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Abstract. Chinese spelling correction (CSC) is a crucial task in
natural language processing, aiming to detect and correct spelling er-
rors in Chinese text. The improved performance of Chinese spelling
errors correction algorithms can enhance the efficiency and accuracy
of upstream and downstream Chinese natural language processing
tasks, such as OCR, ASR, and translation.However, current meth-
ods based on neural networks are mostly limited to either using only
contextual information to correct misspelled words or failing to fully
utilize glyph and pinyin information. Therefore, we propose a mul-
timodal approach to address the above issues. Specifically, a three-
tower multimodal structure is used to extract glyph, pinyin, and se-
mantic information, and a decoder composing of an error probability
prediction network and a transformer network is employed to achieve
cross-modal information interaction. Besides, an additional training
task is used to achieve cross-modal information alignment. Experi-
ments demonstrate that proposed network outperform most existing
motheds.

1 Introduction

In recent years, with the rapid development of information technol-
ogy, various natural language applications, such as machine trans-
lation [26], optical character recognition (OCR) [1], and automatic
speech recognition (ASR) [9] are becoming widespread. However,
due to many reasons, like low quality of training corpus and poor
performance of the neural networks, the resulted outcome of such
applications might generate spelling errors, which will further affect
downstream applications. Therefore, it is necessary to do text correc-
tion to effectively improve the performance and efficiency of various
Chinese natural language processing tasks. For example, the query
string directly affects the results of search search engines [11], but
due to reasons like typo errors as well as lack of necessary back-
ground knowledge, the query strings input by users are prone to be
with errors. With corrected query string, better search results and user
experience could be achieved. On the other hand, it is widely ac-
knowledged that high quality training corpus plays a vital role in the
training of neural networks. The presence of spelling errors would
bring damage to the language understanding ability of the generated
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model. Thus, training corpus whose spelling errors have been cor-
rected will lead to better training result.

Undoubtedly, it is obvious that Chinese spelling errors correc-
tion is quite important in Chinese natural language processing
tasks.Research on Chinese spelling errors correction has a long his-
tory, dated back to as early as 1990s, with the target to detect and
correct errors in Chinese text [2, 20]. The former research in Chi-
nese spelling errors correction field can be roughly categorized into
two classes: traditional machine learning methods [24, 19, 17, 25]
and deep learning methods [23, 14, 15, 7, 5]. Traditional machine
learning methods usually generate candidate words based on a dic-
tionary and confusion set, calculate perplexity [8] based on language
models to rank and select the optimal candidate words. Deep learn-
ing methods typically learn better information representation through
large corpus training and then correct spelling errors with the learned
language understanding ability. Generally speaking, deep learning
methods take into consideration of contextual information, and their
effectiveness is superior to traditional machine learning methods.

Chinese characters are special in the sense that characters some-
times contain semantic information. Phonetically similar characters
are also semantically similar. And it is observed that most errors are
caused by visual and phonological similarities [10]. So such features
are important in Chinese processing. And in English, edit distance is
available as a measure to indicate spelling similarity between words.
Phonetical information is also be used in English spelling correction.

Table 1. Two spelling errors examples:errors caused respectively by
similar character glyph and by similar character pinyin.

Type Percentage Example Correction

Glyph Erros 48% 我爱白然语言处理。 白→自
Pinyin Errors 83% 我的眼镜有点红肿。 镜→睛

For Chinese text errors correction tasks, there are mainly two
spelling error sources: errors caused by character glyph similarity
and errors caused by character pinyin similarity. In Liu et al.’s study
[10], 48% of errors were caused by errors in similar character glyphs,
such as the similarity between " 白 (which means white) " and " 自
(which means natural together with 然 ) " in " 我爱白然语言处理
" (I love white language processing). 83% of Chinese spelling errors
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were caused by errors in similar character pronunciations, such as the
similarity between " 镜 (which means glasses) " and " 睛 (which
means eyes) " in " 我的眼镜有点红肿 " (My glasses are a little
swollen and red).

From the above observation, it is obvious that character glyph
and pinyin features will provide effective information for correction.
Although recent years have seen the emergence of many Chinese
spelling errors correction algorithms, such methods mainly focus on
fully utilizing contextual and semantic information, but fail to fully
utilize the glyph and pinyin information of characters, resulting in
insufficient feature processing.

