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Abstract. Adversarial fine-tuning (i.e., training on adversarial per-
turbed inputs) has demonstrated promising results in improving the
accuracy of natural language understanding tasks. However, the im-
proved accuracy does not come for free but is accompanied by a
significantly prolonged training time, limiting their applicability to
larger and more complex models. This work revisits the efficiency-
accuracy trade-off in adversarial fine-tuning by systematically ana-
lyzing if adversarial fine-tuning methods, in conjunction with sev-
eral efficiency optimizations, are suitable for adapting pre-trained
Transformer models for natural language understanding tasks. Our
results show that multiple design choices are crucial in determin-
ing the efficiency-accuracy trade-off, and we introduce a method,
ScalLA, that achieves better accuracy-vs-speed trade-off than prior
methods. We show in experiments that our proposed method attains
up to 14.7 x adaptation speedups on BERT, RoBERTa, and TS5, while
achieving comparable accuracy to existing methods.

1 Introduction

Pre-trained transformer-based language models (LM), such as
BERT [6], RoBERTa [25], T5 [29], and GPT-3 [1] have achieved
remarkable success. While these models provide a powerful general-
purpose engine for processing language information, adapting them
before use is necessary for many natural language understanding
tasks[33]. This is because the pre-training objective used for many
large LMs — predicting masked tokens in a sentence — is different
from the downstream task objectives, e.g., question-answering tasks
extract answers from a text based on questions posed by humans,
which requires model adaptation. This adaptation is usually done
by fine-tuning the parameters of a pre-trained model with domain-
specific data.

The way adaptation is performed has a significant impact on the
accuracy of downstream tasks. Among different approaches, adver-
sarial fine-tuning (AF) adds adversarial perturbations to the train-
ing data throughout the fine-tuning procedure and has demonstrated
promising improvements in fine-tuning accuracy [18, 42]. For in-
stance, [18] (referred to as SMART) adopts the smoothness-inducing
adversarial regularization technique [3, 34], which introduces norm-
bounded perturbations to the lexical embeddings of token inputs. The
model is then fine-tuned with these perturbed inputs and is encour-
aged to not let its output change drastically with those perturbations.
Adversarial fine-tuning methods such as SMART have achieved
state-of-the-art accuracy on several NLP tasks such as GLUE.
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Although achieving great accuracy, existing adversarial fine-
tuning methods have several limitations. (1) They solely focus on as-
sessing the impact of generalization of adversarial fine-tuning, with-
out considering the computational cost, which can be prohibitive
when applying those methods to larger and more complex models.
(2) Existing methods also mainly focus on small batch size, over-
looking the scalability of their approach on large batches and scal-
ability when more compute units are available. Increasing the batch
size allows adversarial fine-tuning to achieve higher compute effi-
ciency but may lead to sub-optimal accuracy. This results in a trade-
off between accuracy and efficiency. (3) Existing work lacks theo-
retical analysis and its impact on the loss landscape. In this work,
we address those challenges and introduce our lightweight and scal-
able method called ScalLA, while also providing theoretical and loss
surface curvature analysis.

In summary, our contributions are as follows:

e We systematically assess how different training strategies affect
the computational efficiency and generalization of fine-tuning
Transformers. Our study reveals the computation-vs-accuracy
dilemma in fine-tuning pre-trained transformers via adversarial
fine-tuning and provides insights for optimizations (Sec. 4).

o We present ScalLA, a method that injects lightweight adversarial
noise as well as groupwise adaptive learning rate to speed up the
fine-tuning of pre-trained transformer models. Our design is based
on careful analysis of factors that have major impacts on model
accuracy and training speed of projected gradient descent-based
adversarial training, especially under the multi-GPU fine-tuning
regime (Sec. 5).

e We theoretically quantify the convergence rate of adversarial fine-
tuning, which provides theoretical justification for our method
(Appendix A).

e We conduct extensive evaluation, and our results show that ScaLA
accelerates the fine-tuning of pre-trained Transformer-networks
by up to 14.7 times over the baseline on BERT [6], RoOBERTa [25],
and T5 [29] on a wide range of natural language understanding
(NLU) tasks.

2 Background and Related Work

The transformer network was originally proposed by [32] for neural
machine translation, which shows its superiority in parallel compu-
tation and modeling long-range dependencies, compared to recur-
rent neural networks such as LSTM [13]. Subsequently, Devlin et
al. propose a bidirectional transformer-based language model called
BERT [6], which leverages transfer learning and has been demon-
strated as an effective strategy for language representation learn-
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ing [25, 36, 22, 31]. The transfer learning paradigm consists of two
major stages: a pre-training stage that involves training the network
on a large corpus followed by a second fine-tuning stage to adapt the
pre-trained model to different target tasks/domains, also known as
domain adaptation.

