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Abstract. Time series data with missing values are ubiquitous in
real applications due to various unforeseen faults during data genera-
tion, storage, and transmission. Time-Series Data Imputation (TSDI)
is thus crucial to many temporal data analysis tasks. However, ex-
isting works usually consider only one of the following two issues:
(1) intra-feature temporal dependency, and (2) inter-feature corre-
lation, leading to the overlook of complex coupling information in
imputation. To achieve more accurate TDSI, we design a novel im-
putation model called TABiG, which delicately preserves the short-
term, long-term, and inter-feature dependencies by attention mech-
anisms in a delay error-reduced bi-directional architecture. That is,
it leverages GRU to model short-term temporal dependencies and
adopts self-attention mechanisms hierarchically to capture long-term
temporal dependencies and inter-feature correlations. The multiple
self-attention mechanisms are nested in a bi-directional structure to
alleviate the problem of delay errors in RNN-like structures. To fa-
cilitate model training with higher generalization, a masking strate-
gy that mimics various extreme real missing situations beyond the
simple random ones has been adopted for generating self-supervised
learning tasks. Comprehensive experiments demonstrate that TABiG
significantly outperforms most state-of-the-art imputation counter-
parts. Complementary results and source code can be accessed at
https://github.com/Zhang2112105189/TABiG

1 Introduction

An enormous amount of data is being generated at all times, mak-
ing time series data ubiquitous in domains such as healthcare [13],
climate monitoring, financial evaluation, and so on [34, 44]. In real-
world data collection environments due to faults or negligence dur-
ing the data collecting, time series data may contain both sample-
wise and feature-wise missing in the time intervals [27]. The missing
values make the data distribution incomplete and may mislead the
downstream data analysis tasks [10]. Therefore, it is of paramount
importance to develop more effective imputation methods for time
series data to recover the data usability and reliability.

There are two common ways of handling missing data: deletion
and imputation [8]. Deleting the whole sample of features with miss-
ing values is simple, but it is harmful to the availability of data espe-
cially for the heavy missing cases. Thus, the imputation that fills the
missing values based on the available observations becomes a better
solution. A common goal of imputation is to assign reasonable val-
ues to the missing positions, making the overall distribution of the
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completed data closer to the true distribution. Mainstream TSDI ap-
proaches utilize the non-missing parts of the data and leverages the
dependencies in time series and features to infer the missing part-
s, thereby greatly improving the data completeness and providing
a solid basis for downstream tasks. Existing TSDI attempts can be
roughly divided into statistical-based, traditional machine learning-
based, and deep learning-based methods.

Statistical methods, such as mean imputation, median imputation,
and last observation carried forward (LOCF), are relatively simple to
implement, but have not taken into account the temporal and cross-
feature dependencies. Traditional machine learning methods, includ-
ing K-Nearest Neighbors (KNN), matrix factorization, Multiple Im-
putation by Chained Equations (MICE), and Autoregressive Inte-
grated Moving Average (ARIMA), usually adopt fixed imputation
strategies and thus introduce strong missing distribution heuristics
to TSDI, which limit their generalization, particularly for complex
data with various missing distributions. Thanks to the powerful auto-
learning ability of deep models, deep imputation models have grad-
ually become the mainstream for TSDI [23]. The deep TSDI models
can be roughly categorized into three types: (1) recurrent neural net-
work (RNN)-based methods, (2) generative model-based methods,
and (3) Transformer-based methods.

RNN-based methods leverage RNN models to capture the tempo-
ral dependencies in time series data. The gated recurrent unit (GRU)
based method, GRU-D [4], was proposed to estimate missing values
using hidden state decay to capture past features in a smooth manner.
Although it achieved outstanding performance in healthcare data, it
still has several limitations when applied to other datasets. Subse-
quently, MRNN [33] was proposed, which uses bi-directional struc-
tures to represent distributions that cannot be captured by forward
time series. As a result, it can learn imputation in a more generalized
space by exposing the hidden states in both directions. BRITS [3]
is also designed based on bi-directional RNNs, estimating missing
values by treating them as variables and considering the correlation
between features. Although the above RNN-based models capture
temporal dependencies to a certain extent, they suffer from the com-
mon error propagation issue of RNNs [35, 36], which limits their
efficacy in acquiring long-term temporal dependencies.

Generative models [21, 29] have shown outstanding performance
in the image domain, and some efforts have been made to apply them
to the task of TSDI to generate more realistic imputed values [2]. A
two-stage GAN [16] imputation method was proposed by combining
GAN with a new RNN unit, namely GRUI, which learns the distri-
bution of time series data to optimize the generator’s input vector.
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Subsequently, an end-to-end E2GAN [17] method was proposed to
avoid the “noise” optimization stage in the previous method by us-
ing a compression and reconstruction strategy. For the case of par-
tially labeled time-series data, a semi-supervised generating model,
SSGAN [20], was proposed, which uses a semi-supervised classi-
fier to iteratively classify unlabeled time-series data and drives the
generator to estimate missing values based on observed features and
data labels. However, generating models are generally difficult to
train, and models based on GANs may suffer from convergence is-
sues and mode collapse. VAE has also been widely applied in TSDI.
GP-VAE [9] utilizes a Gaussian prior for time series imputation, and
similar works e.g., SGP-VAE [1], and TimeVAE [6] has also been
presented in the literature. But the imputation ability of VAEs is lim-
ited by the prior distribution, which may not be able to accurately
capture the feature distribution of the original data and thus limits
the imputation accuracy.