In this paper, we investigate multimodal techniques in Chinese
spelling errors correction and introduce a multimodal model for the
correction tasks. We propose a Chinese spelling errors correction
algorithm MIATS, that is, Multimodal Information Alignment of
Three-towers Structure. Our model uses a three-tower structure, in
which BERT acts as an encoder to model glyph, pinyin, and se-
mantic information. Besides, through training on a task to learn
multimodal information alignment, better multimodal information
representation is obtained. As for decoder, we use transformer to
achieve cross-modal information interaction. Besides, an error de-
tection network is trained to calculate the probability of errors oc-
curring at each position, based on which multimodal information
and contextual information is further fused. Finally, a simple lin-
ear layer is used as a classifier to predict the final result and se-
lect proper word from the vocabulary. The proposed method is
tested on the publicly available Chinese spelling errors correction
datasets SIGHAN2013, SIGHAN2014, and SIGHAN2015, achiev-
ing F1-scores of 0.78, 0.67, and 0.77, respectively, surpassing most
of the existing Chinese spelling error correction algorithms. The con-
tributions of this paper are as follows:

1. We propose a Chinese spelling errors correction algorithm based
on the alignment of multimodal information using a three-tower
structure.

2. We design an error probability prediction network with trans-
former to achieve cross-modal information interaction.

3. We design specific training tasks, including error correction task,
error detection task, and cross-modal information alignment task
to better train the network.

2 Related work

2.1 Chinese spelling errors correction based on
traditional machine learning

Traditional machine learning methods for Chinese spelling er-
rors correction mainly utilize basic word frequency statistics, pre-
constructed confusion sets, and language models. Candidate sets for
correction are formed from confusion sets, and the optimal candidate
is selected with the help of language models. For example, Yeh et al.
proposed a method using n-gram ranked inverted index list and a
confusion set of homophonic characters [19]. Zhang et al. proposed
a correction framework HANSpeller++ [24], which uses a hidden
Markov Model to generate candidate sets and a filter to rank them.
Xie et al. proposed a method employing a joint n-gram grammar and
Chinese segmentation language model [17] to enumerates all candi-
date words. Zhao et al. proposed a hybrid model for CSC, comprising
three models dealing with different correction tasks [25].

Traditional machine learning methods are advantageous in pro-
cessing speed and computational resource consumption, as the lan-
guage models are generally simple. However, since they do not have

the ability to extract contextual semantic information, their perfor-
mance is limited. What is more, the performance is directly affected
by confusion sets, in the case of new words or out-of-vocabulary
words, the confusion sets and dictionaries need to be constantly up-
dated, resulting in increasing maintenance cost.

2.2 Chinese spelling errors correction based on deep
learning

Compared with traditional methods, large deep learning-based meth-
ods are more powerful in contextual semantic information extraction.
Prior to BERT, most commonly used neural networks are recurrent
neural networks (RNNs) for Chinese spelling correction. Wang et al.
proposed a sequence labeling model based on LSTM [6] for error
detection [14], while Yang et al. proposed a method [18] based on
LSTM with CRF for error position detection. Wang et al. utilizes
both LSTM and confusion sets [15].

After the introduction of BERT [5] by Devlin et al. in 2018,
pre-trained language models are widely used in various natural lan-
guage processing tasks, including error correction. Hong et al. pro-
posed FASPell [7] using a BERT-based new paradigm which con-
sists of a denoising autoencoder (DAE) and a decoder. FASPell elim-
inates the need of confusion sets, but instead utilizes a Confidence-
Similarity Decoder to rank candidates based on confidence and sim-
ilarity (in terms of character glyph and pinyin). Ming proposes
MacBERT4CSC [12] based on MacBERT [4], which integrates the
error detection and correction tasks, and extends the correction task
to include the detection task. Zhang et al. proposed Soft-Masked
BERT [23], which divides the entire correction task into two parts,
corresponding to two networks.

