
FMTESTING: A FEATUREIDE Plug-in
for Automated Feature Model Analysis and Diagnosis

Tamim Burgstaller, Viet-Man Le, Thi Ngoc Trang Tran and Alexander Felfernig

Graz University of Technology, Graz, Austria
{tamim.burgstaller,vietman.le,ttrang,alexander.felfernig}@ist.tugraz.at
ORCiD ID: Tamim Burgstaller https://orcid.org/0009-0007-4522-8497,

Viet-Man Le https://orcid.org/0000-0001-5778-975X, Thi Ngoc
Trang Tran https://orcid.org/0000-0002-3550-8352, Alexander Felfernig https://orcid.org/0000-0003-0108-3146

Abstract. The increasing size and complexity of feature models
(FMs) can trigger anomalies or faults, challenging stakeholders in
keeping FMs consistent with the domain requirements. Existing
quality assurance tools do not provide advanced techniques to
point out possibilities to adapt an FM for consistency recovery.
In this paper, we present FMTESTING, which is a plug-in for
FEATUREIDE, an ECLIPSE-based IDE supporting different phases
of feature-oriented software development. FMTESTING is capable
of automatically generating property-based test cases based on six
different types of FM analysis operations. Furthermore, for violated
test cases, diagnoses are provided to precisely indicate faulty FM
elements (constraints) that should be adapted to restore consistency.
Our tool provides user interfaces inside FEATUREIDE to ensure
convenient use, even for users who are not domain experts.

Keywords: Software Product Lines, Feature Models, Configuration,
Constraint Satisfaction, Model-based Diagnosis, Direct Diagnosis

1 Introduction

Feature models (FMs) [11] are in wide-spread use for modeling Soft-
ware Product Line (SPL) variabilities and commonalities. In FMs,
product line features are organized in a hierarchical structure that re-
flects their relationships and dependencies. The root of the hierarchy
represents the entire product line, and each node in the hierarchy rep-
resents a feature that can be selected or deselected to create a specific
product variant. Extended feature models also support attributes and
cardinalities, which can be used to specify further constraints among
the features in the model [4, 25].

Feature models have been widely adopted to describe all the fea-
tures and constraints for configuring valid software products in Soft-
ware Product Lines [2, 11, 27]. FMs can become quite complex,
making it highly challenging to keep them consistent with the do-
main requirements. Consequently, intelligent mechanisms for feature
model quality assurance have to be provided [13, 16].

FM testing and debugging can be supported by analysis operations
that help to check the conformance of an FM with regard to a set of
well-formedness properties [3, 22]. An example of such a property
(well-formedness rule) is the non-existence of dead features. Dead
features are "inactive" in every possible feature model configuration,
i.e., there does not exist a configuration which includes this feature.

Such well-formedness rules can be regarded as test cases that
help specify a feature model’s intended semantics. FM testing can
be combined with corresponding diagnosis operations that help to
identify faulty FM elements (constraints) in an efficient fashion. The
underlying approach is to exploit test cases for the induction of con-
flicts [10] (some test cases are inconsistent with feature model con-
straints), which can then be resolved based on model-based diagnosis
[7, 9, 22]. In this context, test cases are part of test suites that define
intended FM semantics and thus help to assure FM quality [16].

Existing quality assurance techniques and tools focus on the “ex-
ecution” of different types of analysis operations that analyze struc-
tural model properties [3, 9, 12, 20, 21, 24, 26]. Although these ap-
proaches can be used to indicate violations of predefined properties,
they do not support in a focused fashion a pin-pointing of faulty fea-
ture model elements which is needed for FM adaptations [16].

In line with [5, 16, 19], we have developed FMTESTING1 which is
a plug-in for FEATUREIDE [26].2 FMTESTING allows for an auto-
mated test case generation based on the properties of FM analysis op-
erations. Our tool provides automated FM testing and debugging, on
which corrective explanations are determined when property-based
test case violations occur in a feature model. Differing from the ex-
isting tools, FMTESTING creates why not explanations in terms of
minimal sets of constraints (diagnoses) responsible for faulty model
semantics. This way, stakeholders can more easily detect relation-
ships/constraints acting as a source of faulty feature model behavior.