Transformer-based methods [15, 30] mainly focus on the use
and improvement of self-attention mechanisms [22, 28]. [32] pro-
posed an unsupervised autoencoder model named MTSIT based
on Transformer, which jointly reconstructs and computes multivari-
ate time series using unlabeled data. Regarding spatiotemporal da-
ta [19], Cross-Dimensional Self-Attention (CDSA) [18] was pro-
posed, which is an effective imputation method that not only cap-
tures temporal dependencies but also leverages the geographic rela-
tionships among sensors to fill in missing values in time series data.
To address the problem of irregularly sampled time series, a novel
approach called NRTSI [24] was proposed. Furthermore, SAITS [7]
utilizes two diagonal-masked multi-head attention modules for joint
reconstruction and imputation. Although Transformer-based struc-
tures typically employ self-attention mechanisms to capture long-
term dependencies in time series, they do not consider the temporal
dependencies between adjacent elements in the sequence during the
modeling process, which may limit the utilization of local structural
information in the sequence [26].

Apart from the aforementioned three categories of imputation
methods, self-supervised tasks are widely considered to be effective
in improving the performance of deep imputation models. In most
related works, artificial missing data is generated on time series to
present the model with different missing rates during the training
process, in order to enhance the generalization of models. However,
most existing works only randomly generate scattered missing val-
ues, which result in a very uniform missing distribution. Such miss-
ing is for reflecting the true complex missing patterns of real data
and thus has limited effect in self-supervised model training. There-
fore, how to design self-supervised missing tasks that approximate
various complex real-world missing patterns is a promising way to
further enhance TSDI.

In this paper, we design a new imputation model based on bi-
directional GRU (bi-GRU) architecture with multiple Multi-Head
self-Attention (MHA) mechanisms, to adequately leverage temporal
dependencies and capture the correlation between features. Specifi-
cally, to appropriately learn the distribution of time series data, we
employ triple MHA (tri-MHA or tri-attention), where the first one
acts to obtain the global information and perform preliminary im-
putation, which helps alleviate the problem of GRU gradient dis-
appearance. This allows GRU to further acquire local relevant in-
formation and short-term temporal dependencies based on the pre-
liminary imputation containing global basic information. Then, the
second MHA is utilized to further capture long-term temporal de-
pendencies and global inter-feature correlations. By simultaneously
conducting the aforementioned operations to both forward and back-

ward input data, the corresponding two directional representations
are thus obtained. Subsequently, the third MHA is utilized to inte-
grate these representations, facilitating a comprehensive information
fusion. A self-supervised training strategy that generates missing in
different degrees is also adopted to enhance the robustness and gen-
eralization of the proposed model. To train the model in a broader
missing space, we also design a realistic masking strategy to simul-
taneously create conventional scattered and temporal block missing.
Main contributions can be summarized into four-fold:

1. Bi-GRU architecture embedded with multiple MHAs is designed
for TSDI. Such a structure considers long-term, short-term, and
feature-wise dependencies, and also fuses the bi-directional da-
ta information in an attention-based proper way. It turns out that
the model can better represent the temporal-wise and feature-wise
coupling for more powerful TSDI.

2. Tri-MHA mechanism is employed to more thoroughly capture
the potential complex dependencies in time series data. The three
MHAs serve to enhance the performance of GRU, capture long-
term temporal dependencies and inter-feature correlations, and
comprehensively integrate the data based on the representations
of bi-directional fusion, respectively. It is intuitive that such a tri-
MHA design preserves more inference information for training.

3. A self-supervised training strategy with a realistic masking strat-
egy is adopted to guide the training of the proposed imputation
model. Compared with existing random scattered missing strate-
gies, we generate missing by masking data values in a temporal
block manner. It turns out that the model learns in a more thor-
ough missing space and thus obtains a better generalization.

4. In comparison with several state-of-the-art imputation methods,
the proposed Tri-Attention Bi-GRU (TABiG) model achieves sig-
nificantly better imputation performance under various missing
situations. Moreover, TABiG does not bring much extra compu-
tation cost during imputation, which makes it promising in sup-
porting real applications.

2 Preliminaries

In this section, we describe some necessary preparations for
TSDI. We consider a multivariate time series sample X =
{x1, x2, . . . , xt, . . . , xT } ∈ RT×D with T time steps and D fea-
ture dimensions, where xt = {x1

t , x
2
t , . . . , x

d
t , . . . , x

D
t } ∈ R1×D

represents the features of the d-th dimension of the t-th step in X .
Since each value in X may be missing, a mask vector

M = {m1,m2, . . . ,mt, . . . ,mT } ∈ RT×D is introduced
to represent the positions of missing values in X , mt =
{m1

t ,m
2
t , . . . ,m

d
t , . . . ,m

D
t } ∈ R1×D , where

md
t =

{
0 if xd

t is observed,
1 if xd

t is missing.

In many time series datasets, some values may be missing
for multiple consecutive time steps. To address this, for each
sample X , we introduce a missing time interval matrix δ =
{δ1, . . . , δt, . . . , δT } ∈ RT×D , which represents the time interval
between the current time step and the last observed time step. Where
δt = {δ1t , . . . , δdt , . . . , δDt } ∈ R1×D , and it is calculated as follows:

δdt =

⎧⎪⎨⎪⎩
st − st−1 + δdt−1 if t > 1 and md

t−1 = 0,

st − st−1 if t > 1 and md
t−1 = 1,

0 if t = 1.
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Figure 1: Forward pass of TABiG. The left frame showcases the
long short-term dependency learning module. The right frame cor-
responds to the bi-directional information fusion module.