For the Chinese spelling errors correction task, the character glyph
and pinyin can provide valuable information for the entire correc-
tion system. However, existing BERT-based correction algorithms
have not fully utilized such information. Zhang et al. proposes
ERNIE4CSC [22], combining character pronunciation with ERNIE,
which combines the error detection probability, character pronuncia-
tion as well as ERNIE output, and then uses a transformer for the final
prediction. Cheng et al. proposes SpellGCN [3], which uses BERT to
extract semantic knowledge and GCN to extract character glyph and
pinyin features. The GCN is able to capture the pronunciation/shape
similarity and explore the prior dependencies between characters.

As for utilizing glyph and pinyin information, existing algorithms
still have some problems. MacBERT4CSC [12] and Soft-Masked
BERT [23] use the powerful representation ability of BERT for er-
ror correction, but do not consider the impact of Chinese character
glyph and pinyin information on the task. ERNIE4CSC [22] com-
bines pinyin knowledge for error correction, but ignores character
glyph information. Based on this observation, this paper conducts
in-depth research on multimodal Chinese spelling errors correction
and proposes MIATS, a Chinese spelling errors correction algo-
rithm based on three-tower multimodal information alignment. MI-
ATS achieves better performance than most existing CSC algorithms
on the SIGHAN dataset.

3 Method

Firstly, MIATS uses a three-tower multi-modal structure as an en-
coder to extract information from multiple data modalities. Secondly,
it employs a decoder to achieve cross-modal information interac-
tion and to better utilize context knowledge. The decoder consists
of a transformer network to extract context information and a linear
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network to predict the probability of a character is incorrect, thus
to explicitly distinguish correct and incorrect characters processing.
Therefore, the decoder is able to more effectively utilize token fea-
ture information with context information. Specific training tasks are
designed to train the model, and correction loss, detection loss, and
contrastive loss are used as loss functions for correction task, detec-
tion task, and cross-modal information alignment task, respectively.
As a result, MIATS is able to fully extract and utilize multi-modal
information and context information, explicitly distinguish process-
ing of correct and incorrect characters, thus achieve better correction
result on the SIGHAN datasets.

Figure 1. The network architecture of MIATS:It includes an encoder with
a three-tower multi-modal structure and an encoder composed of a

transformer network and an error probability network.

Figure 1 illustrates the network architecture of MIATS. The three-
tower multi-modal structure is used to extract glyph, pinyin, and se-
mantic information, and the adaptive algorithm adjusts the weights of
different modalities for multi-modal information fusion. The trans-
former network of the decoder aims to interact cross-modal informa-
tion among different tokens. The error probability network, consist-
ing of a linear layer and a sigmoid function, estimates the probability
of error occurrence at each position. Based on the estimation, the
vector representation of the input is computed with both context in-
formation as well as the character itself. Finally, a linear layer maps
the result to the vocabulary space and calculates the probability dis-
tribution of each word to obtain the final correction result.

3.1 Encoder

3.1.1 Glyph encoder

The structure of the glyph encoder is illustrated in Figure 2. In this
section, we use the open-source package Pillow1 to generate Chinese
character images for each character in the input text, resulting in a

1 https://github.com/python-pillow/Pillow

Figure 2. Glyph encoder:It uses transformer as the backbone network,
whose embedding includes both glyph information of different fonts and

positional information.

sequence of Chinese character images. For each character, we gen-
erate images in three fonts, namely Songti, Kaiti, and Lishu, each of
size 16 ∗ 16. Each image is flattened into a vector of dimension 256,
and the three vectors are concatenated to obtain a 768-dimensional
vector as the embedding of the glyph image, denoted as Ef in Fig-
ure 2. To avoid losing positional information among tokens, we also
use positional embeddings Ep, and the two embeddings are added to
obtain the glyph embedding Eg , as shown in Equation (1):

Eg = Ef + Ep (1)

The embeddings are then fed into L layers of a transformer net-
work. As shown in Equation (2), Transformerl represents the l-
th layer of transformer, and Hg

l ∈ Rn×d, where n is the sequence
length, d is the hidden size, Hg

l and Hg
l−1 represents the output of

the l-th and (l-1)-th layer of transformer. The total number of layers
in the transformer is L.