There has been a lot of interest in improving domain adapta-
tion. Numerous works suggest that a better pre-trained model helps
improve the accuracy of downstream tasks [6, 25, 29, 12, 31, 1].
However, pre-training is expensive and time-consuming. Meanwhile,
there has also been an enormous amount of interest in designing ef-
fective fine-tuning methods. Among different methods, adversarial
training has shown promising results in improving the fine-tuning
accuracy of pre-trained Transformers. Adversarial training has been
studied extensively in the computer vision literature for improving
the robustness against adversarial attacks [8, 26]. Subsequently, stud-
ies show that adversarial training can help improve the generalizabil-
ity of language modeling [3, 34]. More recently, several studies, such
as SMART [18] and FreeLb [42], show that adversarial training helps
improve the generalization of fine-tuning of pre-trained Transform-
ers. However, while many works focus on assessing the impact of
generalization of adversarial training, few studies have examined the
trade-off between speed and accuracy in adversarial fine-tuning. This
work studies this trade-off and proposes methods that achieve better
trade-offs in comparison to existing ones.

As the size of Transformer models has grown exponentially, there
has been a lot of interest in developing efficient adaptation meth-
ods for pre-trained Transformers [15, 35, 16, 11]. Some methods
insert so-called adapters to pre-trained model and only fine-tune
the adapters while freezing the other weights [15]. [16] adds low-
rank matrices to approximate parameter updates. [28] shows that it
is possible to quickly adapt to new tasks by collectively learning
knowledge from multiple tasks. These parameter-efficient methods
focus on reducing memory consumption and trainable parameters in
fine-tuning, which is complementary to the efficient adversarial fine-
tuning introduced in this work.

3 Problem Formulation and Setup

Formulation. Let X denote the parameter space and Y denote the
data (mini-batch/sample) space and @ denote a distribution sup-
ported on Y. To improve the generalizability of transformer fine-
tuning while retaining the scalability, we augment the usual stochas-
tic optimization objective by constructing an adversarial [20, 26] reg-
ularization. In particular, we solve the following robust optimization
problem, which is a stochastic minimax [24] optimization problem
augmented with a regularization term involving a deterministic ad-
versarial perturbation, instead of vanilla risk minimization:

min e q[g(e, §)] = min Ee~q[f (, €) + Ar(z)]

= minmaxEe~o[f (,£) + Ar(z,y)] (1)

= minmaxEeq[f(2,y,£)] @

where ¢ : X X Y — R denotes the adversarial training ob-
jective, f : X X Y — R denotes the standard training objective,
f:X XY xY — R denotes the augmented objective, r : X — R
denotes a deterministic regularization term on the parameters con-
trolled by a strength factor A € (0,00), r : X — R denotes the
augmented regularization and £ denotes samples drawn from @ (for
simplicity, we slightly abuse the notation in using & to denote the
random variable, e.g. E¢[g(x, £)], or its empirical realizations, e.g.
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Figure 1: The overall setup for experiments.

= S5, g(x, &) for any K ; the meaning is clear from the context).
The overall (outer) training objective involves a minimization prob-
lem in the parameter space while being stochastic with respect to the
data space. The adversarial regularization (inner) term is a determin-
istic maximization problem operating in the data space conditioned
on a fixed parameter configuration. We wish to emphasize that this
formulation is a two-player sequential [19], not simultaneous, game
wherein the goal is to optimize a transformer network that is robust
to adversarial perturbation. In a given round, the first player (asso-
ciated with the outer minimization) proposes a parameter configura-
tion, and the second player (associated with the inner maximization)
responds with a penalty to capture the effect of label errors due to
perturbations in a large data batch size to undermine the performance
of the transformer parameter configuration chosen by the first player.
Specifically, for any given outer step ¢, let z+ denote the parameter
proposed by the first player. Since the exact inner maximization in
Equation (2) is intractable for non-convex models such as transform-
ers, we adopt truncated methods as in prior works. Specifically, we
use Projected Gradient Ascent (PGA) [26, 18] to solve this problem,
ie., yr+1 = o (y- + p-Vyr(ze,y)) where p, for 7 € [T] is the
step size sequence and II projects the result of the gradient ascent
update into an ¢, ball of diameter 2w around the original input em-
beddings, £, considered by the first player.