For the complete dataset, we apply a realistic masking strategy to
create various missing percentages. We first create temporal miss-
ing by randomly selecting 10 consecutive time steps to be missing,
followed by randomly masking scattered values, with each type of
missing accounting for half of the missing values.

The objective of this study is to find a more accurate X ′ for each
missing value X in an unsupervised setting. Our proposed model
structure is illustrated in Figure 1. After attaching positional encod-
ing to the input data in the long short-term dependency learning mod-
ule, we perform the first MHA for initial imputation. Subsequently,
the GRU is applied to capture short-term time dependencies, fol-
lowed by the second MHA to further capture long-term time de-
pendencies. The forward representations, containing both short and
long-term dependencies, are obtained through a weighted combina-
tion. The process for obtaining the backward representations follows
a similar procedure. Moving on to the bi-directional information fu-
sion module, we combine the representations from both directions
through weighted aggregation and utilize the third MHA for inte-
gration. Finally, another weighted combination is performed, and the
missing values are replaced, resulting in reliable outcomes.

3 Methodology

Details of the proposed TABiG are described in four parts: (1) Bi-
directional framework; (2) Long short-term dependency learning; (3)
Bi-directional information fusion; and (4) Optimization algorithm.

3.1 Bi-directional Framework

We begin by considering a single-directional recurrent process that
estimates the variables in a time series by traversing each time step.
The value at the current time step is derived from the previous time
step using a function, and this process is repeated for all variables. If
an observation is available at the current time step, we compute the

error between the estimated and observed values to verify the impu-
tation performance. To avoid error propagation, the true observation
at the current time step is passed down as input for estimating the
value at the next time step. However, if the observation value is miss-
ing at the current time step, we can only pass the estimated value as
the input to estimate the value at the next time step. The accumulated
error between the observation value and the estimated value, called
delay error, can only be obtained when the next time step with an
observation value arrives.

As an example, assume a variable’s time series has a length of 8,
denoted as V = {v1, v2, vm3 , vm4 , vm5 , vm6 , v7, v8}, where “m” in-
dicates a missing observation value. In a single-directional recurrent
process, we estimate the value vt at the current time step t using the
value passed from the previous time step t− 1. We can immediately
calculate the error between the observation value and the estimated
value at t = 1 and t = 2. However, when there are consecutive miss-
ing observation values at t = 3, 4, 5, 6, we cannot obtain the error
between the observation value and the estimated value. Only when
an observation value appears again at t = 7 can we obtain the error,
which includes the errors at t = 3, 4, 5, 6 and the current error at
t = 7. This error is the delay error of vt=3,4,5,6.

The delay error caused by missing values in the recurrent process
is unavoidable and can lead to the accumulation and propagation of
previous errors. This can result in bias amplification, known as the
bias explosion problem. Furthermore, the delay error may also be a
reason for the slow convergence of RNN-based models. To alleviate
such issues, we adopt a bi-directional architecture, where the values
at the current time step in the time series can be derived not only
from the function of the previous value but also from the function of
the next value in the backward direction. That is, while the forward
errors at t = 3, 4, 5, 6 can only be obtained at t = 7, the backward
errors can be obtained at t = 2. The delay of forward errors is too
long at t = 3, requiring four steps to obtain, while the backward
errors have a much shorter delay, requiring only one step. Therefore,
the bi-directional architecture can effectively mitigate the problems
caused by error propagation and fully leverage temporal information
from both forward and backward directions to capture the temporal
dependencies of the features.

3.2 Long Short-Term Dependency Learning Module

This module aims to enhance the model’s ability to capture temporal
dependencies and inter-feature correlations while robustly estimating
missing values. The module adopts a double MHA with GRU impu-
tation applied between the two layers of MHA for time series data.
The first MHA obtains initial global features and temporal depen-
dencies to alleviate the issue of GRU gradient vanishing and yield in-
formative feature representations. To comprehensively integrate the
missing information, the feature vectors X , missing position matrix
M , and missing time interval matrix δ are concatenated as input,
which is projected into an H-dimensional space through a linear ful-
ly connected layer with positional encoding Epos as

Xa1 = (Wa1[X ◦M ◦ δ] + ba1) + Epos (1)

where Wa1 ∈ RD×H and ba1 ∈ RT×H . With the incorporation of
positional encoding, MHA can consider the positional relationships
among elements when processing time series data, thus better cap-
turing the sequence structure and contextual information, thereby en-
hancing the model’s expressive capacity and generalization. Xa1 de-
notes the input sequence for the first MHA. Xa1 is mapped to query
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Q, key K, and value V with dimensions dk, dk, and dv , respectively:

Q = WQXa1, K = WKXa1, V = WV Xa1, (2)

where the corresponding parameters are WQ ∈ RH×dk , WK ∈
RH×dk , and WV ∈ RH×dv .