The major contributions of this paper are the following. First, we
show how the concepts of direct diagnosis [7] can be applied to
the automated debugging of feature models. Second, we present the
FMTESTING FEATUREIDE-plugin which integrates wide-spread
feature model analysis operations [3] with knowledge base testing
and debugging approaches.

The remainder of this paper is organized as follows. In Section 2,
we introduce basic concepts of feature models (FMs), FM analysis
operations, and FM testing and debugging. In Section 3, we present
our implementation of the FMTESTING plugin including the corre-
sponding technical (also diagnosis-related) backgrounds. Limitations
of the current work and open issues for future work are discussed in
Section 4. The paper is concluded with Section 5.

1 github.com/AIG-ist-tugraz/FMTesting/releases/tag/v0.0.1
2 featureide.de

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230640

3190

https://orcid.org/0009-0007-4522-8497
https://orcid.org/0000-0001-5778-975X
https://orcid.org/0000-0002-3550-8352
https://orcid.org/0000-0003-0108-3146
github.com/AIG-ist-tugraz/FMTesting/releases/tag/v0.0.1


Figure 1. A working example of the presumably faulty feature model of a Bamboo Bike used throughout the paper. This model is captured from FEATUREIDE
[26], where the highlighted anomalies such as dead feature, false optional feature, and redundant constraint are identified by the built-in engine of FEATUREIDE.

2 Preliminaries

In the following, we introduce basic concepts and techniques that
have been integrated into the FMTESTING plugin.

2.1 Feature Models

Feature models are configuration models representing the variability
properties of a software product line (SPL) in terms of features and
their relationships [3, 6]. An example of the presumably faulty fea-
ture model of a Bamboo Bike3 is depicted in Figure 1. Features are
typically arranged in a hierarchical fashion using relationships such
as mandatory (e.g., each BambooBike includes a Frame), optional
(e.g., an Engine could be included), alternative (e.g., a Frame is ei-
ther a Female, a Male, or a StepThrough frame), and or (e.g., a Brake
can be defined as Front, Rear or also as BackPedal). Moreover, cross-
tree constraints such as excludes and requires are also integrated into
the model to set cross-hierarchical restrictions for features. For in-
stance, Engine does not allow the inclusion of BackPedal, and the
inclusion of the DropHandlebar feature requires the inclusion of the
Male feature. For further details about feature model representation,
we refer to Batory [1].

2.2 Feature Model Analysis

Feature model analysis operations can be regarded as the computer-
aided analysis of feature model properties [3]. A set of 30 analysis
operations have been identified [3], including operations for model
consistency, anomaly detection, explanations, and feature model con-
figuration capabilities. In the following, we highlight some analysis
operations for anomaly detection used throughout the paper.

Anomalies are triggered by the increasing size and complexity
of feature models. Some examples thereof are void feature models
that do not represent any configuration, dead features that are not
included in any possible configuration, and conditionally dead fea-
tures that become dead under certain circumstances (e.g., when in-
cluding specific feature(s) in a configuration). Anomalies also can
be full mandatory features that are included in every possible so-
lution, false optional features included in all configurations although
they have not been modeled as mandatory, and redundant constraints
that do not change the semantics of the feature model [17]. Fig-
ure 1 depicts a feature model with anomalies. In this example, due
to the constraint Brake → Male, Male is false optional, Step-
through and Female become dead features, and thus, the constraint

3 www.my-boo.com

DropHandlebar → Male is redundant. For further details of fea-
ture model analysis operations, we refer to [3, 5, 12].

To support reasoning about feature model properties, feature
models can be transformed into a Constraint Satisfaction Problem
(CSP) [23], where each feature fi is related to the binary domain
{(t)rue, (f)alse}. The mentioned relationships and cross-tree con-
straints are represented as constraints on the CSP level. A set of
rules defining how to translate a feature model into a correspond-
ing constraint-based representation is discussed in Benavides et al.
[3]. Table 1 depicts the constraints ci ∈ CF derived from the feature
model shown in Figure 1. In this context, c0 : BambooBike = t is
a root constraint that avoids the derivation of empty configurations.

