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Abstract. In Vitro Fertilization is among the most widespread treatments for infer-
tility. One of its main challenges is the evaluation and selection of embryo for im-
plantation, a process with large inter- and intra-clinician variability. Deep learning
based methods are gaining attention, but its opaque nature compromises their ac-
ceptance in the clinical context, where transparency in the decision making is key.
In this paper we analyze the current work in the explainability of AI-assisted em-
bryo analysis models, identifying the limitations. We also discuss how these mod-
els could be integrated in the clinical context as decision support systems, consider-
ing the needs of clinicians and patients. Finally, we propose guidelines for the sake
of increasing interpretability and trustworthiness, pushing this technology forward
towards established clinical practice.
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1. Introduction

Infertility is a common reproductive health problem that affects millions of people world-
wide, causing social, psychological, physical and economic distress to the ones seeking
to conceive [7]. In the coming years infertility rates are projected to grow due to envi-
ronmental and lifestyle factors [18, 37]. In vitro fertilization (IVF) technology is used
to overcome infertility, it involves the fertilization of an egg with sperm in the labora-
tory, followed by the transfer of the resulting embryos into the patient’s uterus. The main
challenge of IVF is the selection of the embryos that will be either selected for implan-
tation, frozen (for later implantation) or discarded (if they exhibit undesirable features).
This selection is to be performed during the early hours after embryo insemination, typi-
cally between three and five days after. During this time, embryos are monitored in time-
lapse imaging incubators (TLI), facilitating uninterrupted embryo growth within stable
culture conditions. This technology offers a dynamic perspective on in vitro embryonic
development, augmenting the clinical effectiveness of IVF [29].
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To assess quality, embryologists evaluate different morphological characteristics de-
pending on the embryo development phase. Early development (days one to three) fo-
cus on cell number, symmetry and fragmentation rate, while embryos reaching basto-
cyst stage (day five) are further assessed by their expansion grade and the appearance
of the inner cell mass (ICM) and the Zona Pellucida (ZP), as well as to the trophecto-
derm cells (TE) [30]. These morphological features represent the foundation of current
development assessment guidelines such as Gardner’s [15] or ASEBIR in Spain. These
approaches are limited by the subjective assessment of embryologists, which causes inter
and intra-observer variability. The success rates of IVF are restricted due to these limi-
tations. According to [1], the global life birth rate via IVF in 2015 stood at 19.2% per
oocyte retrieval with fresh embryo transfer and 24.8% with frozen embryo transfer.

Artificial Intelligence (AI), and specially Deep Learning (DL), due to its capacity
for dealing with images, have recently been considered to assist in the embryo assess-
ment and selection process. AI has the potential to facilitate and improve the process of
embryo selection, increasing the implantation success rates, and reducing the chances of
multiple pregnancies. AI can also mitigate inter and intra-observer variability, making
results more reproducible and comparable [35]. Finally, AI can help reduce the finan-
cial, physical and emotional burden on patients, by optimising the treatment plan and
minimising the need for repeated cycles of IVF.

Whenever AI is considered for an application which directly affects human life,
trustworthiness must be assured. In this paper we review the current work on AI-assisted
embryo selection with special focus on Explainable Artificial Intelligence (XAI), and
how this is deployed. We analyze the limitations of current work and propose approaches
that would yield AI systems that can provide better explanations for their recommenda-
tions. Moreover, we discuss key aspects in the integration of these systems in a clinical
context where both clinicians and patients are involved in the decision-making process.

2. Related Work

This work discusses the integration of explainability components into AI solutions for
embryo analysis in IVF, as well as the particularities of their integration into a human-
centric decision making process. Previous solutions proposed in the bibliography are
reviewed within the main discussion of this work (see §3.1), as it contextualizes our
contribution. In contrast, the related work presented in this section comprehends previous
analysis and surveys conducted in the field, which have motivated this paper.

Among recent surveys on AI-assisted embryo selection in IVF, most restrict them-
selves to the technicalities of the machine learning problem itself. That is, what is the
problem to solve, which data is used and how, and which are the top-of-the-line per-
formance metrics achieved by the models built. A few discuss the biological aspects of
the problem with particular depth [22], while others focus on the variety of tasks one
can tackle (e.g., embryo segmentation, quality grading, etc.) [20]. The most ambitious
tasks, those of predicting clinical pregnancy or fetal heartbeat from five days old fertil-
ized embryo images, are reviewed in [23], together with the ploidy status (number of
chromosomes) prediction task. [26] includes the annotation of data (e.g., development
phase, cell counting) in its review, while the particularities of the time-lapse imaging are

L. Urcelay et al. / Exploring the Role of Explainability in AI-Assisted Embryo Selection154



the focus of [28]. On top of embryos, [11] also reviews AI applications for spermatozoa
and oocyte analysis. [13] goes beyond DL methods, and also consider Bayesian Net-
works and SVMs in their study. Remarkably, very few works [2, 40, 34] study the ethical,
socio-economic, legal and cultural (ELSEC) aspects in AI-assisted embryo selection.