Hg
l = Transformerl(H

g
l−1), l ∈ [1, L] (2)

When l = L, the output of the glyph encoder, Hg = Hg
L =

{hg
0, ..., h

g
n−1}, is the vector representation of the glyph information

of the input text sequence. Here, hg
i represents the glyph feature of

the i-th token in the input text sequence.

3.1.2 Pinyin encoder

The structure of the pinyin encoder is illustrated in Figure 3. The em-
bedding of the pinyin encoder consists of four parts: initial syllable
embedding, final syllable embedding, tonetic embedding, and posi-
tional embedding, as shown in the Figure 3. Given a Chinese char-
acter such as " 景 ", it is converted into a pinyin sequence "jing3"
using the open-source toolkit PyPinyin2. The initial consonant "j",
final compound vowel "ing", tonetic symbol "3", and the position in-
dex of "景 " in the text sequence (here is "4") are extracted, and then
their corresponding embeddings, denoted as Ei,Ef ,Et, and Epos,
respectively, are summed up to obtain the embedding of the pinyin
encoder, denoted as Ep, as shown in Equation (3).

Ep =
Ei + Ef + Et + Epos

4
(3)

Thus obtained pinyin embedding is then fed into the L lay-
ers of the transformer network, as shown in Equation (4), where

2 https://github.com/mozillazg/python-pinyin
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Figure 3. Pinyin encoder: Transformer acts as the backbone network, and
the embedding consists of four parts, that is, tone information, initial syllable

information, last syllable information and positional information.

Transformerl represents the l-th layer of the transformer network,
Hp

l ∈ Rn×d denotes the output of the l-th layer of the transformer,
Hp

l−1 denotes the output of the previous layer, and L is the total num-
ber of layers in the transformer network. The pinyin information of
the input is the output of the Lth layers of the transformer network
of the pinyin encoder.

Hp
l = Transformerl(H

p
l−1), l ∈ [1, L] (4)

When l = L, the output of the transformer network, Hp = Hp
L =

{hp
0, ..., h

p
n−1}, is the vector representation of the pinyin information

of the input text sequence, where hp
i represents the phonetic feature

of the i-th token in the input text sequence.

3.1.3 Semantic encoder

The semantic encoder employs MacBERT, which distinguishes it-
self with powerful information extraction capability. Its embedding
is consistent with that of BERT, including token embedding and
positional embedding. The calculation process of the transformer
layer is shown in Equation (5), and the output of the last layer is
Hs = Hs

L = {hs
0, ..., h

s
n−1},as the vector representation of the se-

mantic information of the input text sequence. Here, hs
i represents

the semantic feature of the i-th token in the input text sequence.

Hs
l = Transformerl(H

s
l−1), l ∈ [1, L] (5)

3.1.4 Fusion

The vectors output by the three encoders, namely, glyph, pinyin, and
semantic encoders, are fused as multimodal information using gate
function, where the weights for each modality are obtained. Conse-
quently, the importance of each encoder is adaptively adjusted, and
the multimodal knowledge is fully fused. Equations (6), (7), and (8)
describe the weight calculation process based on gate function for
the three modalities.

gg = σ(W g(Hg +Hp +Hs) + bg) (6)

gp = σ(W p(Hg +Hp +Hs) + bp) (7)

gs = σ(W s(Hg +Hp +Hs) + bs) (8)

Here, W g,W p,W s ∈ Rd×1, which are used to reduce the sum
of Hg ,Hp and Hs to a vector of size 1, respectively. The sigmoid
function σ is applied to calculate the weights gg ,gp,and gs for each

modality. The fused multimodal information result H is obtained
using the weighted sum of the information from each modality, as
shown in Equation (9).

H = gg ∗Hg + gp ∗Hp + gs ∗Hs (9)

3.2 Decoder

The decoder module of the MIATS aims to achieve cross-modal in-
formation interaction among different tokens. The network structure
of decoder is illustrated in Figure 4.

Figure 4. The decoder network consists of a transformer, an error
probability network, and a fusion layer. The output of the fusion layer can be

used to predict the correction result.

