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Abstract. This ongoing work outlines a computer vision and deep learning-based
pipeline to identify and detect brain biomarkers of diagnostic potential from mag-
netic resonance imaging (MRI) scans. In this context, this paper describes and
analyses two strategies for brain landmark detection, which is a key step in brain
biomarker identification: one based on a single Deep Convolutional Neural Net-
work (DCNN) that detects multiple landmarks, and the other based on an ensemble
of DCNNs trained to detect one landmark each. Based on our evaluation using two
distinct datasets, our preliminary findings demonstrate that the ensemble of DC-
NNs achieves superior accuracy in landmarking. Specifically, it successfully de-
tects 84% of the landmarks within a 3mm proximity to their actual locations, with
an average error of less than 2mm. In contrast, a single DCNN exhibits an average
error of approximately 3mm and locates only 59% of the landmarks within a 3mm
distance from their true positions.
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1. Introduction

The analysis of brain magnetic resonance imaging (MRI) is used for the diagnosis and
prognosis of multiple genetic and developmental disorders, such as schizophrenia or
Alzheimer’s disease, among others. Automatic definition [1] and detection of brain land-
marks [2] is crucial for this analysis, as landmark information is used for segmentation
[3], registration [4] and diagnosis [5]. In this context, the obtainment of disorder-specific
brain biomarkers paves the way towards personalized medicine.
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Figure 1. Proposed landmark-based disease identification framework, including (1) MRI registration and fea-
ture extraction, (2) statistical group comparison and data-driven landmark definition based on the identified
discriminative voxels, (3) automatic landmark detection using DCNN, (4) landmark information extraction and
(5) model-based disease classification based on the features of each input landmark

This paper presents an end-to-end pipeline –see Figure 1– that, leveraging on large
datasets of brain MRI scans of healthy subjects and patients, i) identifies statistically
significant brain anatomy differences between groups, ii) defines brain biomarkers of
diagnostic potential based on those anatomical differences, iii) defines a set of brain
landmarks related to the identified biomarkers, iv) detects those landmarks on brain MRI
scans of unseen subjects, and v) uses the detected biomarkers to diagnose new subjects.

In the context of the proposed pipeline, the goal of this paper is to present our first
results in the automatic brain landmark detection task. To that end, we trained two differ-
ent Deep Convolutional Neural Network (DCNN) architectures: firstly, Multi-Landmark
(ML) DCNN that predicts N landmarks, and secondly, an ensemble of N individual
Single-Landmark (SL) DCNNs that predict only one landmark each.

Our preliminary results indicate that the ensemble of SL models is much more ac-
curate than the ML model, placing landmarks with an average error below 2mm, and
detecting nearly 3 times more landmarks less than 1mm away from its true location.

2. Automatic Landmark Detection

This section describes the detection of 2-dimensional landmarks on the Mid-Sagittal
Plane (MSP2) of brain MRI scans. The ground truth coordinates of N = 8 landmarks
(identified as diagnostic potential landmarks by our experts) were obtained by [6].

We compared two architectures of DCNN-based models: a single DCNN trained to
detect the 8 landmarks, (multi-landmark model, or ML), and an ensemble of 8 DCNNs
trained to detect one landmark each (single-landmark models, or SL).

2The MSP is the MRI slice that separates the brain into two almost-identical hemispheres.
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All the DCNNs in both architectures are fed with the MSP of the brain MRI scans,
and comprise: four CNN blocks (a convolutional layer, batch normalization layer, ReLU
activation function, and a max-pooling layer), followed by three fully connected layers,
ReLU activation functions and dropout layers to avoid overfitting. The loss function of
the ML model is the average of the 8 Euclidean distances between the predicted and
the ground truth landmarks. Whereas, each DCNNs in the SL model ensemble used the
distance between the predicted and ground truth landmark coordinates as loss function.

3. Experimental setup

The DCNN models were trained3 with 1837 brain MRI scans obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI-1) database. To evaluate the im-
plemented models, we tested them with a dataset of 141 brain structural T1 MRI scans
provided by Hospital Sant Pau Memory Unit (Barcelona, Spain). Different datasets were
employed to evaluate the model’s ability to generalize across different sources of data.

The accuracy of the landmarking results were measured in terms of: i) landmarking
error, i.e. Euclidean distance (in mm) between the coordinates of the ground truth and
the predicted landmark coordinates, and ii) Successful Detection Rate (SDR), defined as
the percentage of predicted landmarks to be within a certain radius of their real position.
We evaluated SDR at increasing radiuses from 1 to 5 mm.

4. Results, conclusions and further work

Table 1 presents the landmarking error (mean±standard deviation), SDR for the ML and
SL models, and testing time (time needed to make the predictions) per image. Moreover,
Figure 2b depicts the landmarking error for each specific landmark for both models.

Table 1. Landmarking error (in mm) of all landmarks for each model, and SDR of both models.

Model Error (mm)
SDR (%)

Testing time (ms)
1mm 2mm 3mm 4mm 5mm

Multi-Landmark 3.03 ± 2.13 12.32 36.52 58.86 75.79 87.06 11.88

Single-Landmark 1.99 ± 1.94 29.52 66.31 83.86 90.51 93.52 92.15

As our preliminary results indicate, the ensemble of SL models outperforms the
ML model both in terms of SDR and landmarking error. It is to note that the ensemble
of 8 SL models places nearly 84% of the landmarks less than 3 mm away from their
true location. Moreover, this higher accuracy is found for each of the 8 landmarks. This
leads to the conclusion that having a model that focuses only on the loss function of the
Euclidean distance of a single landmark is preferable than having a model that focuses
on the average loss functions of 8 landmarks and the relative position between them.

3All models were implemented using PyTorch. The learning rate was initially set to 0.005 was gradually
reduced to a final value of 0.0005 by applying a gamma factor of 0.95. An Adam optimizer was used with a
batch size of 256. The SL models were trained for 5,000 epochs, and the ML model was trained for 10,000
epochs. All experiments were conducted on a PC with Intel Core™ i9-10980XE CPU @ 3.00GHz × 36 cores
and NVIDIA GeForce RTX 2080 Ti GPU.
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(a) (b)

Figure 2. (a) Set of N landmarks located on the MSP, and (b) Landmarking error (in mm) using the ensemble
of SL models (orange bars) and the ML model (blue bars) (average value and standard deviation per landmark).

This paper has presented a deep learning-based pipeline to identify discriminative
biomarkers for diagnosing psychotic disorders. A first approach to automatically detect
landmarks has been implemented and validated with different datasets, obtaining promis-
ing results. Future research will include i) training the models using data augmentation
techniques, ii) 3D landmarking, and iii) implementing the pipeline depicted in Figure 1.

Acknowledgements
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