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Abstract.

Visual sentiment recognition is a challenging task with scientific
significance in probing vision-processing mechanisms. Recent ap-
proaches mainly focused on using overall images or precise anno-
tations to learn emotional representations, yet neglected to capture
abstract semantics from regional information, or led to a heavy an-
notation burden. In this paper, we propose an end-to-end weakly su-
pervised framework, called Dual Coding Network (DCNet), which
models a dual coding process for both shallow features and high-
level regional information. On the one hand, with the help of the
fine-grained module (FG), visual features (e.g. texture features) are
utilized to enhance the learning of distinguished representation. On
the other hand, the DCNet innovatively leverages saliency informa-
tion to imitate the neural decoding of perceived visual sentiment con-
tents in human brain activity. Specifically, the saliency information
guides the generation of sentiment-specific pseudo affective maps
(SAMG), which serve as weak annotations. Then the DCNet cou-
ples fine-grained features with pseudo affective maps, and obtains se-
mantic vectors for final sentiment prediction. Extensive experiments
show that the proposed DCNet outperforms the state-of-the-art per-
formance on five benchmark datasets.

1 Introduction

Visual information in social media offers useful information and en-
ables people to share their instant psychological and physiological
status [11]. Visual sentiment recognition plays a considerable role
in understanding the sentimental response when humans see specific
visual content. Therefore, probing visual sentiment recognition in-
depth could benefit various potential applications, such as opinion
mining [25], and affective computing [33], to name a few.

Nowadays, since the success of deep learning, numerous deep
learning approaches have been proposed to predict image emotions
[29, 28]. As shown in (a) of Figure 1, global-level strategies pre-
dict visual sentiment with entire images. Lin et al. [9] fed the whole
image into a multi-source domain adaptation method to predict the
sentiment results. Peng et al. [15] built their global-level architecture
with a transfer learning strategy. Rather than excavating sentimen-
tal information from the entire images, some researchers discover
affective regions in the images. As shown in (b) of Figure 1, some
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Figure 1. Illustration of different visual sentiment recognition methods. (a)
global level visual sentiment recognition method. (b) class activation

mapping (CAM) [32] based weakly supervised architecture. (c) detection
based local-level architecture. (d) our proposed dual coding architecture.

studies adopt weak supervision to capture classification-specific in-
formation, which predicts final results relying on object scores. For
example, Zhang et al. [28] predicted the final sentimental classifica-
tion via class activation mapping (CAM) technology [32]. Different
from weak supervision based methods, proposal based research re-
lied on precise annotations to localize affective regions by calculat-
ing the affective scores of different substantial image regions with
the proposed arithmetic formula (shown in (c) of Figure 1). For in-
stance, Zhang et al. [30] exploited the object detection proposals that
are potentially reflected sentiments to predict emotional results.

However, several issues exist when using the aforementioned deep
learning methods to address the visual sentiment recognition task,
which is explained as follows. First, learning visual features from in-
tegral images merely expresses the dominant emotional tendency in
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the image, while ignoring the hierarchical nature of human cognitive
neuroscience. Second, weak supervision based methods merely pay
attention to attractive objects, leading to unsatisfactory predictions
with coarse affective regions. Third, proposal based methods need a
complex and exhaustive process to obtain and select the appropriate
annotations.

Recognizing this, we seek solutions to solve the above questions.
Psychological research has shown that visual features (e.g. low-level
features) and people’s prior experiences (e.g. contour of targets) in-
fluence human perception and recognition of visual stimuli [10]. For
example, when we see an image, we naturally perceive the contours
of the affective regions in our mind. Then the concept of affective re-
gions is visually encoded in the brain, and are serving as compasses
for the prediction of human emotions. Inspired by the research result,
we believe that the visual sentiment should be decoded using a com-
bination of both the actual visual semantic features that are presented,
and the prior salient semantic information that is associated with the
sentiment. Specifically, we propose a weakly supervised framework,
called Dual Coding Network (DCNet) to learn the discriminative
representation for visual sentiment analysis, which is shown in (d)
of Figure 1. First, different from the global level strategy that ana-
lyzes the sentiment from the entire image, we focus on discovering
precise affective regions in an automatic manner. Second, unlike ex-
isting weak supervision methods that ignore subjective objects and
background, we introduce saliency clues to imitate human-like vi-
sual processes and obtain prior experiences. Concretely, we leverage
saliency-guided pseudo maps to reason higher-level sentiment. The
saliency information is derived from a local attention mechanism,
which guides the generation of pseudo affective maps. Then DCNet
indicates the probability of evoking the emotion in each receptive
field, and generates saliency-guided pseudo affective maps as soft
pseudo labels. Besides, based on the fact that low-level features stim-
ulate association and touch emotion to a certain extent, we consider
fine-grained cues as the other coding process. In the fine-grained pro-
cess, each pixel of shallow features corresponds to a small area of
perceptual field overlap, which helps to capture more details. Finally,
DCNet utilizes weakly supervised coupling as a bridge to connect the
dual coding process, and avoids the time-consuming selecting pro-
cess for appropriate annotations that evoke sentiment. The coupling
operation addresses the third challenge in an end-to-end manner for
human-like intelligence.