Table 1. c0 and CF = {c1..c9}.
constraint CSP representation

c0 BambooBike = t
c1 BambooBike ↔ Frame
c2 BambooBike ↔ Brake
c3 Engine → BambooBike
c4 DropHandlebar → BambooBike

c5

(Female ↔ ¬Male ∧ ¬StepThrough ∧ Frame)
∧(Male ↔ ¬Female ∧ ¬StepThrough ∧ Frame)
∧(StepThrough ↔ ¬Male ∧ ¬Female ∧ Frame)

c6 Brake ↔ Front ∨Rear ∨BackPedal
c7 DropHandlebar → Male
c8 ¬(Engine ∧BackPedal)
c9 Brake → Male

2.3 Feature Model Testing

In order to support feature model quality assurance, test suites (T)
can be applied to define the intended behavior of a feature model
[16]. As part of a test suite, test cases are used to validate feature
models against a predefined set of different properties required by
feature model analysis operations [3, 20] (but are not limited to such
types of feature model properties). A test case is interpreted as a
constraint representing the intended semantics of a feature model.
Examples of test cases ti (see also Table 2) in such test suites are
t1 : Engine = t (assuring the existence of at least one configu-
ration with Engine activated) and t2 : Male = f (assuring the
existence of at least one configuration with Male deactivated). A
further test case t3 : Female = t ∧ Engine = t, specifying that
there should exist at least one co-occurrence of the features Female
and Engine. For further details regarding feature model test cases
and feature model test suites, we refer to [14, 16, 17].

T. Burgstaller et al. / FMTESTING: A FEATUREIDE Plug-in for Automated Feature Model Analysis and Diagnosis 3191

www.my-boo.com


Test cases can be derived from various sources, such as analysis
operations, previously completed consistent feature model configu-
rations, or can be manually defined by knowledge engineers in the
feature model development and maintenance processes.

Table 2. An example set of test cases specifying the intended behavior of
the feature model represented in Figure 1.

ID constraint
t1 Engine = t
t2 Male = f
t3 Female = t ∧ Engine = t

2.4 Feature Model Debugging

Feature model testing can be combined with corresponding diagno-
sis operations to identify minimal explanations (diagnoses - Δ) for
violated test cases. An example of such explanations would be a min-
imal set of constraints responsible for the faulty behavior of a feature
model [16]. Such constraints have to be deleted/adapted to make the
feature model consistent with T . The concept of minimality means
that if Δ is minimal, there does not exist any other minimal diag-
nosis Δ′ such that Δ′ is a subset of Δ. In our working example,
Δ1 = {c9}, Δ2 = {c5}, and Δ3 = {c2} are the explanations show-
ing different options for deleting/adapting the constraints in CF such
that the consistency between the feature model (Figure 1) and test
cases {t1..t3} (Table 2) is restored. In the following, we present the
general idea and point out the advantages of the two basic algorithms
implemented in FMTESTING to determine explanations for different
feature model fault patterns.

Determination of Diagnoses. DIRECTDEBUG [16] extends the
direct diagnosis approach [7] to support the automated testing and
debugging of variability models. This algorithm follows the divide-
and-conquer strategy and does not require any support of a conflict
detection or a related derivation of hitting sets [22]. Moreover, it
takes into account all the given test cases at the same time and iden-
tifies one diagnosis (Δ) that makes all test cases consistent with the
knowledge base.

DIRECTDEBUG requires four inputs: (1) δ that avoids redundant
consistency checks, (2) the diagnosis candidates C ⊆ CF , (3) a
background knowledge B = CF\C∪{c0}, and (4) a set of test cases
Tπ . δ = ∅ indicates that C has already been checked for consistency
with B. The algorithm returns an MSS - Γ (Maximum Satisfiable
Subset - see Definition 3 in [16]), a corresponding diagnosis is C \Γ.
For further details regarding the algorithm, we refer to [15, 16].