3.2.1 Transformer layers

The output of the encoder, denoted as X0, represents the fused mul-
timodal information, where each token’s corresponding vector con-
tains its glyph, pinyin, and semantics information. However, different
modalities of information among tokens are separate and do not inter-
act with each other. To address this issue, we introduce a transformer
network after X0, where the self-attention mechanism enables cross-
modal interactions between different tokens. Specifically, as shown
in Equation (10), X0 is fed through L layers of transformer network,
where Transformerl represents the l-th layer of the transformer,
Xl ∈ Rn×d is the output of the l-th layer, and Hl−1 is the output of
the (l-1)-th layer. Here, L is the total number of layers in the trans-
former. The input text sequence’s i-th token feature is represented as
xi.

Xg
l = Transformerl(X

g
l−1), l ∈ [1, L] (10)

When l = L, the final output of the transformer network is denoted
as X̂ = XL = {x0, ..., xn−1}. Compared with X0, each vector in
X̂ contains more contextual information.

3.2.2 Error probability prediction network

In addition, an error probability prediction network is introduced in
the decoder of MIATS, which consists of a linear layer and a sig-
moid function, with input X0, as shown in Figure 1. The purpose of
this network is to detect the probability of error at each position in
the input sequence. The linear layer is represented as Equation (11),
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where WP ∈ Rd×1, and the final error probability is obtained with
the sigmoid function.

P̂ = σ(WPX0 + bP ) (11)

With this probability, the correct and incorrect characters can be ex-
plicitly distinguished and be processed differenctly.

3.2.3 Fusion

The transformer layer and error probability prediction network sep-
arately generate X̂ and P̂ for each token. X0 is the input of trans-
former,representing the multimodal feature information of each to-
ken itself, including its glyph, pinyin, and semantic information;x̂
incorporates the contextual information; and P̂ represents the prob-
ability that each token is a misspelling. The intuition is that, if the
character itself is correct, then its knowledge is important for the un-
derstanding of the input; however, if the character is incorrect, then
its feature information is less useful or even misleading. Thus, differ-
ent processing should be adopted for correct and incorrect characters.
If a token is regarded as incorrect, for the correction task,X̂ , as the
context information, should be incorporated other than the feature
information X0 of this character itself. If the token is not regarded
as misspelling, then the network would directly copy the original in-
formation of this token X0, which is more important than contextual
knowledge X̂ . Therefore, H , as the fusing result of X0 and X̂ is
introduced, as shown in Equation (12), it is based on the computed
error probability to dynamically adjust the weights of X0 and X̂ .

H = P̂ ∗ X̂ + (1− P̂ ) ∗X0 (12)

When P̂ is relatively large, indicating that the token is highly
likely to be a misspelling,X̂ has a greater weight, thus to reduce the
influence of the incorrect word itself while utilizing the correct con-
text. On the other hand, it also takes into consideration of the original
X0, since the pinyin and glyph information might be helpful. When
P̂ is relatively small, X0 has a greater weight, indicating that the
word is likely to be the correct word and its original information is
useful. Through this fusion step, it can be ensured that correct and
useful information could be obtained.

3.2.4 Prediction

As shown in Equation (13), (14)and (15),after the fusion of X0 and
X̂ , H is obtained, and H is mapped to the vocabulary space denoted
as Ĥ by a linear layer. The softmax function is then applied to obtain
the probability distribution of each word , denoted as Ŷ , and the word
with the highest probability is selected as the final prediction result
by the argmax function, denoted as Y .

Ĥ = WH + b (13)

Ŷ = Softmax(Ĥ) (14)

Y = Argmax(Ŷ ) (15)

3.3 Training task

The training task of the MIATS consists of three parts: error correc-
tion task, error detection task, and cross-modal information align-
ment task. These tasks correspond to the correction loss, detection
loss, and contrastive loss, respectively.The reasons for our choice

are as follows: The correction loss is used to represent the differ-
ence between the correction result and the ground truth; the detec-
tion loss is used to measure the performance of the error probability
network; and the contrastive loss is used to constrain the interac-
tion of multimodal information, achieving cross-modal information
alignment.The weight ratios of the three loss functions are evaluated
through extensive experiments.