Setup. Language expressions are quite sensitive to individual words
or clauses, where perturbations against those would likely generate
incorrect or biased training data with wrong labels [41]. Following
prior success in applying adversarial training to NLP models [27, 42],
we apply perturbations to the continuous word embeddings instead
of directly to discrete words or tokens. The term r captures the pre-
diction deviation from the perturbation. In a given round of the game,
with respect to the first player’s proposal, let & denote the trans-
former network under consideration (specifically, ¢ is BERT in this
paper) and & be a large batch of data sampled from @Q. We construct
a label for the second player as v := ®(z,&). Next, for classifica-
tion tasks, we choose r to be the symmetric KL divergence [18], i.e.,
r(z,y) := KLym(7y, ®(z,y)). We follow [18] to use symmetric KL
divergence to measure the distributional divergence to generate ad-
versarial perturbation. For regression tasks, we choose r to be the
squared loss, i.e., r(z,y) := (y — ®(x, %)) In practice, we add an
{~ constraint on y, which is achieved by simple clipping with a ra-
dius of w (projection). Intuitively, a large r corresponds to a situation
wherein the transformer is highly sensitive to a given perturbation in
the input, suggesting that the model parameters are close to a sharp
minimum. Augmenting the original training objective with r makes
the first player incur an additional penalty if the outer minimization
solution veers closer to sharp minima, thereby encouraging flatter so-
lutions and better generalizability. Figure 1 shows the overall setup
we used for experiments in this work.
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4 Performance Characterization

Existing adversarial fine-tuning methods improve generalization but
at what cost? To answer that question, we perform studies to ana-
lyze how the training computation efficiency and model accuracy are
affected by adversarial training during the fine-tuning stage, using
SMART [18] and pre-trained BERT},se model on GLUE as an ex-
ample. The hardware and software setup is described in detail in the
evaluation section.

Adding adversarial perturbation improves generalization but
adds significant computational cost. The generation of adversarial
noise requires an extra PGA inner loop that standard training does not
have. This slows down training by at least 2 times, even with a sin-
gle PGA iteration (i.e.,7=1). Figure 2 provides the time breakdown
of optimization using PGA with 7 = 1 (denoted as PGA-1). PGA-
1 performs the perturbation and takes approximately the same time
as making three forward passes (Fwd) through the network, i.e., one
step of PGA requires making one forward and backward pass (Bwd)
over the entire network. The backward pass of the optimization takes
roughly twice the amount of time as the standard backward step be-
cause the back-propagation is triggered twice to calculate the noise
and the gradients. This high overhead motivates the investigation of
more lightweight approaches to generate adversaries while retaining
their benefits of improving generalization.

Inner maximization suffers from diminishing returns. Inner
maximization in PGA often requires multiple iterations (i.e., K)
to find a good solution (i.e., adversary) [26, 42], adding significant
computational overhead. To investigate the usefulness of inner max-
imization, we progressively increase the perturbation with various
strengths (i.e., varying 7") Figure 3 shows that although using a large
T helps to produce stronger noises, it has a diminishing return in
final accuracy after one iteration. In fact, too many perturbations
steps may even have a negative impact on the model accuracy, de-
spite the fact that the training overhead still increases almost linearly.
Given that a frequently encountered scenario in practical problems is
the need of building accurate models under a limited computational
budget, this raises the question of whether existing adversarial fine-
tuning methods perform well under limited computational budgets.

Existing methods for adversarial fine-tuning use small batch
sizes, leading to sub-optimal efficiency and limited scalability.
Given the expensive computational cost of adversarial fine-tuning,
one idea is to parallelize it with multiple compute units, where each
unit processes a chunk of the adversarial inputs. However, existing
methods mainly tried a few methods with small batch sizes. A small
batch size has a profound implication on training efficiency and scal-
ability. Modern GPUs have massive parallel compute units and are
highly optimized for throughput. When the batch size is small, most
GPU cores will stay idle or spend most of their time communicat-
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Figure 4: Accuracy improve- Figure 5: Scalability of adversar-
ments with adversarial fine- ial fine-tuning varying the num-
tuning varying batch sizes. ber of compute units.

ing with each other. To show this, we carry out a scalability test by
varying the number of GPUs from 1 to P (e.g., 32), with multi-node
multi-GPU setups. Different from pre-training, the adversarial fine-
tuning stage employs a much smaller batch size (e.g., 16, 32) than
pre-training (e.g., 4096) [6, 25]. We choose a batch size m (e.g.,
32), by following the suggestion from existing literature [6, 25, 18],
and we divide the samples in the mini-batch among P GPUs. If the
per-worker batch size (e.g., 16) is larger than the maximum admissi-
ble per-worker batch size (e.g., 8), we use local gradient accumula-
tion [9] to avoid running out of memory. Figure 5 shows the scala-
bility results. The training time decreases initially when P increases,
but it quickly plateaus and even decreases with more GPUs. This
is mainly caused by the small batch size, where the system spends
more time communicating gradients than doing actual computation.
As such, the communication overhead dominates the total execution
time (e.g.,B=32 vs. B=32 (no comm)). The communication overhead
is especially huge when there is cross-machine communication (e.g.,
from 16 to 32). Therefore, using adversarial fine-tuning on multi-
node multi-GPU is inefficient.