Determination of Redundancies. WIPEOUTRFM [17] is a com-
plete algorithm assuring the identification of all redundant con-
straints in a feature model. This algorithm relies on the following
assumption: “If a constraint ci ∈ CF is non-redundant, then its
deletion from CF will change the semantics of CF ”. In order to
examine the non-redundancy of ci, we first delete it from CF and
then add its negation to CF . By now, if the current CF becomes
consistent, then ci is non-redundant. This approach is more efficient
than the approach that checks redundancy properties based on con-
crete configurations [5]. For further details on WIPEOUTRFM , we
refer to [17].

3 Feature Model Testing Tool: A plug-in for
FeatureIDE

Our tool, FMTESTING, provides a mechanism to automatically gen-
erate property-based test cases and allows the automated determina-

T
e

s
ti

n
g

 a
n

d
 

D
e

b
u

g
g

in
g

FMTesting

C
h

o
c

o
 S

o
lv

e
r

D
ir

e
c

tD
e

b
u

g
 &

 

W
ip

e
O

u
tR
F
M

T
e

s
t 

C
a

s
e

 

G
e

n
e

ra
ti

o
n

1
2

property check

explanation

Diagnoses

Feature 
model file

FeatureIDE

Test Suite
XML format

Test Suite 
Execution 

Result

Test Suite

e
x
te

n
s
io

n
 p

o
in

ts

Figure 2. The architecture5 of the FMTESTING with two key components.

tion of faulty constraints. The architecture and key components of
the tool are presented in the following subsections.

3.1 Architecture

FMTESTING is built on the basis of extension points provided by
ECLIPSE and FEATUREIDE. These extensions may contain simple
editors and views to menu entries, specific settings, and much more.
FMTESTING consists of two key components (see Figure 2): (1)
test case generation that generates a test suite based on a selected
set of feature model analysis operations, and (2) feature model test-
ing and debugging that asynchronously executes a test suite valida-
tion and identifies corrective explanations (in terms of diagnoses) to
resolve the violated tests. Such corrective explanations provide dif-
ferent ways to delete/adapt the relationships/constraints in a feature
model and therefore, resolve its anomalies.

Due to the time-consuming nature of test case generation as well
as feature model testing and debugging, FMTESTING exploits the
parallelization features of the available implementation frameworks
Java ForkJoin6 that takes into account available resources of the ma-
chine and therefore reduces its execution runtime.

3.2 Test Case Generation

FMTESTING extends the checking methods proposed by Felfernig
et al. [5] to generate six types of test cases: void feature models, dead
features, conditionally dead features, full mandatory features, false
optional features, and redundant constraints. Table 3 shows test case
templates for the corresponding analysis operations as well as re-
lated property checks and explanations. FMTESTING gets a feature
model in the FEATUREIDE XML format as the input and stores the
generated test suite in a XML file. FMTESTING allows knowledge
engineers to choose test case types (analysis operations) to include
in a test suite (see Step 1 of Figure 3).

3.3 Automated Testing and Debugging

FMTESTING provides a testing and debugging engine that executes
asynchronously the validation of every test case of a given test suite.
In case of any violated test cases, the engine activates in parallel

5 In Figure 2, we use the icons from https://icons8.com, including General
Warning Sign icon, File icon, List icon, and Survey icon.

6 https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

T. Burgstaller et al. / FMTESTING: A FEATUREIDE Plug-in for Automated Feature Model Analysis and Diagnosis3192



Table 3. Feature model analysis operations, test case templates, property checks, and related explanations. For example, a consistency check
inconsistent(CF ∪ ti) is activated to figure out whether a void feature model test case (ti = {c0}) is violated. A related explanation can be determined by
solving the FM diagnosis operation with (∅,CF ,∅,ti). The algorithms for identifying diagnosis (DIRECTDEBUG) and detecting redundancy (WIPEOUTRFM )
are presented in Section 2.4.

