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Abstract. Federated Learning (FL) allows massive clients to col-
laboratively train a global model without revealing their private data.
Because of the participants’ not independently and identically dis-
tributed (non-IID) statistical characteristics, it will cause divergence
among the client’s Deep Neural Network model weights and re-
quire more communication rounds before training can be converged.
Moreover, models trained from non-IID data may also extract biased
features and the rationale behind the model is still not fully analyzed
and exploited. In this paper, we propose eXplainable-Fed (XFed)
which is a novel client selection mechanism that takes both accu-
racy and explainability into account. Specifically, XFed selects par-
ticipants in each round based on a small test set’s accuracy via cross-
entropy loss and interpretability via XAI-accuracy. XAI-accuracy is
calculated by Intersection over Union Ratio between the heat map
and the truth mask to evaluate the overall rationale of accuracy. The
results of our experiments show that our method has comparable ac-
curacy to state-of-the-art methods specially designed for accuracy
while increasing explainability by 14%-35% in terms of rationality.

1 Introduction

Federated Learning aggregates training models from distributed
clients to provide a global model without sharing clients’ raw data
[8]. It is crucial to adopt this collaborative paradigm in order to
achieve privacy-preserving machine learning. The central server
sends the global model to each client and receives the trained model
from selected clients to build a new global model in each round of
communication. The model is refined over a number of communica-
tion rounds until it converges.

Firstly, non-IID data among FL participants can significantly im-
pact the global model’s precision [19, 34, 25, 20], but increasing the
communication rounds between the server and clients can help mod-
erate this effect [32, 26]. As FL participants exhibit widely heteroge-
neous statistical characteristics, selecting clients can be an effective
strategy to optimize training efficiency [15, 17, 27, 6, 23]. Secondly,
the black-box nature of Deep Neural Network (DNN) can limit its
application, making it difficult to understand the reasons behind the
AI’s decisions [28, 31, 7, 10, 11]. Explainable Artificial Intelligence
(XAI) aims to provide interpretable and human-friendly explanations
of AI decisions. By using post-hoc XAI methods [5], we can gener-
ate a salience map or a heat map that provides an understanding of
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Figure 1. Why is it wrong? The client on the left has correctly identified the
images of the aircraft and the ship, but the features it extracted were from the
background rather than the main objects themselves. Consequently, when the
server aggregates the features for the bird and the truck, incorrect features are
extracted, leading to incorrect judgments being made.

the inference process.
However, existing client selection methods primarily focus on

task performance and time to precision. Developing a more effec-
tive method that utilizes the existing solution is imperative to address
the need for a model with better explainability. This is particularly
challenging in Federated Learning since the samples are not indepen-
dently and identically distributed, which may lead to biased feature
extraction.

Figure 1 illustrates an instance of a classification task where the
client’s prediction is correct but based on the wrong set of features.
As a consequence, the server extracted wrong features for other ob-
jects such as the bird and the truck, leading to incorrect predictions.
The ultimate goal is to ensure that the high accuracy of the aggre-
gated model is based on the right extracted features that align with
human understanding. Biased feature extraction by some clients’
models can negatively impact the convergence of the final model, po-
tentially leading to incorrect or misleading features. Addressing bias
in feature extraction is critical for improving the interpretability of
the final model. Although post-hoc XAI methods provide valuable
insights into a model’s decision-making process, there is currently
no universally accepted method for assessing model explainability.
In the context of client selection architectures in Federated Learning,
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adapting XAI evaluations can be a challenging task.
Theoretical analysis of clients’ weight difference [30, 33] and

Kullback-Leibler (KL) divergence [13] suggests that increasing the
number of participating clients in the overall training process mini-
mizes the cross-entropy between the model’s predictions and the tar-
get distribution. However, this can be challenging in federated learn-
ing due to high communication cost and variations in the data distri-
bution across clients.