Increasing the batch size can decrease training time, especially
as the number of GPUs increases because an increased batch size
increases the compute resource utilization and the computation-vs-
communication ratio. However, this also leads to a large accuracy
loss, even worse than the baseline accuracy without using adversarial
fine-tuning, as shown in Fig.4. This problem is related to the "gener-
alization gap" associated with large batch training [20, 14]. As such,
the question remains whether adversarial fine-tuning can benefit from
multi-node multi-GPU training.

5 Methods

The design principle of ScalLA is to perform adversarial fine-tuning
in a simple and computationally efficient way without sacrificing ac-
curacy. This section describes three optimizations to make adversar-
ial fine-tuning more efficient and scalable.

Simplified inner maximization. Existing works on adversarial
fine-tuning [18] conjectured that K > 1 in PGA-K was necessary
in order to find good adversaries for improving the fine-tuning ac-
curacy, leading to huge computational costs. [42] tackles this issue
by reusing the projected gradient results from PGA-K across multi-
ple mini-batches. Contrary to these ideas, we instead use a simplified
strategy where we only perform a one-shot best-effort perturbation.
We show this simplification (referred to as PGA-1) preserves model
quality, reducing adversarial fine-tuning costs significantly.

From an optimization perspective, the model has two components,
the parameter space and data space. First, unlike the minimization
in the parameter space, which is stochastic, the maximization in the
data space is deterministic. Second, with respect to the testing phase,
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the numerical convergence in the model’s parameter space is of pri-
mary importance rather than the numerical convergence in the data
space, i.e., the maximization is an auxiliary procedure that augments
the training phase to make the parameter space "aware" of effects of
the batch size across epochs. Due to these two points, we hypothe-
size that for a given batch, the marginal utility of an additional PGA
step is low, and we are able to get away with inexact deterministic
maximization.

Delayed adversary injection: Even PGA-1 still adds an overhead
factor of 2.2, so we investigate how useful adversarial perturbations
are at different stages of fine-tuning. We conduct additional experi-
ments to measure the final accuracy corresponding to starting from
a regular fine-tuning and then enabling PGA-1 for ¢ > ts where
ts € [T]. Experiment results show that enabling PGA-1 from the be-
ginning does not offer much improvement in accuracy, whereas ad-
versaries become more potent as the model begins to stabilize toward
the end of training. Intuitively, this makes sense because generally,
the model is primarily doing exploration to the loss landscape at ini-
tialization and is less likely to benefit from perturbed inputs. When
adversaries are added towards the end of the training, the model is
more likely to remember those adversaries that help minimize the
adversarial loss in Eqn. 2. This phenomenon has also been observed
in computer vision tasks [2, 38, 10]. We show that it is possible to
delay the injection of adversaries for adversarial fine-tuning of trans-
formers for NLP tasks. Following prior studies [10], we set ¢ either
as a hyperparameter or choose a t; when the training loss flattens.
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Figure 6: Accuracy results from delaying the injection of adversaries
at different stages.

Outer Minimization via layer-wise adaptive scaling: The main
obstacle to scaling up batch sizes for improved compute efficiency
is the instability from training with larger learning rates. Prior work
suggests that adaptive learning rates [39] are suitable for solving the
instability issue from large-batch training and improving its conver-
gence quality. However, few works have studied its interplay with
adversarial training. Given that both could improve model accu-
racy, it poses the question: to what extent does adversarial fine-
tuning benefit from layer-wise adaptive learning rate scaling? To in-
vestigate that, we solve the minimization problem in Equation (2)
by w1 = ap — mv(zt])Vag(@)/[[Vag(@)|l. Vi € [h] where
i denotes the i™-layer of the transformer. The normalized gradi-
ent descent mitigates issues due to exploding gradients. The learn-
ing rate sequence 7, Vt € [T is scaled by a clipping function
v(c) := max (L, min(c,U)) where £ < U, which ensures the norm
of the update is of the same order as that of the weights. The normal-
ization and scaling are done groupwise (every layer forms a group),
hence the adaptive layer-wise learning rates. Note that we use gradi-
ent averaging on &, i.e., gradient accumulation and all-reduce, over a
batch size B distributed across P workers in order to obtain a noisy
gradient estimate Vg (=) at epoch ¢.

Putting it together. Combining the formulation with the above
investigations, we propose ScalLA, with its full procedure provided
in Algorithm 1. Meanwhile, we also provide a theoretical analysis of
its convergence rate in Theorem 5.1.