In summary, our main contributions are listed as follows:
(1) We propose a novel weakly supervised based dual coding

network (DCNet) for visual sentiment recognition. DCNet couples
pseudo affective maps derived from high-level visual semantics
and fine-grained cues facilitated by shallow feature details, which
achieves a consistent multi-level joint representation.

(2) We innovatively utilize saliency information as guidance for
generating affective regions in the field of visual sentiment recogni-
tion. The saliency information enhances the representation of promi-
nent regions and objects, for neural decoding of perceived visual sen-
timent categories in human brain activity.

(3) We have conducted experiments on benchmark datasets of dif-
ferent sizes. Experimental results show that our proposed network
can effectively improve sentiment perception performance.

2 Methodology

2.1 Overview of the Proposed Architecture

As shown in Figure 2, the proposed network is an end-to-end ar-
chitecture. We adopt ResNet-101 [5] as our backbone network (de-

noted as Di(i = 1, 2, 3, 4, 5)) to extract multi-level features from the
original image. To be concrete, we remove the average pooling and
fully connected layers, and replace them with the proposed two mod-
ules. We denote the output features of the feature extraction branch as
di(i = 1, 2, 3, 4, 5). In the dual coding process, on the one hand, the
saliency-guided affective map generation module (SAMG) consists
of two stages: the saliency guidance stage and the pseudo affective
map generation stage. Initial information derived from the saliency
guidance stage is followed by the second stage. The pseudo affective
map generation stage learns the predicted score of affective regions
via the prior classification loss Lprior with the help of the ground
truth labels. On the other hand, the lowest level features d1 and the
highest level features d5 are fed into the fine-grained module (FG)
to efficiently leverage low-level valuable details. Then the output is
passed through a global average pooling (GAP) layer and fully con-
nected layers to learn the predicted results via the second classifica-
tion loss Lcls.

2.2 Saliency Guided Pseudo Affective Map
Generation

Visual stimuli theory deems saliency as stimulus features noticed by
the natural vision system and task demands, which affect observers’
attention. However, the saliency map only focuses on foreground ob-
jects, yet ignores other sentiment-related areas. In SAMG, the pseudo
affective map is guided by the saliency map for the final classifi-
cation. The combination overcomes the above challenges, and pro-
vides visual sentiment recognition with local information from the
perspective of weakly-supervised and local representation.

2.2.1 Stage-I: Saliency Prior Enhancement

In stage I, we employ channel attention to suppress noise background
interference and facilitate intra-class consistency. Specifically, given
a set of highest-level feature vectors d5 ∈ RC×H×W (where C is the
channel, W is the width, and H is the height of feature map). Then
reshape H×W dimension of d5 to dR5 ∈ RC×M . Next, we leverage
matrix product operation to multiply dR5 and transpose matrix, and
obtain dRP

5 ∈ RC×C . In order to obtain the final attention map,
we conduct the proposed C&S operation in advance, which can be
formulated as:

Atti = �(dRP
5 )− dRP

5 , (1)

where � utilizes a threshold function Max(·,−1) to control pixels
of feature maps in a stable range, thus enhancing the convergence rate
to a local minimum. Then the attention map Atti is generated by sub-
tracting the results of the matrix product operation. � suppresses in-
conspicuous pixels and pays much attention to significant ones. Next,
the attention maps are generated through a Softmax layer:

P (Attqi |Attpi ) =
e(Att

q
i ·Att

p
i )

∑
c∈Ce

(Att
q
i ·Att

p
i )
, (2)

where P (Attqi |Attpi ) represents the effect of p-th channel on q-th
channel (q, p ∈ C) in feature map Atti. Finally, the output of stage I
is calculated as:

OAi = δ ·∑c∈C(d5 ⊗ P (Attqi |Attpi )) + d5, (3)

where ⊗ denotes the matrix multiplication, and δ denotes a learn-
able parameter initialized to zero.
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Figure 2. Architecture of the proposed visual sentiment recognition architecture. The dual coding process consists of the saliency-guided affective map
generation module (SAMG) derived from high-level visual semantics and the fine-grained module (FG) originated from low-level feature details. We finally use

weakly-supervised coupling to connect the dual coding process. The dual coding network are trained cooperatively to improve the final classification scores.