To address these challenges, we propose XFed, a method that en-
courages more clients to participate in the training process while fil-
tering out underperforming clients. To determine which clients are
selected, we utilize a relatively small number of test methods with
an "ideal" distribution of data. This means that the test data is se-
lected and distributed in a way that represents the target distribution
we want to achieve. We also provide a truth_mask 1 with our test
dataset to identify the object’s location for evaluating the heat map
generated by the model. By employing the truth_mask as a sanity
check, we ensure that the extracted features are valid and mitigate
the risk of feature-attribution-based explanations being misleading
[1]. As the training progresses, the heat map should converge towards
the truth_mask, indicating increasing rationality of the model’s pre-
dictions.

Our experimental results show that our approach increases inter-
pretability by 14%-35% in terms of CIFAR-10 and MNIST plau-
sibility for classification task datasets. Our major contributions are
summarized in the following.

• We examine the theory of clients’ weight difference and KL di-
vergence, identifying two key aspects that can accelerate training
with distributed non-IID data.

• We introduce the XFed client selection mechanism, which en-
hances FL accuracy while minimizing communication require-
ments.

• We enhance heat map measurements for XAI accuracy by extend-
ing Intersection over Union (IoU) to IoU-Ratio.

2 Related Work

Federated Learning with enhanced privacy [18] aggregates training
results from multiple participants to produce a better DNN model
with as little communication overhead as possible. In light of the FL’s
non-IID statistical feature [9] and the need to understand the black-
box DNN model, saving communication rounds and understanding
the reasoning behind DNN decisions are essential.

2.1 Client Selection in FL

Existing work typically focuses on classification tasks. To trade off
between training speed and performance in federated learning (FL),
Oort [15] introduces a two-phase client selection approach. In the
first stage, the server assigns weights to each client based on their
time cost and task loss. In the next stage, the clients with the higher
weight are selected for the next round. Based on this, PyramidFL [17]
provides a more fine-grained evaluation of time cost and task perfor-
mance, allowing for further refinement of the client selection process.
Although existing FL paradigms [14, 4] propose several optimization
schemes for client selection, since they only focus on accuracy and
efficiency and ignore the study of model explainability, they offer
great potential for improvement in various FL applications.

1 https://github.com/XFed2023/XFed

2.2 Explanation and Interpretability in FL

XAI aims at generating high-quality interpretable, intuitive, human-
understandable explanations of AI decisions [5].

Recent research has begun to incorporate interpretable and ratio-
nal analysis into FL. Liu et.al. [24] proposed Contribution-Aware FL
(CAreFL) framework to provide fair and explainable FL participant
contribution evaluation in an efficient and privacy-preserving man-
ner. But the contribution-aware framework only impacts the aggrega-
tion stage of FL. It doesn’t impact the training stage in the clients to
provide a model with a better rationale. [22] demonstrated a novel FL
system for interpretable time series classification (TSC) by extend-
ing the concept of FL to consider both stronger security and model
explainability. However, these methods limit the models’ type and
architecture.

The explainable vertical FL (EVFL) framework [3] includes the
credibility assessment strategy, the federated counterfactual explana-
tion, and the importance rate (IR) metric. It studies the problem of
how to select features under Vertical FL (VFL). However, the prob-
lem we are studying is how to improve rationale under Horizontal
FL (HFL) to reduce the communication overhead and improve the
explainability.

In conclusion, in spite of some cutting-edge explainability re-
search in FL, model interpretability is not taken into consideration
in current client selection procedures. Therefore, it is vital to explore
this area in order to identify and optimize clients according to ratio-
nal and accurate criteria. We only select the client in the early stage
of training in order to use fewer rounds to achieve the specified ac-
curacy.

3 Motivation

3.1 The Inspiration From Distribution Difference

A crucial component of FL is the iterative aggregation of model up-
dates across multiple client devices, many of which may have slow
or unstable network connections. The first step is for eligible clients
to check in. In the next step, FL is performed synchronously. Clients
are selected under certain criteria for each training round. Selected
devices download global models from the server and train them on
local datasets. The server then aggregates the updates from clients.
Achieving high accuracy while minimizing communication costs is
the goal.