3.3.1 Error Correction Task

The error correction task uses cross-entropy loss, which is calculated
by the last linear layer of the network to obtain the probability distri-
bution of each word in the vocabulary Ŷ = {ŷ0, ..., ŷl−1}, and the
difference between the predicted labels Y = {y0, ..., yl−1} and the
true labels is represented by the loss �1 in Equations (16) and (17):

�1 = 1
B

∑B

i=1
�̃1(Y

i, Ŷ i) (16)

�̃1(Y
i, Ŷ i) = −∑l

j=1

∑n

k=1
yi
j,k log ŷ

i
j,k (17)

Where B represents the batch size, Y i = {yi1, ..., yil} stands for
the ground truth label of the i-th text sequence in the batch,Ŷ i =
{ŷi

1, ..., ŷ
i
l} represents the predicted probability of the i-th text se-

quence in the batch, and n represents the size of the vocabulary.
�̃1(Y

i, Ŷ i) represents the correction loss of the i-th text sequence
in the batch, and �1 is the average correction loss of the batch.

3.3.2 Error Detection Task

The error detection task uses binary cross-entropy loss to measure the
performance of the error probability network. For each position in the
text sequence, label p stands for the probability that the character in
the position is incorrect, where value of 0 indicates that the position
is not a misspelling while 1 denotes that the position is a misspelling.
The error detection network outputs the probability of the character
in the position being incorrect.

�2 = 1
B

∑B

i=1
�̃2(P

i, P̂ i) (18)

�̃2(P
i, P̂ i) = −∑l

j=1

[
pij log p̂

i
j + (1− pij) log(1− p̂ij)

]
(19)

As shown in Equation (18)and (19), the detection loss is calculated
by the binary cross-entropy loss function to evaluate the difference
between the ground truth labels P i = {pi1, ..., pil} of each token in
the i-th text sequence in the batch and the predicted probability P̂ i =
{p̂i1, ..., p̂il} of the error probability network in the batch. �̃1(Y i, Ŷ i)
represents the detection loss of the i-th text sequence in the batch,
and �1 denotes the average detection loss of the batch.

3.3.3 Cross-Modal Information Alignment Task

For cross-modal information alignment task, we proposes a
character-level multi-modal information alignment approach using
contrastive loss. Three different modality encoders are employed
to map the input into three distinct vector spaces. Character-level
contrastive loss is applied to spaticnarrow the distance between
three modality vectors corresponding to the same Chinese character,
achieving character-level multi-modal information alignment. The
calculation of character-level contrastive loss is formulated in Equa-
tions (20),s (21) and (22):

�3 = 1
4B

∑B

i=1
�̃i3 (20)
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�̃i3 = �̃(Hg
i , H

s
i ) + �̃(Hs

i , H
g
i ) + �̃(Hp

i , H
s
i ) + �̃(Hs

i , H
p
i )(21)

�̃(H1
i , H

2
i ) = − 1

l

∑l

j=1
log

exp(D(h1
i,j ,h

2
i,j)/τ)∑l

k=1
exp(D(h1

i,j
,h2

i,k
)/τ)

(22)

Where B represents batch size, l represents the length of the text
sequence, Hg , Hp, and Hs denote the outputs of the encoders for
character glyph, pinyin, and semantics, respectively. Hg

i , Hp
i , and

Hs
i represent the feature vectors of character glyph, pinyin, and se-

mantics of the i-th text sequence in a batch. The temperature constant
τ in Equation (22) is used to adjust the attention to difficult samples.

Contrastive loss �3 consists of four parts, �̃(Hg
i , H

s
i ),

�̃(Hs
i , H

g
i ),�̃(H

p
i , H

s
i ),�̃(H

s
i , H

p
i ), representing the calculation

of contrastive loss between character glyph information and seman-
tic information, semantic information and glyph information, pinyin
information and semantic information, and semantic information
and pinyin information, respectively. H1

i = {h1
i,1, ..., h

1
i,l} and

H2
i = {h2

i,1, ..., h
2
i,l} represent the feature vector outputs of text

sequences for modality 1 and modality 2, respectively. �̃(H1
i , H

2
i )

calculates the character-level contrastive loss between a feature
vector of a modality and another feature vector of a different
modality in a text sequence. �3 denotes the average contrastive loss
of a batch.exp() represents the exponential function with base e.