2.2.2 Stage-II: Pseudo Affective Map Generation

Inspired by class activation map technology and cross-spatial pool-
ing strategy [18], we use saliency information generated in stage I
to guide the generation of the pseudo map reflecting sentiment in
stage II. Given training samples {(OAi, Li)}ni=1, where OAi repre-
sents input feature maps, Li ∈ {1, 2, ...,M} denotes the correspond-
ing affective label among M categories. In particular, we first use a
downsampling layer with 1 × 1 convolution kernels to obtain rough
sentiment classification of different image regions. Then we adopt
the global average pooling (GAP) to obtain a sentiment category for
feature maps in the form of a vector vm,m ∈ {1, 2, ...,M}, which
assigns M units with specific weight for corresponding sentiment
category as follows.

vm =
m∑

i=1

GAP (fq,i), (4)

where GAP represents GAP operation, and fq,i represents the i-th
pseudo map for the q-th channel.

Different affective regions reflect different emotions. The pseudo
map P ∈ RW×H is calculated through weighted linear summation
as Equation (5):

P =
K∑

k=1

vmfk(x, y), (5)

where fk(x, y) denotes the activation of the k-th feature map pro-
duced at pixel (x, y). The activation stems from each vm value,
which is the weight of each sentiment. A higher pixel value repre-
sents the greater contribution of the related affective region to the
network prediction. In the meanwhile, it implies a stronger response
in human recognition.

2.3 Fine-grained Module

Neurophysiological research has revealed that a significant amount
of visual processing is dedicated to the analysis of low-level features,

such as texture information [7]. Given that visual processing is sen-
sitive to low-level information, preserving the low-level information
of objects is critical to the excavation of sentiment. In this section,
we describe the proposed fine-grained module to reserve structures
leveraging low-level information for the affective regions. As illus-
trated in the green box of Figure 2, the FG module is introduced to
generate prompts and cues for clearer affective regions. We integrate
low-level features containing rich texture information with high-level
semantic information containing rich location information to remedy
the mistake information introduced by low-level features with back-
ground information. Specifically, we use two 1 × 1 convolution layers
to change the channel of d1 to 56, and change the channel of d5 to
224. Then we concatenate the output of d1 and upsampling result of
d5 as Equation (6).

dcat = Conv1×1(d1) � f̂(Conv1×1(d5)), (6)

where Conv1×1 denotes 1 × 1 convolution operation, � represents
concatenate operation, and f̂(·) means the upsampling operation.

Next, we leverage two 3 × 3 convolution layers, one 1 × 1 convo-
lution layer, and the Sigmoid function to obtain the features db:

db =
1

1+e
−Conv

1×1
3×3

(dcat)
, (7)

where Conv1×1
3×3(dcat) denotes the convolutional operation with

1× 1 and 3× 3 convolutional kernels.
In order to reinforce the representation of high-level semantic in-

formation, we fully make use of fine-grained cues as well as excavate
the interaction of low and high features by multiplying downsam-
pling db and d5 containing high-resolution features. Finally, we use
a skip-connection convolution layer to fuse the results and obtain the
final features OBi.

OBi = d5 ⊗ f̌(db)⊕ d5, (8)

where ⊗ denotes the matrix multiplication, f̌(·) represents the
downsampling layer, and ⊕ denotes the element-wise addition layer.
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2.4 Weakly-supervised Coupling Classification

Analyzed from the perspective of image representation, the SAMG
module and the FG module highlight the local cues and underlying
features of the image, respectively, which provide effective informa-
tion for further classification of sentiment. The original convolutional
features are represented as a whole, and the resultant maps gener-
ated by the two modules are used as local feature representations of
the convolutional features. We combine affective regions and fine-
grained cues to form intact features containing rich sentiment infor-
mation, based on which the output maps of the two modules are mul-
tiplied at the pixel level.