Analysis Operation Test Case Template Property Check Explanation (Diagnosis Task)

Void feature model ti = {c0} inconsistent(CF ∪ ti) DIRECTDEBUG(∅,CF ,∅,ti)
Dead (fi) ti = {c0 ∧ fi = true} inconsistent(CF ∪ ti) DIRECTDEBUG(∅,CF ,∅,ti)

Conditionally dead (fi)
ti = {c0 ∧ fj = true ∧ fi = true}

inconsistent(CF ∪ ti) DIRECTDEBUG(∅,CF ,∅,ti)where fi is optional and not dead,
fj is not dead

Full mandatory (fi) ti = {c0 ∧ fi = false} inconsistent(CF ∪ ti) DIRECTDEBUG(∅,CF ,∅,ti)

False optional (fi)
ti = {c0 ∧ fj = true ∧ fi = false}

inconsistent(CF ∪ ti) DIRECTDEBUG(∅,CF ,∅,ti)where fi is optional and not dead,
fj is the mandatory parent of fi

Redundant (ci) ti = {ci} inconsistent(CF \ ti ∪ ¬ti) ci ∈ WIPEOUTRFM (CF )

1

2

Figure 3. The usage of FMTESTING follows two steps. In Step 1, after modeling a feature model using FEATUREIDE, FMTESTING first allows a user to
select (from the Feature Model Diagnosis tab) the types of test case. Then, the user clicks on the Start Diagnosis to trigger the testing and debugging execution.
In Step 2, a dialog will pop-up to show testing results and corresponding explanations identified by the testing and debugging engine.

a corresponding explanation generator on the basis of two algo-
rithms DIRECTDEBUG and WIPEOUTRFM . The explanation gen-
erator identifies corrective explanations to resolve anomalies of the
feature model. Since DIRECTDEBUG determines exactly one diag-
nosis at a time, we combined this algorithm with a construction of
the hitting set directed acyclic graph (HSDAG) [22] to determine the
complete set of diagnoses.7

The input of the FMTESTING engine is a set of test cases se-
lected from an already generated test suite or from a set of test case
types when no test suites exist. The results of the test suite execution
(i.e., anomalies and diagnoses) are returned and displayed in a dialog
where they are represented in the form of a tree shape and grouped by
test case type. The diagnoses that have been identified are displayed
in ascending order in terms of impact on the structure of the feature

7 For further details of combining DIRECTDEBUG with a construction of
HSDAG, we refer to [5, 7].

model. This representation helps the user quickly identify problem
areas concerning a certain anomaly type.

An example explanation is shown in Figure 3 (see the text in
the blue rectangle). The tool detects that the feature Female is a
dead feature and then generates three corrective explanations (di-
agnoses): Diagnosis 1: [requires(Brake, Male)], Diagnosis 2: [al-
ternative(Frame, Female, Male, Step-through)], and Diagnosis 3:
[mandatory(BambooBike, Brake)]. These explanations offer three
ways of constraint/relationship deletion or adaptation to resolve the
anomaly. Particularly, the dead feature Female can be resolved by
adapting/deleting one of the following constraints/relationships: (1)
the constraint “requires” between Brake and Male, (2) the rela-
tionship “alternative” between Frame and its sub-features (Female,
Male, Step-through), and (3) the “mandatory” relationship between
BambooBike and Brake.

T. Burgstaller et al. / FMTESTING: A FEATUREIDE Plug-in for Automated Feature Model Analysis and Diagnosis 3193



4 Limitations and Future Work

The tool has five limitations that need to be improved within the
scope of future work. First, the current version of FMTESTING can
exploit only six analysis operations to generate test cases. Support-
ing further analysis operations such as core features and multiplicity
bounds is, therefore, necessary to make the tool more applicable to
real-world feature models. The second limitation is the lack of unin-
tended behavior checks. For instance, the check BambooBike = f
is needed to get rid of empty configurations. In the future version of
our tool, we will integrate a mechanism to generate and specify neg-
ative test cases [16]. Third, a large number of generated test cases
can cause inefficient testing and debugging operations. To address
this, intelligent techniques such as test case redundancy detection
[17], test case aggregation [14], and test case selection and prioritiza-
tion might be essential to reduce the number of generated test cases.
Additionally, the debugging performance can be improved by utiliz-
ing a parallelization approach proposed by Le et al. in [18]. Fourth,
generated test cases need to be evaluated based on mutation testing
[8] where mutation operations are generated based on insights into
typical errors made when building feature models. Finally, the ex-
planations of violated test cases are given as constraint sets, which
are not directly related to the feature model’s structural information
and, consequently, could challenge stakeholders in comprehending
the faults. A means to express explanations in a more user-friendly
manner, such as a visualization directly inside the feature model, is
therefore needed [12].