In Eq. (3), we adopt a scaled dot-product to calculate attention s-
cores, which helps control the distribution range and enhances the
model’s stability, thereby promoting convergence during training.
Attention scores for all heads are concatenated in Eq. (4) and project-
ed to an H-dimensional space. By concatenating the attention scores
from multiple heads, the model acquires a more diverse and enriched
feature representation. Mapping the attention scores from multiple
heads into an H-dimensional space allows the model to engage in
feature composition and interaction within a higher-dimensional fea-
ture space. This facilitates the model’s ability to capture interrelation-
s and dependencies among input sequences, thereby improving its
expressive power and learning performance. The FeedForward layer
further processes and transforms the weighted feature vectors in E-
q. (3.2). Leveraging non-linear transformations and increased depth,
the feed-forward layer enhances the model’s representational capac-
ity and generalization, empowering it to effectively handle complex
data structures and feature relationships.

Ai
Q,K,V = softmax(

Qi(Ki)�√
dk

)V = Ai
1V (3)

MHA1(Xa1) = [A1
Q,K,V ◦ . . . ◦Ai

Q,K,V ◦ . . . ◦Al
Q,K,V ]WO (4)

FeedForward(MHA1(Xa1)) = W2 ReLU(W1 MHA1(Xa1)+b1)+b2
(5)

where WO ∈ Rldv×H ,W1 ∈ RH×dinner , W2 ∈ Rdinner×H , b1 ∈
RT×dinner , and b2 ∈ RT×H are the corresponding parameters.

The entire MHA can be represented using Eq. (6), where N de-
notes the number of stacked layers. Eq. (7) reduces the dimensional-
ity of the MHA representations, maps them back to the original fea-
ture dimension, and strengthens the output representation using the
ReLU activation function and fully connected layer. Eq. (8) replaces
the missing values in X at the missing positions with X1.

X1SA = {FeedForward(MHA1(Xa1))}N (6)

X1 = Wβ1 ReLU(Wα1X1SA + bα1) + bβ1 (7)

Xreplace = M �X + (1−M)�X1 (8)

where Wα1 ∈ RH×D , Wβ1 ∈ RD×D , bα1 ∈ RT×D , bβ1 ∈ RT×D

are the corresponding parameters.
After the first MHA, we generate an initial imputation X that cap-

tures long-term temporal dependencies and inter-feature correlations.
Then, we use GRU for further imputation. Firstly, we iterate through
the time steps of Xreplace, missing position matrix M , and missing
time interval matrix δ to obtain xreplace

t , mt and δt. In GRU, the hid-
den state is continually updated and passed to the next time step, but
its ability to capture long-term dependencies is limited as the infor-
mation contained in the hidden state will gradually be diluted and
forgotten. To address this issue and improve the model’s robustness
and generalization ability, we introduce a time decay factor based
on the missing time interval in Eq. (9) and dynamically adjust the
hidden state decay in Eq. (10) to better retain information from hid-
den states with smaller missing time intervals and decay information
from hidden states with larger missing time intervals more quickly.

ηt = exp{−max(0,Wηδt + bη)} (9)

ht−1 = ht−1 � ηt (10)

where Wη ∈ RD×H and bη ∈ R1×H are corresponding parameters.
Eq. (11) maps the decayed hidden state back to the original fea-

ture dimension. In Eq. (12), we use a parameter matrix with diagonal
zeros to estimate each feature based on the other features.

xhistory
t = Whistoryht−1 + bhistory (11)

xfeature
t = Wfeaturex

replace
t + bfeature (12)

where Whistory ∈ RH×D , bhistory ∈ R1×D ,Wfeature ∈ RD×D ,
and bfeature ∈ R1×D are the corresponding parameters.

Eq. (13) calculates the average weight of the weights from the first
MHA. In Eq. (14), we learn a weight based on the time decay factor,
missing position matrix, and the average weight of the MHA, and
adaptively combine the feature-based estimation and the hidden state
estimation in Eq. (15) to obtain the imputation result for the current
time step of GRU. To prevent error propagation, we only replace the
missing values with the imputation result at the missing positions to
obtain creplace in Eq. (16), which is used as the input of the GRU.

Â1 =
1

k

k∑
i=1

Ai
1 (13)

λhf = sigmoid(Whf [ηt ◦mt ◦ Â1] + bhf) (14)

ct = λhf � xfeature
t + (1− λhf)� xhistory

t (15)

creplace = mt � xt + (1−mt)� ct (16)

where Whf ∈ R(2D+T )×D and bhf ∈ R1×D are the corresponding
parameters. Wfeature is a parameter matrix with diagonal zeros.

Within the GRU, we first compute the update gate, as shown in
Eq. (17), to regulate the contribution of the previous hidden state
ht−1 to the current hidden state. The reset gate, as calculated in Eq.
(18), is then used to control the contribution of the past hidden state
ht−1 to the candidate hidden state, taking into account the current
input creplace. Based on the reset gate, current input creplace, and
past hidden state ht−1, we obtain the candidate hidden state using
Eq. (19). Finally, in Eq. (20), we calculate the hidden state ht, which
will be passed to the next time step, by combining the update gate
and candidate hidden state.

zt = σ(Wzcreplace + Uzht−1 + bz) (17)

rt = σ(Wrcreplace + Urht−1 + br) (18)

h̃t = tanh(Whcreplace + Uh(rt � ht−1) + bh) (19)

ht = zt � ht−1 + (1− zt)� h̃t (20)

where Wz ∈ RD×H , Uz ∈ RH×H , bz ∈ R1×H , Wr ∈ RD×H ,
Ur ∈ RH×H , br ∈ R1×H , Wh ∈ RD×H , Uh ∈ RH×H , and
bh ∈ R1×H are the corresponding parameters.