Concretely, we adopt Hadamard product to multiply the pseudo-
labeled map of affective regions AMi and the output maps of FG
module BMi, which is shown below. Then the coupled features are
input into the Softmax function to obtain the final prediction.

F̄ = AMi ⊗BMi �BMi, (9)

where ⊗ denotes the element-wise multiplication, and � denotes
the concatenate operation.

Traditional theories of object recognition have emphasized the
role of shape information in high-level vision. Hence, we want to
stress the edge details in low-level features by introducing related
boundary-aware loss. Two loss functions are defined to jointly super-
vise the network in an end-to-end manner, one is a prior classifica-
tion loss function Lprior , and the other is a loss function emphasizing
edge information. Lprior helps the end-to-end network find the labels
closest to the affective region in the classification task, and boundary
loss transfers the supervised information from the low-level informa-
tion in the FG to the current coupling branch. More specifically, the
prediction loss calculates the distance between the prediction pseudo
map and ground truth, which is constructed using a M -class Softmax
function with the input vector vm ∈ RM . Denoting the equivalence
discrimination between prediction category p and ground truth label
yi by condition function f(e). If yi = p, f(e) = 1, conversely, if
yi �= p, f(e) = 0.

Lprior = − 1

N

N∑

i=1

M∑

m=1

f(e)logvm, (10)

Boundary-aware aims at penalizing distorted and blurry errors
around edges. Boundary-aware loss contains two loss functions:

(1) Gradient based Fine-grained Loss: we first use Sobel filters to
obtain the gradient of the pseudo affective map. Then we place the
gradient norm as an L1 loss function between the actual and target
gradient norms as:

LG =
1

n

n∑

i=1

(ln(∇x ‖Q‖1 + α1) + ln(∇y ‖Q‖1 + α2)), (11)

where ‖·‖1 represents L1-norm, Q represents pi − gi. pi denotes
estimate gradient and gi denotes ground truth gradient. ∇x and ∇y

are the spatial derivative of pi − gi calculated at i-th pixel with re-
spect to x direction and y direction, respectively. α1, α2 > 0 is con-
trollable parameters.

(2) Surface Normal Loss: we use the surface normal loss to further
measure the details and structures of affective pseudo maps, regard-
ing the normal to the surface of affective estimate and ground truth.
The surface normal of the predicted pseudo affective map can be de-
noted as up

i ≡ [−∇x(pi),−∇y(pi), 1]
�, and the surface normal of

ground truth can be represented as ug
i ≡ [−∇x(gi),−∇y(gi), 1]

�.

LN =
1

n

n∑

i=1

(1− 〈up
i , u

g
i 〉√〈up

i , u
p
i 〉
√〈ug

i , u
g
i 〉

), (12)

where 〈·, ·〉 denotes the inner product.
The overall loss function Lcls is defined as follows:

Lcls = λ1LG + λ2LN + λ3Lprior (13)

where λ1, λ2, λ3 are the trade-off parameters, and we use stochas-
tic gradient descent to optimize the joint loss function Lcls.

3 Experiments

3.1 Datasets

In this section, we evaluate the proposed network on five visual affec-
tive classification datasets, including one big-scale public affective
dataset Flickr and Instagram (FI-8) [27], and four widely-used af-
fective datasets: EmotionROI (6 classes) [16], Emotion-6 (6 classes)
[13], IAPS-Subset [12], and Twitter II [1].

Flickr and Instagram: The FI-8 dataset consists of images from
Flickr and Instagram, containing 60,745 images and 42,856 images,
respectively. Each sample in the FI-8 dataset consists of an image
and an annotated emotion label, which contains 8 categories (i.e.
anger, amusement, awe, contentment, disgust, excitement, fear, and
sadness). FI-8 dataset is the largest dataset currently available in the
visual sentiment recognition domain.

EmotionROI: The EmotionROI dataset was selected from Flickr
and each image is labeled with 15 affective regions that evoke emo-
tions, each normalized to between 0 and 1 and forming an emotional
stimulus map. EmotionROI consists of 1980 images and 6 basic hu-
man emotion categories, which are anger, disgust, fear, joy, sadness,
and surprise.

Emotion-6: This dataset is created for emotion prediction and con-
tains 8350 images, which are derived from 150K images taken from
Google and Flickr. The emotion labels of this dataset are divided ac-
cording to six basic human emotions, including anger, disgust, fear,
joy, sadness, and surprise.

