative models [9]
for image data. Nevertheless, the feature representations are tailored
to the specific pretext tasks with limited generalization.

Recent self-supervised learning algorithms mainly solve an instance
discrimination task. In these algorithms, instance-wise contrastive
learning with InfoNCE loss function [23] is prominent. Instance-CL
treats each instance in the dataset and its augmentations as an indepen-
dent pair and tries to pull together the representations within each pair
while pushing apart different pairs . Consequently, different instances
are well-separated in the learned feature space with local invariance
being preserved for each instance. Although Instance-CL may implic-
itly group similar instances together, it pushes representations apart
as long as they are from different original instances, regardless of
their semantic similarities. Thereby, the implicit grouping effect of
Instance-CL is less stable and more data-dependent, giving rise to
worse representations in some cases [17, 25].
Open Relation Extraction Open relation extraction has received
more attention in recent years and many efforts have been under-
taken to exploring methods for it, due to the ability to extract new
emerging relation types. The first line of research is Open Informa-
tion Extraction , in which relation phrases are extracted directly to
represent different relation types. However, using surface forms to
represent relations results in an associated lack of generality since
many surface forms can express the same relation. Another explo-
ration is Relation Discovery, aims at discovering unseen relation types
from open-domain text. Relation discovery can be divided into two
different approaches: 1) cluster the relation representations learned
from the instances, or 2) make more assumptions as learning signals
to discover better relational representations.
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The variational autoencoder (VAE) based approaches are under
unsupervised setting. Marcheggiani and Titov [20] first propose the
variational autoencoder method on unsupervised relation extraction.
The model utilize the encoder extracts the semantic relation from
hand-crafted features of the sentence and the decoder tries to predict
one of the two entities given the relation and the other entity with a
general triplet scoring function [22]. However, Simon et al. [27] point
out that the aforementioned method severely suffer from the instability,
and they also propose two regularizers to guide the learning procedure.
But the fundamental cause of the instability is still undiscovered. On
this basis, Tran et al. [28] demonstrate that by using only named
entities to induce relation types can achieve better performance. Yuan
et al. [37] assume that these classifications are a latent variable so
they are required to follow a pre-defined prior distribution which
results in unstable training and overcome this limitation by using the
classifications as an intermediate variable instead of a latent variable.
In clustering-based approaches, the supervised learning model [33, 38,
40] are restricted by labeled data despite achieving good performance.
In unsupervised setting, Yao et al. [36] proposed Rel-LDA model
,using a generative model inspired by LDA to cluster sentences: each
relation defines a distribution over a high-level handcrafted set of
features describing the relationship between the two entities in the text
(e.g. the dependency path). Hu et al. [12] proposed SelfORE which
encodes relational feature space in a self-supervised method that
bootstraps relational feature signals by leveraging adaptive clustering
and classification iteratively.

5 Conclusion

In this work, we investigate the deficiencies of the contrastive learning
on unsupervised relation extraction and propose a similarity-based
representation learning method, which can learn well semantic of
instances to effectively improve the performance with unsupervised
clustering. In addition, we further obtain discriminative feature repre-
sentations through relational semantic clustering. Owing to the fact
that our model is straightforward and efficient, we believe that our
approach easily admits extensions to different open-domain texts.
However, our model still has many shortcomings. Similar to other un-
supervised relation extraction methods, our model is unable to handle
instances where entity pairs appearing in a sentence do not exhibit any
relation. We leave these problems as future work and look forward to
seeking possible solutions from a broader perspective.
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