We concatenate the outputs ct (t ∈ {1, 2, . . . , T}) of each time
step of the GRU in Eq. (21) and use a FeedForward layer to enhance
the expression ability. In Eq. (22), we replace the missing values with
Xgru to obtain Rgru, which serves as the input for the second MHA.
After obtaining short-term dependencies via GRU, we leverage the
second MHA to further capture long-term temporal dependencies
and correlations between features based on the short-term dependen-
cies. Eq. (23) to (25) describe the process of the second MHA, which
is similar to the first one and requires no further elaboration.

Xgru = FeedForward([c1 ◦ c2 ◦ . . . ◦ ct ◦ . . . ◦ cT ]) (21)
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Rgru = M �X + (1−M)�Xgru (22)

Xa2 = (Wa2[Rgru ◦M ◦D] + ba2) + Epos (23)

X2SA = {FeedForward(MHA2(Xa2))}N (24)

X2 = Wβ2 ReLU(Wα2X2SA + bα2) + bβ2 (25)

where Wa2 ∈ RD×H , ba2 ∈ RT×H , Wα2 ∈ RH×D , Wβ2 ∈
RD×D , bα2 ∈ RT×D , and bβ2 ∈ RT×D .

Eq. (26) calculates the average weight of the second MHA, and in
Eq. (27), we concatenate it with the missing position information and
learn a combination weight λls. To effectively leverage the strengths
of both GRU and MHA, and alleviate the issue of information loss
to enhance model robustness and imputation performance, we use a
combination weight λls in Eq. (28) to weight and combine the two
representations, obtaining the final forward representation Xforward.

Â2 =
1

k

k∑
i=1

Ai
2 (26)

λls = sigmoid(Wls[mt ◦ Â2] + bls) (27)

Xforward = λls � Cx + (1− λls)�X2 (28)

where Wls ∈ R(D+T )×D and bls ∈ RT×D are the corresponding
parameters. The forward representation is obtained for forward in-
put, while the backward representation is obtained through the same
process for backward input. The single-directional representation not
only captures long- and short-term temporal dependencies in the re-
spective direction but also the inter-feature correlations.

3.3 Bi-directional Information Fusion Module

In the previous module, we obtained the representation that captures
the long-term and short-term dependencies and feature correlations
in a single direction. However, many works that utilize bi-directional
structures simply add and average the bi-directional representations,
which can result in information loss and bias, ultimately affecting the
imputation performance. To avoid these issues and more effectively
combine the bi-directional information to obtain a more accurate and
reliable imputation result, we use adaptive and learnable weights.

From the bi-directional imputation processes, we obtain the
forward representations Xforward, the backward representations
Xbackward, and the average weights of the second MHA. The MHA
weights obtained by the long short-term dependency learning mod-
ule contain rich comprehensive information, reflecting the dependen-
cy relationships and feature correlations between different time steps
and the relative importance between them, providing contextual in-
formation in the sequence. Therefore, we learn the weights based on
the bi-directional attention weights and missing information in Eq.
(29) and use the learned weights to combine the bi-directional repre-
sentations in Eq. (30). In Eq. (31), we replace the missing values with
Xbidirection to obtain Rbidirection as the input for the third MHA.

λfb = sigmoid(Wfb[mt ◦ Âforward ◦ Âbackward] + bfb) (29)

Xbidirection = λfb �Xforward + (1− λfb)�Xbackward (30)

Rbidirection = M �X + (1−M)�Xbidirection (31)

where Wfb ∈ R(D+2T )×D and bfb ∈ RT×D .
The bi-directional combination representations encompass a more

comprehensive representation of the sequential information, incor-
porating both past historical context and future predictive context.

To effectively capture the sequential structure and contextual infor-
mation, and enhance the model’s representational capacity and im-
putation performance, we employ the third MHA to integrate these
information sources. This integration step enables the model to bet-
ter exploit the temporal dependencies and inter-feature dependencies
within the sequence, thereby enhancing its expressive power and im-
putation effectiveness. Eq. (32)-(34) describes the process of the third
MHA, which is similar to the previous two.

Xa3 = (Wa3[Rbidirection ◦M ] + ba3) + Epos (32)

X3SA = {FeedForward(MHA3(Xa3))}N (33)

X3 = Wβ3 ReLu(Wα3X3SA + bα3) + bβ3 (34)

where Wa3 ∈ RD×H , ba3 ∈ RT×H , Wα3 ∈ RH×D , Wβ3 ∈
RD×D , bα3 ∈ RT×D , and bβ3 ∈ RT×D .

To mitigate the loss of useful information when integrating in-
formation using MHA, we combine it with the representation of bi-
directional fusion using weighted averaging as follows

Â3 =
1

k

k∑
i=1

Ai
3 (35)

λcombine = sigmoid(Wcombine[mt ◦ Â3] + bcombine) (36)

Xfinal = λcombine �X3 + (1− λcombine)�Xbidirection (37)

Xout = M �X + (1−M)�Xfinal (38)

where Wcombine ∈ R(D+T )×D and bcombine ∈ RT×D are the cor-
responding parameters. Eq. (35) calculates the average weight of
the MHA for the third layer, and Eq. (36) concatenates the aver-
age weight with the missing position matrix to learn a combination
weight λcombine. Then, Eq. (37) combines the representations of the
third layer of multi-head self-attention with the bi-directional fusion
representation based on the learned weight. Finally, Eq. (38) replaces
the missing values to obtain the final imputation result.