IAPS-Subset and Twitter II: The IAPS-Subset and Twitter II
datasets were collected from Twitter and social media platforms, con-
taining 395 and 603 images, respectively. Each image is labeled by
an emotional polarity (i.e., negative or positive).

3.2 Experiment Setting Details

The DCNet is built in the widely adopted PyTorch framework [14],
and is constructed in a ResNet-101 network using initialized model
weights pre-trained by a large-scale dataset via the ImageNet dataset
[17]. The input size of each training image is 448 × 448. We first
apply the random resized crop to crop the input image randomly,
then adopt random horizontal flips to flip the image horizontally as
an implicit data enhancement, which aims to reduce the overfitting
problem in data deficient scenarios and improve the model general-
ization. All datasets are randomly divided into 80% training set and
20% test set. We leverage Stochastic Gradient Descent (SGD) for the
specific training process for model updating. To improve the compu-
tational efficiency, we set the momentum decay and weight decay to
0.9 and 5 × 10−4, respectively. we set the initial learning rate size
to be 1 × 10−4, and reduce it by a factor of 100 every 10 iterations.
The batch size of training is set to 14. In addition, we set the values
of λ1, λ2, and λ3 on ResNet-101 to 0.5, 1, and 1, respectively. All
our experiments were conducted on Nvidia Tesla P100-PCIE with 16
GB memory in total.
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3.3 Results on FI-8

In order to verify the effectiveness of the DCNet for visual senti-
ment recognition, we compare DCNet with state-of-the-art methods
on widely used image sentiment datasets. Table 1 shows the compar-
ison experiment results on the big-scale dataset FI-8. The methods
in Table 1 are centered around the visual sentiment recognition task,
and the comparison results show that the proposed model achieves
an accuracy of 71.65% on the FI-8 dataset, a result that outperforms
other methods. We further analyzed the performance differences be-
tween different methods. The relative performance of our proposed
method is improved by 21.64% compared to the classification result
using the ResNet-101 network alone. Besides, unlike Zhou’s CAM-
ResNet101 [32] architecture that is mainly implemented through the
GAP technique, DCNet is guided by regions of interest to generate fi-
nal affective regions evoked emotions. The comparison result shows
that the DCNet is 3.11% higher than CAM-ResNet101. Addition-
ally, different from She et al. [18], we introduce saliency prior to a
dual coding process, rather than straightly using a weak supervision
strategy. The result demonstrates that the performance of DCNet is
1.49% higher than the classification result of She’s. Results in Ta-
ble 1 illustrate that the DCNet effectively improves the accuracy of
visual sentiment recognition on FI-8 dataset.

Table 1. Classification accuracy comparison on FI-8 dataset.

Methods FI-8
Self-Attention [21] 24.01
Zhao et al. [31] 46.13
Sentibank [1] 49.23
DeepSentibank [2] 51.54
ImageNet-AlexNet [8] 38.26
ImageNet-VGG16 [19] 41.22
ImageNet-ResNet101 [5] 50.01
Fine-tuned AlexNet 52.16
Fine-tuned VGG16 54.75
Fine-tuned Inception-v3 56.90
Fine-tuned ResNet101 57.16
Yang et al. [22] 66.79
SPN [34] 66.57
WILDCAT [3] 67.03
MAP [6] 68.13
Zhou et al. [32] 68.54
She et al. [18] 70.07
DCNet 71.65

Additionally, we use the confusion matrix to visualize the classi-
fication results on the FI-8 dataset, which is shown in Figure 3. The
confusion matrix counts the number of observations that the classi-
fication model classifies in the wrong category and the right cate-
gory, and then presents the results in a table. The DCNet performs
well in expressing Amusement emotion. We infer the reason may be
that the amusement category has the second-largest training sample
size compared to other datasets. However, the other categories are
most likely to be confused with Contentment and Disgust, the reason
is probably that compared to the other categories the contentment
category has more training samples, and the disgust category has a
stronger visual similarity, which includes the more noisy and similar
data and causes the classifier’s prediction conducive to the content-
ment and disgust categories.

Figure 3. Confusion matrix on FI-8 dataset.