5 Conclusions

In this paper, we have introduced a FEATUREIDE plug-in named
FMTESTING which provides a mechanism for the automated test
case generation based on six basic analysis operations. Our tool
can check whether a feature model shows one or more of these six
anomalies and execute asynchronously test case validation as well as
corresponding diagnosis. Although our tool already helps to improve
feature model development and maintenance, further extensions, for
example, in terms of analysis operations are still needed to provide
enhanced services for real-world scenarios.

Acknowledgements

The presented work has been developed in the FFG-funded project
OPENSPACE (FO999891127).

References

[1] D. Batory, ‘Feature models, grammars, and propositional formulas’, in
Software Product Lines, eds., Henk Obbink and Klaus Pohl, pp. 7–20,
Berlin, Heidelberg, (2005). Springer Berlin Heidelberg.

[2] D. Benavides, A. Felfernig, J. A. Galindo, and F. Reinfrank, ‘Auto-
mated analysis in feature modelling and product configuration’, in Safe
and Secure Software Reuse, eds., J. Favaro and M. Morisio, pp. 160–
175, Berlin, Heidelberg, (2013). Springer Berlin Heidelberg.

[3] D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘Automated analysis of
feature models 20 years later: A literature review’, Information Systems,
35(6), 615–636, (2010).

[4] K. Czarnecki, S. Helsen, and U. Eisenecker, ‘Formalizing Cardinality-
based Feature Models and Their Specialization’, Software Process: Im-
provement and Practice, 10(1), 7–29, (2005).

[5] A. Felfernig, D. F. Benavides Cuevas, J. Á. Galindo Duarte, and F. Re-
infrank, ‘Towards anomaly explanation in feature models’, in ConfWS-
2013: 15th International Configuration Workshop (2013), p 117-124.
CEUR-WS, (2013).

[6] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-Based
Configuration: From Research to Business Cases, Morgan Kaufmann,
2014.

[7] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis
algorithm for inconsistent constraint sets’, Artif. Intell. Eng. Des. Anal.
Manuf., 26(1), 53–62, (February 2012).

[8] J. M. Ferreira, S. R. Vergilio, and M. Quinaia, ‘Software product line
testing based on feature model mutation’, International Journal of
Software Engineering and Knowledge Engineering, 27(05), 817–839,
(2017).

[9] M. Hentze, T. Pett, T. Thüm, and I. Schaefer, ‘Hyper explanations
for feature-model defect analysis’, in 15th International Working Con-
ference on Variability Modelling of Software-Intensive Systems, Va-
MoS’21, New York, NY, USA, (2021). Association for Computing Ma-
chinery.

[10] U. Junker, ‘QUICKXPLAIN: Preferred explanations and relaxations for
over-constrained problems’, in Proceedings of the 19th National Con-
ference on Artifical Intelligence, AAAI’04, p. 167–172. AAAI Press,
(2004).

[11] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
‘Feature-oriented Domain Analysis (FODA) Feasibility Study’, Tech-
nical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering
Inst, (1990).

[12] M. Kowal, S. Ananieva, and T. Thüm, ‘Explaining anomalies in fea-
ture models’, in Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences,
GPCE 2016, p. 132–143, New York, NY, USA, (2016). Association for
Computing Machinery.

[13] D. Le, H. Lee, K. Kang, and L. Keun, ‘Validating consistency between
a feature model and its implementation’, in Safe and Secure Software
Reuse, eds., J. Favaro and M. Morisio, pp. 1–16, Berlin, Heidelberg,
(2013). Springer Berlin Heidelberg.

[14] V. M. Le, A. Felfernig, and T. N. T. Tran, ‘Test case aggregation for
efficient feature model testing’, in Proceedings of the 26th ACM Inter-
national Systems and Software Product Line Conference - Volume B,
SPLC ’22, p. 174–177, New York, NY, USA, (2022). Association for
Computing Machinery.