3.4 Optimization Algorithm

We adopt Mean Absolute Error (MAE) to form our loss function
as MAE is robust in handling outliers and noise. Specifically, MAE
does not square the differences, thus preventing the enlargement of
the impact of extreme values. Moreover, MAE directly measures the
average absolute deviation between the predicted and true values, en-
hancing interpretability and providing a more intuitive assessment of
the model’s performance when evaluating its effectiveness. We use
lMAE(Xi, X,M) to represent the mean absolute error between the
input sequence Xi and the ground truth sequence X on the masked
set M , and the loss function consists of three components: the self-
supervised masked imputation loss, the reconstruction loss, and the
bi-directional consistency loss. The self-supervised masked imputa-
tion loss in Eq. (39) drives the model to better understand the inter-
feature relationships and temporal dependencies of features. As a re-
sult, the loss encourages the model to learn the time series’ under-
lying structure, thus leading to more robust representations, stabi-
lizing the training process, and improving imputation performance.
Mindicating is the matrix that identifies the artificial missing position.
The bi-directional consistency loss in Eq. (40) penalizes inconsisten-
cies or discrepancies in two directions to make the model generate
coherent and consistent estimations throughout the entire time se-
ries, which contributes to preserving the temporal dependencies and
enhancing the imputation accuracy.

Lmask = lMAE(Xfinal, X,Mindicating) (39)
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Lbidirection = lMAE(Xforward, Xbackward) (40)

To expedite the model convergence, we calculate the reconstruc-
tion loss for multiple modules and aggregate the reconstruction loss
by computing their average. The reconstruction loss comprises four
components: the forward reconstruction loss, backward reconstruc-
tion loss, bi-directional combination reconstruction loss, and final re-
sult reconstruction loss. Eq. (41) represents the forward reconstruc-
tion loss, which includes the loss of the first layer of multi-head self-
attention, the GRU process loss in Eq. (42), and the loss of the second
layer of multi-head self-attention.

Lforward =
1

3
(lMAE(X1, X,M) + LGRU + lMAE(X2, X,M))

(41)

LGRU =
1

3T

T∑
t=1

(lMAE(x
history
t , xt,mt)+

lMAE(x
feature
t , xt,mt) + lMAE(ct, xt,mt))

(42)

The backward reconstruction loss is similar to the forward recon-
struction loss. The total reconstruction loss in Eq. (43) combines
the reconstruction losses corresponding to different modules, which
allows benefiting from compensation knowledge provided by each
module. It turns out that the effects of outliers and extreme errors
introduced by individual modules can be weakened to improve the
robustness of imputation. The overall loss is shown in Eq. (44).

Lreconstruction =
1

4
(Lforward + Lbackward+

lMAE(XbidirectionX,M) + lMAE(Xfinal, X,M))
(43)

LTotally = Lmask + Lbidirection + Lreconstruction (44)

4 Experiments

We conduct experiments using three evaluation metrics on four
benchmark datasets to compare the proposed TABiG against eight
counterparts. Specifically, we performed four experiments: (1) Im-
putation performance comparison, which compares our TABiG with
state-of-the-art methods on four datasets to verify the effectiveness;
(2) Ablation experiments to analyze the effectiveness of the pro-
posed modules in the TABiG architecture; (3) Efficiency evaluation
by comparing the execution time of TABiG and other state-of-the-art
methods; (4) Performance under different missing rates (the corre-
sponding results are included in the supplementary material due to
space limitation). We first introduce datasets, counterparts, and ex-
perimental settings, and then demonstrate the experimental results
with observations.

4.1 Datasets

General information of the datasets is shown in Table 1. To evalu-
ate the imputation performance, we randomly mask 10% of the data
values for both the test and validation sets across all datasets, to for-
m the ground truth. Then we describe the usage of different datasets
according to their source papers below.

• PhysioNet 2012 [11] comprises records from 12,000 ICU patients
admitted and monitored for 48 hours following admission, mea-
suring 35 time-series variables, such as Respiration rate and Heart
rate. Due to the irregularity of the sampling schedule, the dataset
is highly sparse, with 80% missing values. We adopt a five-fold

Properties PhysioNet 2012 BeiJing PM2.5 Air Quality Localization

No. samples 11987 242 1461 4110
No. features 38 36 132 4

Sequence length 48 36 24 40
Missing rate 80% 13.2% 1.6% 0%

Table 1: General information of the four datasets.

Hyper-parameters PhysioNet 2012 BeiJing PM2.5 Air Quality Localization

Batch Size 128 32 128 128
Hidden Layer Size 256 128 512 256

No. Attention Group 5 2 1 2
No. Attention head 8 4 4 4

Table 2: Experimental settings about hyper-parameters.

cross-validation approach and report average performance, by ran-
domly selecting 80% of the samples as training set and 20% as test
set, and further partitioning 20% of the training set as a validation
set for every single implementation.

• BeiJing PM2.5 [31,43] includes hourly PM2.5 concentration mea-
surements from 36 monitoring stations in Beijing. It covers a 12-
month period from May 1, 2014, to April 30, 2015, with 36 fea-
tures and 13.2% missing values. For testing, we use the 3rd, 6th,
9th, and 12th months, while the 4th and 7th months are used as
validation sets, and the remaining data as training sets. Each time
series sample is a continuous sequence of 36-time steps. We repeat
experiments 5 times and report the average performance.