None of the previously discussed works includes a review on the XAI methods used
for embryo analysis, or discussion on practical and responsible deployment. This work
aims at filling that gap, considering that both these issues need to be properly assessed
before clinicians can integrate AI in their day-to-day practice.

3. The Role of Explainable Artificial Intelligence in Embryo Analysis

Embryo analysis post-fertilization lasts for a maximum of 7 days. During that time, clin-
icians assess the status and evolution of embryos, as these evolve under controlled con-
ditions. Through continuous visual monitoring and tracking of their morphological fea-
tures, experts eventually discard, freeze or select embryos for transfer. Current embryo
incubators include periodic microscopy, with images being recorded at frequency in the
order of minutes (e.g., ten) at several focal planes.

AI models trained on time-lapse embryo images have shown promise in embryo
analysis. Within the domain of images, explainable AI methods are often feature scor-
ers, representing their output as saliency maps on the input image (see Figure 1). By
nature, XAI methods for DL are approximations to the model’s real behavior. It is worth
noting that XAI is critical to ensure that the decision-making process of an algorithm
is as transparent and understandable to clinicians and patients as possible. The lack of
explainability can lead to a lack of trust in the technology, which ultimately hinders its
adoption.

In this section we review the use of XAI on embryo images. Among the methods
found in the literature, we can differentiate between those applied after the model is
trained (post-hoc), and those where the explainability is part of the model architecture
and design (intrinsic). Post-hoc methods include model-agnostic ones such as LIME [33]
and KernelSHAP [27], that obtain the explanations by perturbing the inputs and observ-
ing the changes caused on the outputs; also, model-specific methods such as Grad-CAM
[38] and Deep SHAP [27], that use the parameters of neural network models to obtain
the saliency maps. Among intrinsic methods, we can find attention-based CNNs, where
the explainability is obtained from attention layers. A different approach is the use of
Speeded Up Robust Features (SURF) [6] to extract local visual features, in conjunction
with Gaussian Mixture Models (GMM) to obtain a Fisher vector per image [21].

Figure 1. Saliency maps for Score-CAM and BR-NPA XAI methods from [17].
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Ref. Task Architecture XAI Method(s) ClinicalEval

[10] Embryo Quality Grading DenseNet, ResNet Grad-CAM++ No
[43] Embryo Quality Grading LWMA-Net Grad-CAM No
[21] Embryo Quality Grading SURF and GMM,

ResNet-101,
EfficientNet-B1

SURF, Grad-CAM No

[4] Embryo Segmentation MASS-Net Grad-CAM No
[39] Development Stage

Identification
ResNet34, VGG16 Grad-CAM, SHAP,

LIME
Yes

[32] Embryo Quality Grading ResNet50, VGG-16 Grad-CAM No
[17] Development Stage

Identification
ResNet50, ABN B-CNN, ABN,

InterByParts,
Grad-CAM++, RISE,
Score-CAM,
Ablation-CAM, AM

No

[12] Fetal Heart Pregnancy,
Live Birth

ResNet18,
RandomForest

Grad-CAM, SHAP No

[36] Live Birth ABN ABN Yes
[42] Embryo Quality Grading VGG-16 Grad-CAM No
[41] Embryo Quality Grading Xception,

Inception-ResNET-v2
CAM No

Table 1. Summary table of studies that use XAI on embryo selection. The Clinical Evaluation column indicates
whether the resulting saliency maps have been evaluated by experts or not.

3.1. Review on Current Work

Depending on the specific task, XAI is used and interpreted differently:

Embryo Quality Grading: the classification of embryos (e.g., day 5 blastocysts), into
classes for selecting the best for implantation. This challenge is the most addressed re-
garding XAI. Some studies apply Grad-CAM for visualization [32, 42] and observe that
key regions that the model relies on seem to be consistent with clinical interpretation.
[10] uses Grad-CAM++ for visualization, while statistically correlating their model out-
puts with the Gardner score. [41] directly use CAM saliency maps, and observe their
model focus on known features like cellular fragmentation, blastomeres or vacuoles. A
different approach compares Grad-CAM and SURF (computing a single Fisher Vector
per image), finding the former more prone to erroneously focus on irrelevant areas [21].