[15] V. M. Le, A. Felfernig, T. N. T. Tran, M. Atas, M. Uta, D. Benavides,
and J. Galindo, ‘Directdebug: A software package for the automated
testing and debugging of feature models’, Software Impacts, 9, 100085,
(2021).

[16] V. M. Le, A. Felfernig, M. Uta, D. Benavides, J. Galindo, and T. N. T.
Tran, ‘Directdebug: Automated testing and debugging of feature mod-
els’, in 2021 IEEE/ACM 43rd International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 81–
85, (2021).

[17] V. M. Le, A. Felfernig, M. Uta, T. N. T. Tran, and C. V. Silva, ‘Wipe-
outr: Automated redundancy detection for feature models’, in Proceed-
ings of the 26th ACM International Systems and Software Product Line
Conference - Volume A, SPLC ’22, p. 164–169, New York, NY, USA,
(2022). Association for Computing Machinery.

[18] V.-M. Le, C. V. Silva, A. Felfernig, D. Benavides, J. Galindo, and
T. N. T. Tran, ‘FASTDIAGP: An algorithm for parallelized direct diag-
nosis’, Proceedings of the AAAI Conference on Artificial Intelligence,
37(5), 6442–6449, (Jun. 2023).

[19] V. M. Le, T. N. T. Tran, and A. Felfernig, ‘A conversion of feature
models into an executable representation in microsoft excel’, in Intelli-
gent Systems in Industrial Applications, eds., M. Stettinger, G. Leitner,
A. Felfernig, and Z. Ras, pp. 153–168, Cham, (2021). Springer Interna-
tional Publishing.

[20] M. Mendonca, A. Wąsowski, and K. Czarnecki, ‘SAT-Based Analysis
of Feature Models is Easy’, in SPLC’09, pp. 231–240, USA, (2009).

[21] M. Nieke, J. Mauro, C. Seidl, T. Thüm, I. C. Yu, and F. Franzke,
‘Anomaly Analyses for Feature-Model Evolution’, in 17th ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences, GPCE 2018, p. 188–201, New York, NY, USA,
(2018). ACM.

[22] R. Reiter, ‘A theory of diagnosis from first principles.’, Artif. Intell.,
32(1), 57–95, (1987).

[23] Francesca Rossi, Peter van Beek, and Toby Walsh, Handbook of Con-
straint Programming, Elsevier, 2006.

[24] G. R. A. Schmitt, C. Bettinger, and G. Rock, ‘Glencoe–A Tool for Spec-
ification, Visualization and Formal Analysis of Product Lines’, in Pro-
ceedings of ISTE 25th International Conference on Transdisciplinary

T. Burgstaller et al. / FMTESTING: A FEATUREIDE Plug-in for Automated Feature Model Analysis and Diagnosis3194



Engineering, volume 7 of Advances in Transdisciplinary Engineering,
pp. 665–673, Amsterdam, (2018). IOS Press.

[25] N. Siegmund, S. Sobernig, and S. Apel, ‘Attributed Variability Models:
Outside the Comfort Zone’, in 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, p. 268–278. ACM, (2017).

[26] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
‘Featureide: An extensible framework for feature-oriented software de-
velopment’, Sci. Comput. Program., 79, 70–85, (jan 2014).

[27] K. Villela, A. Silva, T. Vale, and E. S. de Almeida, ‘A survey on soft-
ware variability management approaches’, in Proceedings of the 18th
International Software Product Line Conference - Volume 1, SPLC ’14,
p. 147–156, New York, NY, USA, (2014). Association for Computing
Machinery.

T. Burgstaller et al. / FMTESTING: A FEATUREIDE Plug-in for Automated Feature Model Analysis and Diagnosis 3195


	Introduction
	Preliminaries
	Feature Models
	Feature Model Analysis
	Feature Model Testing
	Feature Model Debugging

	Feature Model Testing Tool: A plug-in for FeatureIDE
	Architecture
	Test Case Generation
	Automated Testing and Debugging

	Limitations and Future Work
	Conclusions