Taking C-class classification as an example, let (x, y) denote a
particular labeled sample. fi predicts the probability that the sam-
ple belongs to the i-th class, where ∀i ∈ {1, ..., C}. Let w denote
model weights. In FL, suppose there are K client devices checked
in. The k-th device follows the data distribution pk, which is a joint
distribution of the samples x, y on this device. In round t, where
∀t ∈ {1, ..., T}, client k downloads the latest global weight wt−1

from the server and performs training to train wk
t using learning

rate η locally.The detailed math explanation for FL has described
in Appendix A. By using a similar bounding technique adopted in
[30, 33], we can derive the Equation (1) for weight divergence in
the last round. In other words, though local models are trained with
the same global weights, there is an implicit connection between the
distribution of data

∑C
i=1

∣∣∣pk′
(y = i)− pk(y = i)

∣∣∣ on different de-

vices and the discrepancy of local models’ weight
∥∥∥wk′

t −wk
t

∥∥∥. The
weight divergence equation is listed as below:
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∥∥∥wk′
T −wk

T

∥∥∥≤ηgmax (wT-1 )
C∑

i=1

∣∣∣pk′
(y= i)−pk(y= i)

∣∣∣, (1)

where
gmax(w) := maxC

i=1

∥∥∇wEx|y=i [log fi (x,w)]
∥∥.

Convergence is a necessary condition to achieve good perfor-
mance after T rounds for each client:

minimize
∥∥∥wk′

T −wk
T

∥∥∥ . (2)

When we achieve the performance goal, the trained global model
should show good performance to each client. It means the weight
across different clients is very similar. According to Equation (1)
and (2), if we want to minimize

∥∥∥wk′ − wk
∥∥∥, we want to minimize∣∣∣pk′ − pk

∣∣∣.
We can define a virtual client, represented by the weight wvirt and

the distribution pvirt, which serves as a benchmark for evaluating the
performance of a model. The virtual client’s distribution may be de-
termined based on prior knowledge, assumptions about the data, or
empirical observation of feature distributions.

Therefore, the goal is:

minimize
∥∥∥wk

T − wvirt
T

∥∥∥ . (3)

Then, we can get the below equation:

∥∥∥wk
t − wvirt

t

∥∥∥ � ηgmax (wt-1 )
C∑

i=1

∣∣∣pk(y = i)− pvirt(y = i)
∣∣∣ . (4)

After exploring the relationship between wk
t and wvirt

t in Equation
(3) and (4), let’s continue to discuss the distribution part: pk and pvirt.
KL divergence is used to calculate the difference between the actual
and the observed probability distribution. Equation (5) shows KL di-
vergence between pk and pvirt:

KL
(
pvirt‖pk

)
= Ex∼pvirt

[
− log pk(x)

]
−H

(
pvirt) . (5)

H
(
pvirt) is the entropy function of the empirical distribution. E is

the cross entropy of the empirical distribution pvirt and the predicted
distribution pk.

To minimize the KL divergence between the predicted and empir-
ical distribution, we need to maximize the entropy function of the
empirical distribution pvirt. This Entropy is the average amount of in-
formation we get from the empirical distribution. It is trying to be
close to the real world. Its entropy will be more accurate if more data
are available. We should encourage more clients to participate FL to
add as much data as possible.

The virtual pvirt is assumed to be the empirical distribution, so the
H can be treated as kind of fixed. We will now focus on the first part
of this Equation (5). The Cross-Entropy of the empirical distribution
and predicted distribution must be minimized in order to minimize
KL divergence. As a result, KL divergence is reduced and accuracy
is increased.

Therefore, leveraging more data and minimizing cross-entropy can
be used to optimize the training process for non-IID data. There
appears to be a contradiction between these two conditions at first
glance. But it can be achieved by the following method in the joined

non-IID clients: a). encouraging as many as possible clients to join
the FL; b). filtering out the models with the lowest accuracy using
cross-entropy loss in each round.