Algorithm 1 ScaLA

1: Input: Epochs T, delay ¢, perturbation (inner) step size p, clip-
ping radius w, regularization strength A, (outer) learning rate n
2: Output: h-layer transformer model ® with converged robust pa-
rameters T := T
3: fort € [T] do
for worker p € [P] do

> Loop through epochs
> In parallel across homogeneous

workers
5: for mini-batch £, ~ @ do > Subsample g data
instances on each worker
6: r(ze) < 0,77 + O(z,&p), select yo > Initialize
regularization and label
7: if 't > ts|then > Check delay condition
8: y1 < I (yo + pVyr(zs, y)) > Perform
adversarial perturbation with PGA-1
9: r(z:) < KLgm (v, ®(zi—1,y1)) > Calculate
the adversarial regularization
10: end if
11: 9(xt,&p) — f(xe—1,&p) + Ar(z¢) > Calculate the
augmented loss
12: Vazg(x¢,&p) < Backward passon @ > Compute
local gradients using accumulation
13: end for
14: end for

150 Vag(e) ¢ 53,0, Vag(a6p)
using all-reduce

> Gradient averaging

Vig(zt)

ot g’ > Update

16: e R ( EH ) Vi € [h]

model parameters
17: end for

Theorem 5.1 (Complexity of Algorithm 1; Informal — Details in Ap-
pendix A). Consider the problem in Equation 2. Let t; = 0. Set-

ting the outer learning rate as n = O (1/\/T) and scaling batch
size as b = O(T), for Algorithm 1, we have E [||V g1 /24 (Z)||?] <
(@) (e + Ha/\/T) where T is the estimator obtained from running T

steps of Algorithm 1 and picking x. uniformly at random for t € [T).
Here, € is the error due to the approximate inner maximization ora-
cle, a characterizes the smoothness of f(x,.), g1/2q is the Moreau-
envelope of g and ko = max; «;/ min; a;.

6 Evaluation

We evaluate the effectiveness of ScalLA in adapting pre-trained trans-
former networks over a set of NLP tasks.

Model/Dataset. We study adaptation on pre-trained BERTpqse,
RoBERTa;4rge, and TS5y, hosted by HuggingFace, which are the
top three most downloaded models by practitioners. We use SQuAD-
v2 and the GLUE benchmark [33], which is a collection of sen-
tence or sentence-pair natural language understanding tasks includ-
ing question answering, sentiment analysis, and textual entailment.
We exclude tasks in GLUE that have very small datasets (e.g.,CoLA,
RTE).
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Hyperparameters. For all configurations, we perform a grid
search of learning rates in the range of {le-5, 3e-5, 5e-5, 7e-5, 9e-
5, le-4, 3e-4} for small batch sizes and {5.6e-5, 8e-5, le-4, 1.7e-4,
2.4e-4, 2.8¢-4, 4e-4, 5.6e-4, 1e-3} for large batch sizes. We report
the best-performing results on the validation datasets for all baselines
and our method. For a fair comparison, we set the maximum number
of epochs to 6 for all configs. We use a linear learning rate decay
schedule with a warm-up ratio of 0.1. For ScalLA, we set A = 1,
perturbation clipping radius w = 1072, step size p = 107*, and
t.={3,5}.

Hardware. We conduct the evaluation using two nodes, where
each node consists of 16 NVIDIA V100 GPUs.

6.1 Main Results

We compare the following schemes: (1) Baseline: This is the exist-
ing PyTorch implementation of Transformer fine-tuning from Hug-
gingFace (HF). The multi-GPU training is implemented using Dis-
tributedDataParallel [23], (2) SMART: This is the adversarial fine-
tuning method described in [18], (3) FreeLB:, this is the work de-
scribed in [42] that allows multiple mini-batches to reuse gradients
(with an accumulated batch size of 1K), (4) LAMB:, this configura-
tion uses LAMB optimizer [39] for large-batch fine-tuning, and (4)
ScaLA: This is our approach as described in Algorithm 1.
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Figure 7: Performance (y axis) and speed (x axis) of different meth-
ods. Top-left represents a better model quality with faster training
speed.

Fig. 7 shows the trade-off between model accuracy and speed on
MNLI fine-tuned on BERT. Among different methods, LAMB, to-
gether with large-batch optimization, achieves the fastest training
time, but its accuracy is much worse than the best accuracy (e.g., >
1 point lower). SMART achieves the best accuracy (85.3), but it also
incurs 16.5x longer training time than LAMB. While ScalLA does not
achieve the highest accuracy, it achieves a significantly faster training
speed than other adversarial fine-tuning methods, such as SMART
and FreeLb, at the cost of slightly lower accuracy (e.g., <0.2 points).