D(a, b) ==

n∑
i=1

aibi

√
n∑

i=1

a2
i

√
n∑

i=1

b2i

(23)

Equation (23) shows the calculation of the distance function
D(a, b) between vectors a and b using the cosine similarity function.

3.3.4 Overall Loss

The overall loss of the algorithm is formulated in Equation (24),

� = 0.8 ∗ �1 + 0.1 ∗ �2 + 0.1 ∗ �3 (24)

As shown in Table 4, after testing various combinations of different
weights, weights of 0.8, 0.1, and 0.1 are set for the correction loss,
detection loss, and contrastive loss, respectively, to form the overall
loss function.

4 Experimental design and analysis

4.1 Dataset and evaluation metrics

The datasets used for training in this paper include the Wikipedia
corpus3, Wang271K [14]4, SIGHAN2013 [16], SIGHAN2014 [21],
SIGHAN2015 [13], and a Chinese character image library generated
using Pillow.The number of sentences, average sentence length, and
number of errors in the Chinese text correction dataset are shown in
Table 2. The evaluation metrics of the algorithm are precision, recall,
and F1 score at sentence level.

4.2 Training

Training consists of two phases: pre-training and fine-tuning. Pre-
training is with the purpose to provide the three different modality
encoders with powerful information representation capabilities. Chi-
nese Wikipedia corpus is used for pre-training.The glyph encoder is

3 http://download.wikipedia.com/zhwiki
4 https://github.com/wdimmy/Automatic-Corpus-Generation/blob/master

Table 2. The Wang271K is an automatically generated dataset for CSC
tasks, with more than 270,000 pairs of sentences. The SIGHAN13,

SIGHAN14, and SIGHAN15 datasets are benchmarks of spelling error
correction tasks. Table 2 lists basic statistics of these datasets.

Training Data #Lines Avg.Length #Errors

Wang271K 271329 42.6 381962
SIGHAN13 350 49.3 339
SIGHAN14 3437 49.6 5136
SIGHAN15 2339 31.3 3048

Testing Data #Lines Avg.Length #Errors

SIGHAN13 1000 74.3 1221
SIGHAN14 1062 50.0 771
SIGHAN15 1100 30.7 705

initialized with the default weights of BERT, and then trained on the
task of restoring the input text.The training of the pinyin encoder is to
predict the Chinese character corresponding to the input pinyin.The
semantic encoder directly loads the public weights of MacBERT,
therefore does not undergo additional pre-training. For fine-tuning,
the three encoders together with the subsequent decoder network,
error probability network are trained on SIGHAN and Wang271K
dataset for error correction tasks to adjust the network parameters,
allowing the network to perform better on error correction tasks.

4.3 Analysis of experimental results

Table 3 presents the comparison of the MIATS with other baseline
methods.

Table 3. On the three datasets of SIGHAN13, SIGHAN14, and
SIGHAN15, the F1 score of MIATS is better than other baselines.

Testing Data Baseline
Sentence-Level

pre rec F1

SIGHAN13

NRI [19](Character Level) 70.3 62.5 66.2
LMC [17](Character Level) 77.6 22.7 35.1

SL [14](Character Level) (-) (-) 52.1
PN [15](Character Level) 79.7 59.4 68.1

BERT [5] 97 44 60.6
FASpell [7] 73.1 60.5 66.2

SpellGCN [3] 78.3 72.7 75.4
MIATS 99.3 65.4 78.9

SIGHAN14

HM [25] 55.5 39.1 45.9
SL [14](Character Level) (-) (-) 56.1

BERT [5] 64.8 49.4 56.1
FASpell [7] 59.4 52 55.4

SpellGCN [3] 63.1 67.2 65.3
MIATS 69.5 65.4 67.3

SIGHAN15

LMC [17](Character Level) 71.1 50.2 58.8
SL [14](Character Level) (-) (-) 57.1
PN [15](Character Level) 71.5 59.5 69.9