To evaluate the performance of the clients’ models, we provide
each client with a small test dataset that contains an ideally dis-
tributed statistic feature.

For example, in our experiments, we randomly sampled 3 sam-
ples from each category of CIFAR-10 to create a small test set of
30 samples, and manually annotated these samples with masks. Each
category of CIFAR-10 has 5000 training samples, so CIFAR-10 can
be treated as an independent and identically distributed dataset, and
the small dataset obtained also satisfies the characteristics of being
independent and identically distributed. This feature is representa-
tive of the true underlying distribution in the population. The client
calculates pvirt using this feature and reports the cross-entropy to the
server. The server can use this information to decide whether to in-
clude the client in this round of training.

In contrast to other methods of selecting FL clients, our method
filters clients’ models after the local model is trained to maximize
data leverage while saving communication effort. In different rounds,
the system eliminates the different lowest performers.

image truth_mask heat_map in_mask out_mask
1 2 3 4 5

image truth mask heat map in mask out mask

Figure 2. Heat_map and truth_mask example: the columns specifically
show: the original image; the truth_mask; the generated heat_map; the
pixels of heat_map inside the truth_mask and the pixels of heat_map

outside the truth_mask.

3.2 Prediction Rationale Analysis

By addressing non-IID clients and improving model accuracy and in-
terpretability, XAI methods can provide insight into the importance
of features, identifying biases or errors and improving model perfor-
mance. Recent post-hoc analysis of explainability has brought useful
methods for analyzing the willingness of model predictions. With
heat_map generated by post-hoc XAI analysis, users can see why
the target classification is predicted based on the model and target
classification. In a training process, the local model LM will classify
x and predict category LM(x) and the label is y. Mathematically,
the black box local model LM can be analyzed using the post-hoc
method to get the heat_map of (x, y,LM(x),LM) by generating
an XAI M model from LM. The second and third column of Figure
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Algorithm 1 XAI-accuracy Calculation
1: Input: GM, (x, y), (s, y), A
2: Output: XAI-accuracy
3: Step 3.1: Initialize and train the local model

4: LM ← GM
5: Train and update LM by local data (x, y)
6: Step 3.2: Generate XAI analysis model

7: m ← I(LM)
8: M ← N (m)
9: Step 3.3: Calculate heat_map and XAI-accuracy

10: while each s in S do

11: B ← M(s, y,LM(s))
12: u ← sum(B ∩ A)/sum(A)
13: v ← sum(B ∩ A)/sum(A)
14: r ← u/v
15: if r ≥ 1 then

16: n ← n+ 1
17: end if

18: end while

19: XAI-accuracy ← n/sum(S)

2 show the example of truth_mask and heat_map. M calculation
is introduced in Algorithm 1. GM is received global model and LM
is the local model trained locally for explainable analysis. In order
to generate reasonable and accurate heat_map, we introduce Inte-
grated Gradients SmoothGrad (IG-SmoothGrad). This method con-
sists of two parts, Integrated Gradients (IG) and SmoothGrad, and
is a widely used explainable method often employed for identifying
predictive features. SmoothGrad reduces misinterpretation by aver-
aging multiple heatmaps. Through our preliminary experiments, we
have found that IG-SmoothGrad is an efficient and reasonable ex-
planatory approach. In this process, I refers to the function of IG
used to analyze explainable pixels, followed by N , which is a noise
reduction method called NoiseTunnel (NT) based on the Smooth-
Grad technique [29].

s is the image in the samples S. y is the image label. LM(s) is
the model’s inference result. B is the heat map generated by the XAI
algorithm. A is the prepared truth mask, indicating pixel collection
inside the reasonable area. A is the area outside the reasonable area.
sum(area) is the function to sum the non-zero pixels of the area. r
is the IoU-Ratio and n is the number of samples with good inference
rationale. Using the example of a dog image in the second row, a
picture containing a dog would be classified as the dog category. Hu-
mans can only understand this classification by looking at the area
of the dog itself in the picture. We call the graph labeled with dog
regions the truth_mask, the second column of Figure 2.