BERT. Table 1 presents more results on MNLI, QNLI, QQP, and
SST2. Overall, we observe that ScalLA often achieves a better trade-
off in terms of speed and accuracy in comparison to other baseline
methods. ScalLA achieves up to 14.7x speedups over SMART with
0.3 lower average accuracy on BERT (89.4 vs. 89.7). The speedups
come from two aspects: (1) the lightweight adversarial fine-tuning
incurs lower computation cost per training step while retaining the
accuracy improvements; (2) the groupwise adaptive learning rate

allows ScalLA to use a drastically much larger batch size for fine-
tuning, which improves the hardware utilization. ScalLA is up to 4.5
times faster than FreeLb while achieving similar accuracy on BERT
(89.4 vs. 89.5). ScalLA is faster than FreeLb because the PGA-based
maximization performs multiple ascent steps to calculate adversaries
across the full training process, which adds significant computation
cost. In contrast, ScalLA reduces the computational complexity of ad-
versarial large-batch optimization, allowing it to be more efficiently
executed across multiple GPUs and bring end-to-end speedups. In
our experiments, LAMB leads to only marginal accuracy improve-
ments than the baseline and is 1.1 points lower than SMART. This is
because LAMB is primarily designed for improving the training sta-
bility of pre-training with large-batch sizes. It allows large-batch op-
timization to achieve similar accuracy as its small-batch counterpart,
but it does not seem it can help further improve fine-tuning accuracy.

RoBERTa. We also studied the accuracy vs. speed trade-off of ad-
versarial fine-tuning on RoOBERTa, 4., Which also uses an encoder
transformer as its backbone architecture. Table 2 shows the accu-
racy vs. speed of different methods. The fine-tuning time increases
significantly because ROBERTa4,¢¢ is 3.2x larger than BERTyqsc
(354M vs. 1110M). Despite the increased model scale, we observed
similar accuracy vs. speed patterns. ScalLA achieves up to 11.8x
speedup over SMART with 0.1 points lower average accuracy, and
4.5x speedup over FreeLb with 0.4 points lower average accuracy.
These results indicate that the accuracy-speed trade-off in adversarial
fine-tuning exists as we further scale the model size, and it is possible
to achieve significant speedups while retaining model accuracy with
ScalLA even as the model size increases.

TS. We evaluated our approach on T5, a representative encoder-
decoder Transformer based model. We use TS5pqse from the Hug-
gingFace model zoo’s checkpoint. We apply ScalLA to fine-tune pre-
trained TS5 on SQuAD-v2. Table 3 shows the comparison results.
Overall, ScalLA achieves comparable EM/F1 scores score to FreeLb
and SMART but with 1.5x and 3.6x faster speeds. These results con-
firm that our approach can bring speedups to encoder-decoder archi-
tecture.

6.2 Ablation study

We study the importance of components in ScalLA. We set ¢, to 0,
which denotes as w/o Delaying PGA-1. We replace the outer mini-
mization to use ADAM [21], which is noted as w/o Groupwise LR.
We set A to 0, which denotes as w/o PGA-1. The results in Table 4
show that the removal of either design element would result in a per-
formance drop. For example, removing PGA-1 leads to 0.8 points ac-
curacy drop (88.6 vs. 89.4), indicating that adversarial noise is crucial
for improving the generalizability of large-batch adaptation. More-
over, if we perform PGA-1 without delayed injection, the average
accuracy increases by 0.1 points (89.5 vs. 89.4), but the execution
time is increased by 1.5-1.9x, indicating the importance of having
lightweight adversarial noise for speeding up the adaptation. Finally,
removing group-wise learning rates leads to a small 0.2 points accu-
racy drop (89.2 vs. 89.4).

6.3 Loss surface curvature analysis

Prior work correlates the low generalization with positive curvature
of large magnitude in the parameter space [20]. The indication is that
a sharp local minimum also reflects a higher sensitivity of the loss
even within the neighborhood of training data points and can attribute
to the difficulty in generalization. To verify if the generalization gap
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Table 1: The fine-tuning time vs. accuracy results on GLUE benchmark and BERT s
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MNLI-m NLI P SST-2

BERTpase | bsz Steps | Time [ Acc. | Steps QTime Acc. | Steps Ti?n(g Acc/F1 Steps | Time | Acc. Ave.
Baseline | 32 | 73632 8848 84.8 | 19644 | 2408 | 90.6 | 68226 | 11311 | 91/88.0 12630 | 1494 | 93.1 89.4
SMART [18]] 32 | 73632 | 19466 | 85.3 19644 | 5538 | 91.0 | 68226 | 24885 | 91.1/88.1 | 12630 | 3436 | 93.3 89.7
FreeLb [42] | IK| 2301 5953 85.2 615 1944 | 90.3 2133 19030 | 91.2/88.2 396 680 92.8 89.5
LAMB [39] | 1IK| 2301 1180 84.1 615 359 89.6 2133 2978 90.5/87.0 396 139 924 | 88.6
ScalLA 1K| 2301 1323 85.1 615 432 90.0 2133 4229 90.9/87.7 396 151 93.5 89.4

Table 2: The fine-tuning time vs. accuracy results on GLUE benchmark and RoBERTa;4ge.