• Air Quality [37] consists of hourly air pollutant data collected
from 12 monitor stations in Beijing over 48 months from March
1, 2013, to February 28, 2017. Each station measures 11 time-
varying variables e.g., PM10 and SO2. By concatenating the time
series variables measured by the 12 stations, the dataset contains
132 features with a missing rate 1.6%. The first 10, middle 10,
and rest months of the data are used as test set, validation set, and
training set, respectively. We selected a continuous 24-time step
as a time series sample. We repeat the experiments five times and
report the average performance.

• Localization [14] contains activity records of five persons per-
forming walking, falling, sitting, etc. (11 activities in total). Each
person wears several sensors, with each sensor recording a 3-
dimensional coordinate every 20 to 40 milliseconds. We encode
the sensors and their 3-dimensional coordinates as features, result-
ing in four features. As this dataset is complete, we mask the data
at different percentages (10%, 30%, 50%, 70%, 90%) by realis-
tic masking to generate value missing. We select 40 consecutive
time steps as a time series sample, and adopt the same five-fold
cross-validation setting as that of PhysioNet 2012.

4.2 Counterparts

We compared a total of nine methods, including three conventional
methods, five advanced deep learning methods, and one proposed
method. To ensure a fair comparison, we maintained the hyper-
parameters recommended in the source papers if they use the same
dataset as ours; otherwise, we keep them consistent with the hyper-
parameters of our model.

The eight compared methods are briefly introduced below: (1)
Mean imputation: replacing missing values with the mean of the
corresponding samples; (2) Median imputation: replacing missing
values with the median of the corresponding samples; (3) KN-
N imputation: for each data sample, we find its k nearest neigh-
bors using Euclidean distance and estimate missing values using the
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Methods PhysioNet 2012 BeiJing PM2.5 Air Quality Localization Ave. Rank

Mean 0.4624±0.003 0.5217±0.003 0.3654±0.001 0.5990±0.007 8.25
Median 0.4493±0.003 0.5108±0.004 0.3585±0.001 0.5777±0.007 7.25

KNN 0.5142±0.002 0.4756±0.002 0.3259±0.002 0.5408±0.008 7.00
MRNN 0.5551±0.007 0.3295±0.005 0.2914±0.002 0.8104±0.007 7.50
BRITS 0.2654±0.028 0.1813±0.003 0.1443±0.001 0.3769±0.006 3.50

Transformer 0.2079±0.002 0.2100±0.005 0.1567±0.001 0.1790±0.007 3.25
MTSIT 0.3814±0.005 0.2476±0.006 0.2119±0.002 0.2608±0.004 4.75
SAITS 0.2061±0.002 0.1928±0.003 0.1409±0.003 0.1814±0.009 2.50

TABiG (ours) 0.2021±0.002 0.1783±0.003 0.1227±0.001 0.1628±0.008 1.00

Table 3: Comparison of imputation performance on MAE. The best-performing method is highlighted in bold.

Methods PhysioNet 2012 BeiJing PM2.5 Air Quality Localization Ave. Rank

Mean 0.6501±0.002 0.5822±0.005 0.5159±0.002 0.7243±0.008 8.25
Median 0.6317±0.002 0.5701±0.007 0.5061±0.002 0.6986±0.008 7.25

KNN 0.7229±0.003 0.5307±0.002 0.4601±0.003 0.6539±0.007 7.00
MRNN 0.7804±0.006 0.3678±0.005 0.4114±0.003 0.9800±0.003 7.50
BRITS 0.3730±0.037 0.2023±0.003 0.2038±0.001 0.4558±0.004 3.50

Transformer 0.2923±0.003 0.2344±0.005 0.2213±0.002 0.2164±0.008 3.25
MTSIT 0.5363±0.009 0.2764±0.007 0.2992±0.003 0.3154±0.003 4.75
SAITS 0.2898±0.002 0.2152±0.003 0.1989±0.004 0.2193±0.010 2.50

TABiG (ours) 0.2842±0.003 0.1990±0.003 0.1733±0.002 0.1968±0.009 1.00

Table 4: Comparison of imputation performance on MRE. The best-performing method is highlighted in bold.

1 2 3 4 5 6 7 8 9

TABiG (ours) SAITS

Transformer

KNN

Median

MRNN

MTSIT

BRITS

Mean

Figure 2: Significance evaluation using Bonferroni-Dunn test at confidence interval 95% (i.e. α = 0.05). The pink region stands for the right
side of the critical difference interval. It is worth noting that counterparts ranked outside the pink region are considered to have significantly
different performance in comparison with the proposed TABiG.

weighted average of its neighbors; (4) MRNN [33]: using a multi-
directional recurrent neural network to insert missing values and es-
timate them across the data stream; (5) BRITS [3]: this method uses
a bi-directional LSTM with history regression and feature regression
to estimate missing values; (6) Transformer: using the Transformer’s
encoder for missing value estimation; (7) MTSIT [32]: using learn-
able position encoding and the Transformer’s encoder for missing
value estimation; (8) SAITS [7]: using two diagonal-masked multi-
head attention modules for joint reconstruction.