To evaluate whether the feature is correctly extracted, the obvious
way is to check whether LM(image&truth_mask) can be pre-
dicted as the label. However, feature areas can be correctly extracted
sometimes despite incorrect predictions. So, it doesn’t work well if
we only evaluate the prediction of LM(image&truth_mask).

Maximizing the similarity between the Truthmask and heatmap
is desirable. Let’s use A represents truth_mask and B repre-
sents heat_map. Intersection over Union (IoU) is the most popular
method for comparing two regions:

IoU(A,B) =
|A ∩B|
|A ∪B| .

Occasionally, the object in the picture is very small (A is very small),
but the entire picture is quite large. Pixels in B may appear anywhere

in the picture because of the noise in generated heat_map. Then,
any noise from B (heat_map) will have a significant impact on the
results. So, a better way to evaluate the model’s rationale is needed
here.

Let’s say the entire picture consists of A and A. Unlike
IoU, we use percentage for comparison, so we use Intersection
over Union Ratio (IoU-Ratio) to represent, as shown in Equa-
tion (6). r stands for IoU-Ratio, which calculates the ratio of
u and v, where, u means in_mask_percentage and v means
out_mask_percentage. In_mask area and out_mask area are
shown in Figure 2’s 4th and 5th column. If IoU-Ratio is greater than
1, in_mask_percentage is bigger than out_mask_percentage.
Then we treat the rationale indicated by heat_map makes better
sense.

u =
|A ∩B|

A
, v =

|B ∩A|
A

, r =
u

v
. (6)

In this way, we can compare the ratio of u and v, that is, IoU-
Ratio to see whether most of the feature points are included inside
truth_mask.

Motivated by theoretical analysis of clients’ weight difference, our
approach encourages more clients to participate in the training pro-
cess while filtering out underperforming clients using a small test
dataset with an ideal distribution. Idea distribution means selecting
and distributing the test data to represent the distribution we want
to achieve. Additionally, we introduce a "truth mask" with the test
dataset and a method to calculate Intersection over Union (IoU) ra-
tio, ensuring the validity of the extracted features and improving the
explainability of the model’s decisions. By adding explainability into
the client selection mechanism, XFed aims to strike a balance be-
tween accuracy and explainability, enhancing the practicality and ef-
fectiveness of FL models.

4 Methodology

4.1 Overall process

Our proposed method, XFed, aims to solve the challenge of balanc-
ing high accuracy and high explainability in Federated Learning (FL)
models. Current client selection methods prioritize accuracy and time
to precision, but they may not provide optimal explainability of the
model’s decisions, which limits their practical use in real-world sce-
narios. To improve the accuracy of the target distribution dataset, we
propose to encourage more clients to participate in the training pro-
cess while selecting out underperforming clients. In order to select
the best-performing clients, we use a relatively small number of test
methods with an ideal distribution to evaluate the model trained by
each round of clients. By incorporating the "truth mask" technique
and the Intersection over Union (IoU) ratio, our method indicates
that the extracted features are valid and improves explainability. The
entire XFed process is illustrated in Figure 3 and described in the list
below, where we highlight the client-side selection and explainability
metrics.

• Step-1. Joining Step: small group of samples are provided by the
server to each newly joined client.

• Step-2. Starting of a formal process: a global model is sent to the
client by the server.

• Step-3. Client training process:

– Step-3.1. a local model (LM) is initiated by a global model
and trained with local data;
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Figure 3. XFed process: this shows the full process and details will be introduced in Section 4.1.

– Step-3.2. a new XAI model (M in Algorithm 1) trained by XAI
post-hoc analysis of the previous local model;

– Step-3.3. heat_map of test images are generated, and the XAI-
accuracy are calculated;

– Step-3.4. the accuracy is calculated;

• Step-4. Client selection process:

– Step-4.1. clients upload their own accuracy and XAI-accuracy
to the server side;

– Step-4.2. the selection list is generated by the server after the
server compares the performance of each client, and eliminates
the worst-performing clients.