MNLI-m NLI P SST-2
BERTse | bsz Steps | Time | Acc. | Steps QTime Acc. | Steps Ti?n(g Acc/F1 Steps | Time | Acc. Avg.
Baseline | 32| 73632 | 18114 | 90.5 19644 4842 94.7 | 68226 | 16614 | 92.0/89.4 | 12630 | 3072 | 96.4 | 92.5
SMART [18]] 32| 73632 | 39850 | 90.9 | 19644 | 11136 | 95.1 | 68226 | 38212 | 92.5/90.0 | 12630 | 6758 | 96.6 | 93.0
FreeLb [42] [ 1K | 2301 15133 | 91.2 615 5256 95.2 2133 10818 | 92.5/90.0 396 1804 | 96.9 | 933
LAMB [39] | 1IK| 2301 2646 90.5 615 973 94.5 2133 1998 91.3/88.5 396 324 96.2 | 92.1
ScalLA 1K | 2301 3363 90.9 615 1168 95.1 2133 2404 92.3/89.8 396 401 96.7 | 92.9
Table 4: Ablation study of ScalLA using BERT,s. on GLUE tasks. b 1es
o
MNLI-m QNLI QQpP SST-2 2
Time | Acc. | Time | Acc. | Time | Acc/F1 |Time | Acc. Avg. | Speedup % >0
Baseline 19635 | 84.8 [ 5535[90.6 | 16494 |91/88.0 |2736|93.1 |89.4 1 225
ScalLA 1323 [85.1| 432 | 90 | 4229 {90.9/87.7| 151 |93.5(89.4 12.4 0o :I:
w/o Delaying PGA-1| 2503 | 85.2 | 726 [90.2 | 6407 [91.3/88.3| 272 |93.1 | 89.5 7.0 ) v gt
w/o Groupwise LR | 1290 | 85.0 | 422 |89.9 | 4212 [90.7/87.6| 146 | 93.0|89.2 12.7 o
w/o PGA-1 1180 | 84.1| 359 |89.6 | 2978 [90.5/87.0| 139 [92.4|88.6 14.3

Table 3: Evaluation results of T5545. on SQUAD-v2.

T5/SQuAD-v2| EM| FI
SMART [78.9|82.4
FreeLLb |79.0|82.6
ScalLA|78.9|82.5

Time
28m
66m
18m

during fine-tuning is actually caused by using large-batch sizes, we
perform a Hessian-based curvature analysis.

We quantitatively measure the steepness of loss landscape by load-
ing the checkpoint of a fine-tuned model and computing the curva-
ture, i.e., the second derivative of the model, with respect to its pa-
rameters, for a fixed batch of samples. Inspired by [37], for a model
®(x), we compute the largest eigenvalue of the model’s Hessian,
Linax[V2®(z)], using the Hessian-vector product primitive and the
power method. We use the largest eigenvalue as a measure of sharp-
ness since the corresponding (top) eigenvector characterizes the di-
rection of the largest change in gradient at a given point in the pa-
rameter space. From Figure 8, the largest eigenvalue of the model
trained with a large batch (e.g., 1K) is much larger (e.g., 2.6x) than
the small-batch baseline and with higher deviations (e.g., 3.9x). This
result confirms that large-batch adaptation makes the loss landscape
of the model more prone to ill-conditioning and less robust to pertur-
bation, which helps explain the loss in generalization.

To verify if ScalLA improves the large-batch fine-tuning general-
izability, we measure again the steepness of the loss landscape again
after applying ScalLA, similar as what we do in Section 4. As shown
in Fig. 8, the largest eigenvalue of the model becomes much smaller
(6.9x) with lower deviations with ScalLA and is slightly better than
the small batch baseline, which is a strong indication that our ap-
proach enforces the smoothness of the model that leads to the accu-
racy improvement.

Figure 8: Eigenvalue results.

6.4 Training speed scalability

Figure 9 shows the scalability results of Scal.A, varying the number
of GPUs from 1 to 32. Overall, as the number of GPUs increases,
configurations with large batch sizes (e.g., 1K) see a continual de-
crease in training time and achieve much higher throughput than con-
figs with smaller batch sizes (e.g., 32). As expected, ScalLA scales
better than ScalLA without delaying PGA-1, and achieves a much
faster training speed, due to reduced computation complexity in each
training iteration.

4000

Baseline (B=32)
Baseline (B=1K) 85
== LAMB (B=1K)
#— ScalA (B=1K)
—— ScalA w/o delay (B=1K)

>
g
4
= =
2000 83
= ®
E 1500 e
E 1000 = Baseline (B=2K)
500 & ScalA (B=2K)
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1 2 4 8 16 32 2 4 6 a 10 12
#GPUs #epochs

Figure 9: Comparison of scala- Figure 10: Comparison of test ac-
bility using different large-batch curacy by training the baseline
optimization methods on SST-2. longer.