4.3 Experimental Setup

In the proposed model, we set the learning rate to 0.001 and hyper-
parameters w.r.t. datasets are shown in Table 2. Early stopping is ap-
plied to all models, and training is stopped if the mean absolute error
(MAE) does not decrease for 30 epochs. We train our model using
the Adam optimizer on an Nvidia GeForce RTX 3090 GPU, and the
implementation is based on PyTorch.

For the experimental results, we conduct five-fold cross-validation
on PhysioNet 2012 and Localization, and five repetitions on Bei-
Jing PM2.5 and Air Quality. We report the average results on the
five runs w.r.t. each dataset. We use three metrics, i.e., MAE, MRE,
and RMSE, to evaluate the imputation performance. Results w.r.t.
RMSE is reported as complementary experimental results, which can
be found through the link provided at the end of the Abstract.

4.4 Imputation Performance

Table 3 and Table 4 show the imputation performance of all com-
pared methods on four real datasets w.r.t. MAE and MRE.

The experimental results demonstrate that traditional imputation
methods, including mean imputation, median imputation, and KN-
N imputation, perform relatively worse, indicating that they are in-
competent in handling the imputation of complex time-series data.
For datasets such as Beijing PM2.5 and Air Quality with low miss-
ing rates and gradual temporal distribution changing, RNN-based
methods like MRNN and BRITS exhibit satisfactory performance by
leveraging the intrinsic advantages of RNN. However, their perfor-
mance significantly deteriorates on datasets with high missing rates
like PhysioNet 2012, and datasets with sudden distribution changes
like Localization, a dataset recording human activities. Since BRIT-
S more comprehensively considers feature correlations, it performs
well among the RNN-based approaches.

Benefiting from the global information exploitation capability pro-
vided by the self-attention mechanism, Transformer, MTSIT, and
SAITS demonstrate advantages in handling the more challenging
PhysioNet 2012 and Localization datasets. The proposed TABiG,
a fusion of self-attention and GRU, demonstrates superior imputa-
tion performance on all the datasets. We conducted a significance
evaluation on all the compared methods by adopting the Bonferroni-
Dunn test with critical interval as described in [5]. The corresponding
results are demonstrated in Figure 2, which illustrates that the pro-
posed TABiG significantly outperforms all the counterparts (exclud-
ing SAITS). In the next subsection, we further conduct an ablation
study to illustrate the effectiveness of different modules of TABiG.
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Figure 3: Comparison of TABiG with its different versions, i.e.,
TABiG with a single direction, without GRU, without the first MHA,
and without the former two MHAs.

Methods Test Time (s) Sample Time (ms)

MRNN 1.711 0.714
BRITS 4.571 1.906

Transformer 1.024 0.427
MTSIT 2.482 1.035
SAITS 1.219 0.508

TABiG (ours) 3.742 1.561

Table 5: Comparison of execution time. Test Time refers to the over-
all execution time taken to perform imputation on the dataset, and
Sample Time represents the average processing time per sample.

4.5 Ablation Experiment

We conducted ablation experiments by removing different compo-
nents of TABiG to form different ablated versions, and the compara-
tive results on these versions are shown in Figure 3. Specifically, we
removed the bi-directional structure, GRU layer, the first MHA, and
the former two MHAs. For the convenience of observation, the per-
formance of all the compared ablated versions on the four datasets
in terms of three validity indices is averaged and reported. It can be
observed that the performance of the complete version of our method
TABiG outperforms all the ablated versions, which illustrates the
effectiveness of combining all the proposed modules. Performance
of TABiG with a single direction and TABiG without GRU getting
worse, illustrating the reasonableness of adopting the bi-GRU struc-
ture. Moreover, TABiG without the first MHA performs better than
TABiG without the former two MHAs, which verifies the soundness
of our arrangement of the MHAs.

4.6 Model Execution Time

To evaluate the efficiency of the proposed TABiG, the execution time
of all the compared state-of-the-art methods are compared on Phy-
sioNet 2012 with 2398 time-series samples. The overall execution
time and the average time per example are reported in Table 5. As our
method involves a more elaborately designed architecture, it exhibits
a relatively higher computation cost compared to the methods solely
based on self-attention. Nonetheless, it demonstrates better efficiency
compared to BRITS, which relies on a bi-directional RNN architec-
ture. In general, TABiG does not bring much extra computation cost
in comparison to the existing state-of-the-art methods, which illus-
trates its potential in real time-series imputation applications.

5 Concluding Remarks

A new imputation model TABiG that leverages tri-MHA and bi-
GRU to impute missing values in multivariate time series data has
been proposed. TABiG integrates information from multiple perspec-
tives to consider long-term and short-term time dependencies in both
forward and backward temporal directions, and also the correlation
between features. The joint optimization across multiple modules
improves the reliability of imputed values, and we also present a
self-supervised learning strategy, which introduces generated real-
istic missing at different degrees to enhance the robustness and gen-
eralization of TABiG. Experimental results show its superiority over
the state-of-the-art imputation methods.

This work mainly focuses on the imputation of numerical time-
series data, which can subsequently support many significant unsu-
pervised tasks, including clustering [39], ranking [45], etc. From the
perspective of data science, more complex factors including hetero-
geneous features [42] [40], concept drifts [12], distribution imbal-
ance [25], graph relationship [41] [38], etc., can be jointly considered
with the data missing issue in our future work. Moreover, improving
the efficiency and studying the parameter settings of TABiG would
also be promising for improving its scalability in real applications.
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