• Step-5. The local models of the selected clients are uploaded to
the server.

• Step-6. An updated global model is aggregated by the server and
sent to all clients. We go back to the second step to iterate until
the training is over.

4.2 XAI evaluation and client selection

The trained model can generate a heat map for the input sample,
which we can examine to understand the inference result. We can
determine the heat map’s accuracy by comparing it with the truth
mask and measuring the IoU-Ratio. Algorithm-1 details the method
to calculate XAI accuracy.

After each client submits their accuracy and XAI accuracy to the
server, the server can select clients by sorting their performance. Per-
formance is calculated by fusing accuracy and XAI accuracy. Based
on the ranking, we can select the top clients’ models to upload in this
round.

5 Experiments and discussions

During the joining stage, each client is provided with a small set of
test data that includes a truth mask. In each communication round,
the client sends its accuracy and XAI accuracy to the server. The
server then sorts the clients based on their performance and selects
the top 90%-95%. To reduce communication overhead, 5%-10% of
each round’s communications are saved. The rationale for selecting
clients is primarily based on their XAI accuracy, followed by the
global model’s precision performance.

5.1 Experimental Setup

We evaluate our approach using CIFAR-10 [12] and MNIST [16]
datasets, with artificially created non-IID data partitions. To simulate
non-IID data partition, we use the heterogeneous partition method
[2], and randomly divide the data among participant clients. We also
use a small test set based on CIFAR and MNIST, which includes
manually marked truth masks for 30 and 102 pictures, respectively.
The truth mask indicates the position of the object to be classified and
is marked through drawing software, as shown in Column 2 of Figure
2. Heat map is calculated based on IG-SmoothGard. The truth mask
and generated heat map are used to calculate XAI accuracy through
Algorithm 1. For evaluation, we use Acc (accuracy), XAI_Acc (XAI
accuracy), and u (in_mask_percentage) of the final global model
as metrics. Accuracy shows the prediction performance, while XAI
accuracy indicates the rationale performance. u indicates the percent-
age of pixels inside the truth mask. We train the local model using
cross-entropy loss function and adopt the resnet18 architecture with
basic federated optimization methods in the model and scheduler. We
use stochastic gradient descent (SGD) with global and local learning
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rate adjustment for different iterations [32]. The default settings for
the experiments are as follows: start learning rate of 0.01, local batch
size of 128, and local epoch number of 20.

Oort [15] and PyramidFL [17] are considered as state-of-the-

art client selection methods that work in two stages. In Stage 1, the
IID constraint and utility-based method are applied to the data in the
clients of the client selection orchestration center. In Stage 2, clients
are selected based on the training loss. Adopting Stage 1 does not im-
pact the comparison of our methods as it is also applicable to XFed.
On the other hand, non-client selection methods such as FedProx [21]
and FedAVG [8] use all the training data, and as a result, the final ac-
curacy can be higher than those of client selection methods. There-
fore, we did not apply Stage 1 of the IID constraint when using Oort
and PyramidFL. In our experiments, we use Oort’ to represent the
simplified Oort and PyramidFL, and the number of selected clients
is the same as XFed. FedAVG is a widely used baseline method in
Federated Learning. FedProx is a state-of-the-art method for FL
with non-IID data, which adds global training regulation to the local
training process.

We use Oort’, FedAVG, and FedProx as baselines for compari-
son. The number of clients used by Oort is the same as XFed. Fe-
dAVG and FedProx use all the client’s data, which can make the
comparison more challenging for our methods.

5.2 Overall Comparison

The experiment shows that with 5%-10% communication saving and
similar accuracy, our XFed method improves the XAI-accuracy 14%-
35%.