3.4 Results on Small-scale Datasets

We further conduct a series of experiments on four relatively small
image sentiment datasets, and the results of the comparison ex-
periments are shown in Table 2. Both Emotion-6 and EmotionROI
datasets contain six basic sentiment classifications, and both IAPS-
Subset and Twitter II are binary classification task datasets with the
performance shown in the first, second, third, and fourth columns
of Table 5, respectively. The classification accuracy of the Emotion-
6 dataset shows the DCNet achieves 58.92% accuracy for visual
sentiment recognition, which is 3.32% higher than Zhang’s inte-
gration method [30]. The DCNet also outperforms on EmotionROI
dataset, which achieves 59.60% accuracy. It is 1.35% higher than
She’s weakly supervised method [18]. On the IAPS-Subset dataset,
Zhang’s architecture [28] was built on the class activation mapping
network and used multiscale feature information. Compared with
Zhang’s method, DCNet achieves a considerable performance of
95.90% by taking into account the dual coding process for affective
regions. On the Twitter II dataset, the DCNet has a better classifica-
tion performance than She’s framework of 1.15% improvement.

Figure 4. Confusion matrix
on Emotion-6.

Figure 5. Confusion matrix
on EmotionROI.

Here we select to visualize the confusion matrix of ResNet-101
based DCNet on two representative small-scale datasets, which are
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Table 2. Classification accuracy comparison on small-scale datasets

Methods Emotion-6 Methods EmotionROI Methods IAPS-Subset Methods Twitter II
Peng et al. [15] 45.2 Zhao et al. [31] 34.84 SentiBank 81.79 DeepSentiBank 70.23
BCPNN [24] 45.4 DeepSentibank [2] 42.53 DeepSentiBank 85.63 VGGNet 71.79
Gao et al. [4] 46.1 Yang et al. [22] 52.40 PCNN [26] 88.84 DenseSIFT+VLAD 77.17
ACPNN [24] 46.9 SPN [34] 52.70 VGGNet 88.51 WILDCAT [3] 78.81
Zhou et al. [32] 48.7 WILDCAT [3] 55.05 Fine-tuned VGGNet 89.37 Zhou et al. [32] 79.13
Yang et al. [22] 52.4 Zhou et al. [32] 55.72 Yang et al. [23] 92.39 Sun et al. [20] 80.91
Zhang et al. [30] 55.6 She et al. [18] 58.25 Zhang et al. [28] 95.83 She et al. [18] 81.35
DCNet 58.92 DCNet 59.60 DCNet 95.90 DCNet 82.50

the Emotion-6 dataset (depicted in Figure 4) and the confusion ma-
trix on the EmotionROI dataset (shown in Figure 5). Figure 4 shows
that the DCNet has a better performance in expressing the Joy and
Disugust emotions, yet the other categories are most likely to be
confused with Fear and Surprise. Figure 5 implies the DCNet per-
forms better in Disgust and Sadness categories, yet underperforms in
Anger and Fear emotions. The improvement on small-scale datasets
also proves that the DCNet can accurately identify affective regions
and clarify sentiment categories.

3.5 Ablation Studies

We conducted a series of ablation experiments to show the effective-
ness of the DCNet, and boundary loss functions on the performance
of visual sentiment recognition. We conduct the ablation experi-
ments on the large dataset FI-8 and the classic small-scale Emotion-6
dataset.

Table 3. Impact of the backbone network on visual sentiment recognition
accuracy

Backbone network FI-8 Emotion-6
AlexNet 59.22 47.23
VGG-16 65.08 53.29

ResNet-50 70.66 56.41
ResNet-101 71.65 58.92

The performance comparison using different networks as DCNet’s
backbone networks is provided in Table 3. For the visual sentiment
recognition results using ResNet-101 network as the backbone net-
work, we obtain the highest accuracy on both datasets, which is
1.93%, and 3.51% higher than the second highest ResNet-50 on two
datasets, respectively. While the results in the case of VGG-16 and
AlexNet network as the backbone network were not desirable. We
speculate that the high network level and complexity with sufficient
training samples ensure the feature extraction capability of the DC-
Net.

Table 4. Impact of the modules on visual sentiment recognition accuracy

Module FI-8 Emotion-6
M w/o S1 68.97 55.98
M w/o S2 69.37 54.21
M w/o FG 70.01 55.05

M 71.65 58.92

To demonstrate the effectiveness of the dual coding process, we
further conduct ablation experiments shown in Table 4. It can be seen

that the experimental results are 2.68% and 2.94% lower with the re-
moval of stage I (M w/o S1) than with stage I. It is 2.28% and 4.71%
lower with the absence of affective region prediction results (M w/o
S2) on two datasets. The experimental results are 1.64% and 3.87%
lower than with the absence of fine-grained cues (M w/o FG). Thus,
it can be seen that the affective region prediction information and
fine-grained information can enhance the effects on the visual senti-
ment recognition task. Also, the saliency guidance provided by stage
I in SAMG can facilitate obtaining affective regions, and simulate
human eye fixation. Saliency information provides an important ref-
erence for the subsequent affective region pseudo maps.