6.5 Fine-tuning accuracy with different batch sizes

We also evaluate how different batch sizes affect the fine-tuning
accuracy of adapting transformers. Figure 11 shows the results on
MNLI-m varying the batch size from 32 to 8K. We make two ma-
jor observations: (1) The accuracy tends to drop as the batch size
increases. (2) While both the baseline and LAMB suffer from sig-
nificant accuracy drop by drastically increasing the batch size (e.g.,
from 32 to 8K), both SMART and ScalLA are able to mitigate the
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generalization gap and consistently achieve higher accuracy than the
baseline and LAMB. Although ScalLA achieves similar accuracy as
SMART at larger batch sizes, it offers much faster training speed due
to its lightweight adversary injection mechanism. These results also
indicate the benefit of ScalLA is maintained by further increasing the
batch size, which could bring even greater speedups when increasing
the data parallelism degree.
85.0
[ 848

- 845

-842

4K 84.0 841 845 845

8K | 835 839 843 844 [53-2
) © i
%@53\\0 \}“\‘\ 5\“?‘?\ 503\}

Figure 11: Comparison of accuracy under different batch sizes.

6.6 Would train longer and tune hyperparameters
lead to better fine-tuning accuracy?

Despite improved adaptation speed, one may still wonder whether
simply performing large-batch fine-tuning longer would also close
the generalization gap. Figure 10 shows the comparison between
ScalLA and the baseline on a batch size of 2K. ScalL A obtains an
accuracy of 85.2 after 6 epochs of training, whereas the baseline has
difficulty to reach 84 after training twice longer (e.g., 12 epochs).
ScalLA achieves better accuracy because it explicitly penalizes model
weights from getting stuck at sharp minima, leading to better gener-
alizability.

If increasing the batch size improves the training speed, one may
also wonder whether one can simply fine-tune pre-trained models
with large batch sizes while tuning other hyperparameters, such as
learning rates, to obtain high accuracy. We show that this is non-
trivial, and one may not get the desired results even with significant
tuning costs. In particular, we conduct an analysis of large-batch fine-
tuning on pre-trained Transformers by performing a hyperparameter
sweep on batch sizes {1K, 2K, 4K, 8K}, learning rates {1le-4, 3e-
4,5¢e-4, Te-4, 9e-4, 1e-3, 3e-3}, and two learning rate schedules: lin-
ear scaling [9] and sqrt scaling [39]. Figure 12 reports the validation
accuracy. The results in Figure 12 show that the model can get poor
accuracy when the learning rates are not properly chosen (e.g., accu-
racy in red boxes), (2) the best learning rates do not always follow
the sgrt rule, making choosing the right learning rates challenging
for large batch sizes; (3) even with a wide learning rate sweep, there
is still a gap between the accuracy achieved via large batches and the
best accuracy.

6.7 Simplified hyperparameter tuning for ScalLA

We looked into simple methods for adjusting hyperparameters when
batch sizes increase in ScalL A for better training efficiency. The
square root scaling rule (sqrt) was introduced in [39] to determine
learning rates for large batch sizes. Table 5 compares the accuracy

Figure 12: Fine-tuning BERT,s. on MNLI with large batch sizes.
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results of using sqrt scaling with tuned learning rates. Tuning learn-
ing rates improved results on some datasets like MNLI-m and SST-2,
while sqrt scaling gave the same accuracy on QNLI and QQP. Since
sqrt scaling provides comparable accuracy, we recommend trying it
first as an easy and low-cost way to adjust ScalLA’s learning rates.

Table 5: Evaluation results on hyperparameter tuning vs. using heuris-
tic learning rate scaling.

MNLI-m |QNLI| QQP |SST-2| Avg | Trials
Tuning Ir|  85.1 90.8 [91.4/88.4| 93.5 [89.9| 10
Sqrt Ir 84.9 90.8 [91.4/88.4| 92.9 [89.7| 1

7 Conclusions and Future Directions

Adversarial fine-tuning (i.e., fine-tuning using adversarially per-
turbed input data) is a promising method for improving the accu-
racy of pre-trained Transformer-based language models. However,
the improved accuracy does not come for free but rather is accom-
panied by a significantly increased training time. This raises ques-
tions on whether adversarial fine-tuning can be applied to larger or
more complicated models or even during pre-training. This work re-
visited the trade-off between accuracy and efficiency in adversarial
fine-tuning by analyzing whether several optimizations can speed up
the process while retaining its accuracy improvements.

We tested our proposed method, ScalLA, on five datasets and three
Transformer models for natural language understanding including
both encoder and encoder-decoder architectures. Our results show
that ScalLA achieves a better accuracy-vs-speed tradeoff compared
to existing methods, such as SMART, FreeLb, and LAMB. Never-
theless, our results also suggest that a significant improvement in the
accuracy-vs-speed gap can be made, and future research direction
may include applying ScalLA to pre-training language models using
lightweight adversarial training.
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