XFedAVG means the method applying XFed on FedAVG, while
XFedProx means the methods applying XFed on FedProx. In Fig-
ure 4 and Figure 5, we compare XFedAVG, XFedProx to Oort’, Fe-
dAVG, and FedProx on CIFAR dataset selecting top 90% clients’
models in each communication round. The sorting method of client
rank is using both Client’s accuracy and XAI-accuracy. The horizon-
tal axis represents different communication rounds.
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80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

XFedAVG Acc XFedAVG u XFedProx Acc XFedProx u

Oort' Acc Oort' u FedAVG Acc FedAVG u

FedProx Acc FedProx u

Round

Acc/u

Figure 4. The comparison of different methods

The clustered columns in Figure 5 represent XAI accuracy.
Our XFedAVG and XFedProx methods are significantly bet-
ter than that in the early stage in terms of the accuracy and
in_mask_percentage. Meanwhile, our method’s XAI accuracy
performs better than Oort’. The accuracy of XFedAVG is close to that
of FedProx (the gap is less than 1%), while the interpretation ratio-
nality has been improved by 30%. The convergence of XFedAVG’s

accuracy rate is also more stable during the entire calculation pro-
cess, and the rationality of the explanation is also relatively stable.
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4 5 6 7 8 9 10 11 12 13 14 15 16 17

XFedAVG  XAI_Acc XFedProx XAI_Acc Oort' XAI_Acc

FedAVG XAI_Acc FedProx XAI_Acc

Round

XAI Acc

Figure 5. Rationale result comparison

Table 1 compares the performance of using XFed versus not us-
ing it. The best performance is indicated in boldface. The sorting
method of client rank is using Client’s accuracy. A CIFAR10 test
data set is divided into 16 clients’ data and 1 client is filtered out in
each communication round. In the above group of precision compari-
son experiments, we can observe that both XFedAVG and XFedProx
can achieve higher precision. XFedAVG performs best in a compar-
ison of the second factor Rationale which is the XAI-accuracy. The
interesting thing is that there is no outstanding XAI-accuracy perfor-
mance of XFedProx. Upon analysis, FedProx’s calculation process
does not entirely rely on local data characteristics to calculate the
loss, which affects the rationality of the explanation. This can also
be observed in the direct comparison of FedProx and FedAVG in this
second group of Table 1.

As shown in Figure 6, we compare the results of experiments con-
ducted on FedAVG and XFedAVG on the MNIST dataset using 10
clients and select 9 clients’ models in each round. According to XFe-
dAVG’s methodology, 10% of clients are eliminated during run-time.
FedAVG utilizes all common clients. As we can see, the accuracy of
the two methods is very close throughout the experiment, but the XAI
accuracy results of XFedAVG are more reliable.

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10
FedAVG XAI_Acc XFedAVG XAI_Acc FedAVG Acc

FedAVG u XFedAVG Acc XFedAVG u

Round

Acc/XAI Acc/u

Figure 6. Evaluating the performance on the MNIST dataset

5.3 Ablation Study

XFed can use accuracy or XAI accuracy to select out clients to join
the aggregation. So we designed the experiment to compare the dif-
ference between these two different client selection method, shown
in Figure 7. Based on this experiment, we can see that client selection
includes XAI accuracy shows a little improvement when comparing
XAI Accuracy.
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Table 1. XFed applied on FedAVG and FedProx

Round Round 4 Round 6 Round 8 Round 10 Round 12 Round 14 Round 15 Round 16 Round 17

FedAVG Acc 69.51% 74.09% 68.19% 59.91% 72.31% 77.55% 79.73% 80.08% 80.39%
FedProx Acc 67.18% 75.74% 73.48% 56.15% 70.58% 78.96% 80.99% 82.41% 82.68%
XFedAVG Acc 72.53% 74.96% 72.98% 69.06% 69.69% 76.05% 80.19% 80.88% 81.11%
XFedProx Acc 77.58% 78.04% 75.35% 70.39% 75.18% 81.69% 82.86% 83.12% 83.33%

FedAVG XA_Acc 70.00% 66.67% 60.00% 66.67% 63.33% 70.00% 63.33% 63.33% 66.67%
FedProx XAI_Acc 53.33% 50.00% 53.33% 46.67% 46.67% 43.33% 53.33% 43.33% 50.00%
XFedAVG XAI_Acc 73.33% 80.00% 76.67% 70.00% 80.00% 80.00% 76.67% 76.67% 80.00%

XFedProx XAI_Acc 53.33% 43.33% 43.33% 43.33% 53.33% 46.67% 50.00% 46.67% 53.33%

Figure 7. Ablation Study: FedAVG’s Accuracy and XAI Accuracy are the
base line. XFed-x shows the result when adopting XFed by using 20% XAI
Accuracy and 80% Accuracy to select clients. XFed-a shows the result when
adopting XFed by using Accuracy to select clients. The different series mean
different rounds during the experiment.