Embryo Development Stage Identification: consists on the automated labelling of the
embryo stage. Challenges include deformed cell shapes, poor visual features or similar-
ities between embryos at different stages. [39] compares Grad-CAM and LIME classifi-
cation activations, concluding that LIME explanations seem less consistent with biolog-
ically important regions. Authors also suggest SHAP could be useful to identify reasons
for misclassification between adjacent cleavage stages.

Blastocyst Segmentation: four crucial morphological regions to segment: TE, ZP, ICM
and BL (see §1). A multiscaling architecture that outputs segmentation masks for the
four regions is introduced in [4], where authors apply Grad-CAM to different layers to
show the evolution of activations. A U-Net has also been used to separate the background
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from the blastocyst [21], using an ellipse on top of the segmentation mask to separate
inner cell mass from trophectoderm.

Fetal Heart Pregnancy: is defined as the presence of fetal heartbeats in the uterus. Of
course, the embryo implantation process does not guarantee a successful pregnancy, as
it depends on many other factors (e.g., age, progesterone levels, etc.). [12] uses Grad-
CAM to detect morphological indicators, and SHAP to account for relevant metadata that
influences the model’s decision, concluding that embryo images are the best predictor
for fetal heart beat, followed by age and pregnancy history.

Live Birth: prediction from time-lapse imaging, [36] uses an Attention Branch Network
(ABN) [14]. Authors visualyze embryo features of relevance for Live Birth by exploring
the attention mechanism. Results indicated that no common visual features could be
associated to the predicted outcome of live or non-live birth.

To the best of our knowledge, other very important challenges in this field, such as
Blastocyst Prediction or Ploidy Detection, are not addressed in the context of explain-
ability. This highlights the need for further research in these tasks.

3.2. Limitations and Suggestions

A limited amount of research comprehends the use of AI-assisted IVF in combination
with XAI methods. A representative list can be found in Table 1. In many cases XAI
is only considered through the illustration and minor discussion of a few saliency maps
[4, 21, 41, 43]. Others take one more step and analyze the map activations in order to
correlate them to morphological features [39, 42] or to the objective [12]. Few share
the saliency maps with expert embryologists for evaluation [39, 36]. Meanwhile, several
studies conclude that saliency maps should not be used as the sole source of explainabil-
ity in high risk medical domains [5, 16].

Considering the features that clinicians base their decisions on, and the difficulty
of interpreting saliency maps, we suggest the use of expert models. Different models
targeting different morphokinetical features, such as fragmentation score, ICM and TE
grades, ZP and Pronucleus characteristics, and phase transition times. The ensemble of
all these experts should be a white box model (e.g., GLM, Decision Tree) to gain an
intermediate level of explainability on how each feature contributes to the objective.

In the papers reviewed, the XAI method used for interpretability is rarely base-
lined or justified. Two studies compare two explainability methods, [39] (LIME vs Grad-
CAM) and [21] (Bag-of-visual-words-based approach vs Grad-CAM). Only one thor-
ough comparative study was found [17], in which nine different XAI methods, including
five post-hoc ones, were evaluated using seven faithfulness metrics. This is, as well, the
only study in which explainability methods are assessed through quality metrics such as
the Increase in Confidence or the Average Drop [9].

Another limitation in the field is privacy. None of the previous works makes the code
(except for [4]) or the data (except for [17]) publicly available, making reproducibility
impossible and replicability impractical. These flaws, in a task with a high degree of
subjectivity (inter and intra-observer variability) induce a high risk of confirmation bias.
This issue could be mitigated through a quantitative benchmark measuring the model’s
attention to certain embryo regions of interest across a relatively big amount of samples.
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That would require an additional segmentation model such as [4], which isolates the TE,
ZP, ICM, and BL regions. A good explanation from a good model should overlap with
the key segmented areas, and could be assessed with metrics like IoU. This approach is
limited to blastocyst images, and subject to the accuracy of the segmentation model.

4. Integrating Explainable Artificial Intelligence in Decision Support Systems

The performance of AI methods on top-of-the-line metrics (e.g., precision, recall, etc.)
is often the endpoint of most contributions in the embryo assessment field. However,
transforming a quantitatively performing model into a successful practical deployment
is no easy task, esp. when considering the high-stakes involved in the context of IVF.
The question on how to effectively and safely introduce this technology into a clinical
setting where the different actors, including clinicians and patients, are involved, remains
unsolved. Next we aim at advancing towards a solution, filling a gap in current literature.