HanSpeller++ [24] 79.7 51.5 62.5
FASpell [7] 66.6 59.1 62.6

Soft-Masked BERT [23] 66.7 66.2 66.4
BERT [5] 80.3 62.7 70.4

MacBERT4CSC [12] 82.6 73.6 77.8
SpellGCN [3] 72.1 77.7 75.9

MIATS 84.2 73.4 78.4

It can be observed that overall, MIATS outperforms most other
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methods on the SIGHAN dataset and achieves very high precision
on all three datasets, indicating strong error correction abilities. More
information should be given on baseline SpellGCN, its approach to
spell correction and why it achieved better recall values than the
proposed model.SpellGCN utilizes GCN (Graph Convolutional Net-
work) to learn the embedding of characters, which might better cap-
ture the similarity and correlation between characters, thus is able to
locate the misspelled characters more accurately. Therefore, the av-
erage recall rate of SpellGCN on the SIGHAN dataset is nearly 4%
higher than ours. Nonetheless, the precision of our MIATS is nearly
10% higher than that of SpellGCN on average. Overall, the F1 value
of MIATS is also better than that of SpellGCN. This has fully verified
that the multi-modal encoder possesses stronger representation abil-
ity, and the consideration of detection loss as well as contrastive loss
allows MITAS to learn additional knowledge and improve its ability
to detect and correct errors.

To verify the effectiveness of detection loss and contrastive loss,
and the impact of the weight parameters of each loss on error cor-
rection results, we have conducted the following comparative exper-
iments:

1. Set the weights of error correction loss and contrastive loss to be
constant, and change the weight of detection loss. We then test the
algorithm on the SIGHAN13 test set.

2. Set the weights of error correction loss and detection loss to be
constant, and change the weight of contrastive loss. We then test
the algorithm on the SIGHAN13 test set.

Table 4. Effect of different training weights combination, tested on the
SIGHAN13 dataset.

correction detection contrastive pre rec F1

0.8 0 0.1 99.5 61.3 75.8
0.8 0.05 0.1 98.8 63.7 77.4
0.8 0.2 0.1 98.2 65.5 78.5
0.8 0.8 0.1 94.4 67.1 78.2
0.8 0.1 0.1 99.3 65.4 78.9

0.8 0.1 0 98.7 64.5 78
0.8 0.1 0.05 99.2 64.9 78.4
0.8 0.1 0.2 98 61.7 75.7
0.8 0.1 0.8 97.8 59.2 73.7
0.8 0.1 0.1 99.3 65.4 78.9

The experimental results are presented in Table 4. It is obvious
that varying the weights of detection loss and contrastive loss affects
error correction results. When the weights of error correction loss and
contrastive loss are constant, increasing the weight of detection loss
improves the ability to detect errors, resulting in a higher recall rate,
but the precision rate correspondingly decreases. When the weights
of error correction loss and detection loss are constant, increasing
the weight of contrastive loss leads to a greater drop in performance.
The intuitive explanation is that, a large contrastive loss makes the
three modalities spatially close, resulting in weakened robustness and
poorer performance. Properly balancing the weight proportions of
error correction loss, detection loss, and contrastive loss yields an
optimal ratio of 8:1:1.

To verify the effectiveness of the cross-modal information align-
ment, we have constructed the similarity matrix between different
modal vectors. As an example, Figure 5 shows the similarity between
the semantic vector and pinyin vector of the text sequence " 自然
语言处理 " before and after the alignment. Before conducting the
alignment process, the similarity values on the main diagonal were

Figure 5. Similarity matrix before and after cross-modal information
alignment of the semantic vector and pinyin vector of the text sequence.

not always the maximum in the corresponding row or column. After
the alignment, the maximum values of the rows and columns are on
the main diagonal, indicating that the network has aligned the cross-
modal information and have stronger representation ability. Similar
phenomena have also been observed in the similarity matrix of se-
mantic vector and glyph vector, as well as glyph vector and pinyin
vector.

5 Conclusion

This paper proposes a Chinese text correction algorithm MIATS,
based on tri-tower multi-modal information alignment. A tri-tower
multi-modal structure is used as the encoder to extract glyph, pinyin,
and semantic information. The decoder part explores the cross-modal
information interaction and facilitates better context information uti-
lization with an error probability network and transformer network.
During the training process, special training tasks are designed, in-
cluding correction task, detection task, and cross-modal information
alignment task. The effectiveness of the proposed algorithm is fully
verified on the SIGHAN datasets.
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