Table 2. The model’s input size is (3,32,32) where nt_samples = 5,
n_steps = 5. IOU-Ratio time is measured by python’s elapsed_time from IG-
SmoothGrad generation to IOU-Ratio calculated.

Million
Parameters

Million
Mult-Adds

IG-S
Million

Mult-Adds

IOU-Ratio
Calc Time
Per Sample

mobilenetv2 3.5 7.79 194.75 24.78ms
mobilenetv3 5.48 8.6 215 25.94ms

resnet18 11.69 37.69 942.25 15.38ms
shufflenetv2 2.28 4.08 102 25.10ms

5.4 Required Resource

XAI post-hoc computational complexity is a concern for resource-
constrained clients. The required time for the XAI post-hoc model
(IG-SmoothGrad) is shown in Table-2 for a CIFAR image on an
NVidia P8 GPU. The IOU-Ratio time includes (IG +NT) genera-
tion but excludes image loading time. When using a test set of 30
samples, the required time is less than 0.78s. For a 720p picture
with input size (3,1280,720), using the mobilenetv2 model requires
5.89G Multi-adds and takes 562 seconds to calculate the IOU-Ratio
using the (IG-SmoothGrad) method described in this paper. This in-
dicates that calculating XAI-ACC based on IOU-Ratio is promising
for clients with limited resources. The memory requirements for the
(IG-SmoothGrad) parameter generated by the mobilenetv2 model
increase with the number of nt_samples, and at nt_sample = 5, it
reaches 82.6MB, which is five times larger than the model size of
mobilenetv2 for a CIFAR image.

5.5 Further Discussion

To calculate the global model, we used average aggregation after se-
lecting the clients. The weight of each client was determined by their
real rankings, resulting in potentially better results. To account for
the non-IID data distribution among clients, we proposed sending a
portion of the expected test data set to each client to obtain their rank-
ing. Additionally, the server can provide an API for ranking clients
who refuse to participate or are deemed untrustworthy.

Explainability accuracy on the shared dataset can be achieved
without violating privacy. The explainability methods simply reveal
how the model makes predictions based on certain features and do
not disclose personal information. Furthermore, techniques such as
differential privacy can be employed to further protect the privacy
of the data. While adversarial modifications to the dataset are a con-
cern, there are potential defenses that can be implemented, such as
data integrity checks or encryption, to detect or prevent such attacks.
Using a diverse set of datasets can also help reduce the impact of any
malicious modifications.

6 Conclusion and Future Work

Interpretability is increasingly recognized as a crucial aspect of AI
decision-making. However, in FL, the exploration of interpretable
learning remains relatively novel. In this study, we investigated the
use of model parameter difference and KL divergence to analyze the
differences among FL clients. It revealed that FL can improve model
performance by (a) incorporating more data from diverse sources in
the training process; (b) minimizing the cross-entropy between the
client model’s prediction and the empirical distribution. This sug-
gests that leveraging more clients and filtering out some clients with
lower performance metrics can help to enhance the performance of
the aggregated model over the test data. We proposed XFed as a
method for selecting clients in FL. XFed sends a small group of
test sets to clients and calculates XAI-accuracy using the intersec-
tion over union (IoU) ratio between the predicted heat_map and
the ground truth truth_mask to measure model rationality. Our ex-
periments show that XFed achieves accuracy close to state-of-the-art
methods and improves rationale by 14%-35%, while also reducing
the number of communications by 5%-10%.
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