Table 5. Impact of the loss functions on visual sentiment recognition
accuracy

Backbone LPrior LG LN FI-8 Emotion-6√ √
70.02 55.40√ √
70.23 55.81√ √
70.45 56.02√ √ √
71.27 57.15√ √ √ √
71.65 58.92

This paper also provides the performance of the visual senti-
ment recognition task using boundary-aware loss, and the results
are shown in Table 5. Combining boundary-aware loss on FI-8 and
Emotion-6 datasets is higher than without and with only partial loss
functions. The performance of the gradient based fine-grained loss
LG and the surface normal loss LN is comparable. The introduction
of boundary aware loss function (LG + LN ) improves the recogni-
tion accuracy to 71.27% and 57.15% on two datasets, respectively.
The LG and LN are complementary to the classification loss. Hence,
integrating the three loss functions (LG +LN +LPrior) can further
improve the classification accuracy.

Table 6. Impact of the feature integration in low levels on visual sentiment
recognition accuracy

D1 D2 D3 FI-8 Emotion-6√
71.65 58.92√
71.28 58.89√
71.02 57.96√ √
70.83 58.09√ √
71.20 57.93√ √
70.31 56.72√ √ √
70.54 57.02

The DCNet makes full use of both low and high-level features,
and we conduct further ablation experiments to confirm the range of
applicable features at low levels, and the results are shown in Ta-
ble 6. The experiments were conducted on FI-8 and Emotion-6 with
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ResNet-101 as the backbone network. The results using single-layer
low-level features (row 1 to row 3) are overall better than those us-
ing multi-layer low-level features (row 4 to row 7). From the exper-
imental results, better performance is obtained by using only D1 as
low-level features for the fine-grained process, and the performance
of the FG module is mainly dependent on D1 features.

3.6 Visualization Results

To show the prediction performance of the pseudo affective maps in
DCNet, we provide qualitative results on the EmotionROI dataset.
Since we have applied random horizontal flipping and cropped a ran-
dom patch from input images as a form of data augmentation, the
obtained pseudo affective maps are part of the original images. As
shown in Figure 6, we use the yellow dashed box to outline the area
corresponding to our pseudo affective maps for better comparison.

Figure 6. Prediction results using different methods on EmotionROI.

Figure 6 shows samples of pseudo affective maps predicted by our
method (column 3) and precise affective regions generated by weakly
supervised CAM [32] (column 2). As can be seen in rows 1 to 3,
in contrast to the CAM-generated maps, DCNet outlines the affec-
tive regions, and further provides object details, such as the shape of
fingers and animal faces. Besides, under low-contrast circumstances
(demonstrated in row 4), DCNet-generated affective maps outper-
form CAM-generated maps. To be concrete, the CAM-based method
produces two focal points, resulting in a blurry affective map that is
differing significantly from the ground truth, yet DCNet efficiently
focuses on the sentiment-related regions and generates appropriate
affective maps. In addition, when the background is complex, our af-
fective maps still perform well (shown in row 5). Our affective map
accurately localizes the emotional area, highlights the brighter parts
of the picture, yet suppresses the black background. Moreover, as
depicted in row 6, our affective maps provide effective predictions
for images in different sizes. While the CAM-based approach merely

generates a general range of regions related to sentiment, DCNet out-
lines the affective regions in greater detail.

4 Conclusion

Based on the fact that visual recognition is highly correlated with
visual features and people’s prior experiences (e.g. object location
and shape), in this paper, we propose a novel dual coding network
for visual sentiment recognition that couples pseudo affective maps
derived from high-level visual semantics and fine-grained cues origi-
nating from low-level feature details. Extensive experimental results
show that our proposed network can effectively improve sentiment
perception performance. And abundant ablation studies verify the
effectiveness of our dual coding process. In future work, we will
try to deploy the proposed network in real-world applications, such
as sentiment evaluation in education, and visual question answer-
ing, which stress the regional information. Also, we hope that our
research will be of great value to both vision and cognitive neuro-
science researchers.
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