4.1. Opaque Models Create Responsibility Gaps

The use of opaque AI models raises ethical and legal accountability concerns [2], partic-
ularly when clinicians can not explain the decision-making process. This creates a “re-
sponsibility gap”, and without established accountability mechanisms it is challenging to
determine who should be held responsible for any potential harm. For example, in cases
of sub-optimal embryo selection or injury due to model recommendations, the decision-
making process must be explainable to patients seeking to understand what happened or,
in more extreme cases, seeking compensation for the damage caused. As of today, dis-
trust in AI applications in medicine also comes from doctors’ fear of legal repercussions
if something goes wrong due to unclear liability regimes [31]. If clinicians base their
decision on these opaque AI models, the evaluation of the decision-making process and,
consequently, the determination of who is responsible will be greatly hampered.

It is then essential that the explanations provided by the model are as clear and
understandable as possible by the clinician. For embryo image analysis this motivates
the use of saliency maps obtained through feature attribution methods, which provide
reliable (i.e., true to the underlying model behavior) but also accessible evidence. To
further ground the produced explanations in the context of clinical embryo selection, we
suggest the mapping of this evidence-based support to the established annotation and
evaluation guidelines and practices of the field, e.g., through the association of feature
attributions with the already established morphokinetic markers (such as a part of an
image showing inappropriate cellular fragmentation), so that evidence provided is given
in a language appropriate for the clinician and the problem. Still, due to the limitations of
these XAI methods, it is recommended to adhere to ethical guidelines in AI, such as the
one proposed by the EU [3]. By following this framework, other key requirements such
as data privacy and governance or human agency and oversight can be accomplished.

4.2. Building Trust through Explanations

The successful integration of AI-assisted embryo selection systems in the medical con-
text heavily depends on the acceptance by the clinicians and, consequently, their trust in
them.
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According to [31], there are several levels of trust which fall along a spectrum,
ranging from complete distrust to over-reliance on AI systems. Studies have shown that
over-reliance on the suggestions can cause clinicians to take less initiative [25] and also
to be more likely to accept incorrect diagnosis [19]; this is known as automation bias
[24]. On the other side of the spectrum lie clinicians which do not trust an algorithm
that they do not understand [8], a phenomenon known as algorithmic aversion. As a
result, not only training and education programs are necessary to ensure that clinicians
understand the capabilities and limitations of AI-assisted embryo selection systems, but
also making sure that the explanation or the model are not having negative impacts on
the clinician’s decision making process.

It is recommended to avoid offering the discretized outcome of models (e.g., this
embryo is good) in favour of more detailed information, such as outcome probabilities
(e.g., this embryo is good with a probability of 55%). For further bias avoidance, evidence
may be presented only in the form of explanations, with the outcome hidden (e.g., this
area shows relevant visual features for determining if the embryo is good or not), so that
the clinician interprets and integrates the visual features unbiasedly w.r.t. to the model’s
final prediction. Unfortunately, this approach is not without flaws either. It can induce
confirmation bias (i.e., a clinician may only review the evidence that supports its own
hypothesis), while preventing the methodology to exploit visual patterns not perceivable
by humans, which may be a limiting factor in embryo analysis. The proposed solution
is to provide all information available, outcome probabilities and saliency maps, and to
extend that information to all relevant cases (e.g., an area shows relevant visual features
in favour of the embryo being good, an area shows features in favour of it being bad).

4.3. Patient, Clinician, AI

IVF is a highly personal procedure, with a large impact in the physical and mental health
of individuals. Patients undergoing IVF have the right to know how decisions are being
made about their own healthcare, and to maintain their decision-making power. To guar-
antee that, AI explanations should be also accessible to them; they cannot be left behind
by the complexity of technology. Integrating explainability into AI-assisted embryo se-
lection systems can not only target clinicians, it must also empower patients. By provid-
ing them with clear and easy to understand explanations of certain decisions, patients can
be more involved and better equipped for the decision-making process regarding their
own care. XAI results should be presented when relevant, and under the supervision of
the clinician for its adequate interpretation and contextualization. Finally, it has to be
mentioned that, since the use of these systems directly involves the processing of their
data, the patient should be educated about how it will be processed and the use that will
be made of it, in addition to asking for their informed consent.

5. Conclusions

We present an analysis of the presence of XAI for embryo selection on the literature.
While there is a relative abundance of models for embryo selection and many have shown
promising results when trained on retrospective data, the performance of these models in
actual cases is yet unknown and their integration in the medical decision process remains
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unclear. Due to the opaque nature of these models, explainability is crucial to ensure
their applicability. However, although some studies tackle the issue of explainability,
the interpretations offered are often insufficient or do not rely on medical experts for
evaluation. We enumerate a set of guidelines and suggestions that could help increase the
interpretability and trustworthiness of these systems, with the goal of advancing towards
the successful and safe integration of this technology in clinical practice.
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