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Abstract. In today’s networked systems a massive amount of data is produced ev-
ery day. These data can be modelled using graphs, where the nodes typically cor-
respond to users or devices and the edges to the connections between them. Al-
most all networks change over time, with new nodes and edges appearing or dis-
appearing as the system matures. Therefore dynamic graph models are more ad-
equate to analyse such networks than static graphs, and appropriate tools need to
be implemented to protect them. In this paper we obtain an edge differentially pri-
vate version of dynamic stochastic block model. We show experimentally that the
trends in the dynamic stochastic block model obtained from the original data are
well preserved with the additional privacy guarantees.
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1. Introduction

A massive amount of data is produced every day in today’s networked systems, such as
social networks, biological networks, internet peer-to-peer networks, and other technical
networks [1,2]. These data can be modelled using graphs, where the nodes typically
correspond to users or systems and the edges to the connections between them. However,
data changes with time, as well as the corresponding network models. Therefore static
graphs are inadequate to represent such complex network architectures.

It is well recognized that naive anonymization of a graph can result in disclosure.
Attackers can utilize their side-knowledge to infer private information of the graph. For
example, through de-anonymization [3], degree [4], 1-neighbourhood [5], or sub-graph
[6] attacks. For static graphs, appropriate privacy models have been devised and im-
plemented, which can be broadly divided into two categories: those that adhere to k-
anonymity [7] and those that adhere to differential privacy [8]. While using k-anonymity
the existing solutions explore the neighbourhood of the nodes where the anonymised
graph has at least k− 1 nodes with the same degree for each node, or, the same neigh-
bourhood, or, k−1 number of automorphic subgraphs etc. As for, differential privacy the
approaches are mainly centered on triangle counting, smoothing the sensitivity, subgraph
counting, clique counting or generating synthetic graphs [9,10,11]. Also, edge privacy
is more extensively used than node privacy in real-world applications as it provides effi-
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cient privacy protection, while keeping good data utility. Nevertheless, for the dynamic
graphs, there is not so much literature on privacy models or solutions.

In this work, we focus on edge differential privacy for dynamic graphs. We apply the
parallel mechanism [12] to guarantee edge differential privacy in the dynamic stochas-
tic block model [13]. We carry out an empirical evaluation on the Enron dataset [14]
to demonstrate how such algorithm preserves the edges’ privacy while maintaining the
utility of the dynamic stochastic block model.

2. Noise-graph Mechanism

In this section, we define the noise-graph mechanism [15] that we use to randomize the
edges in the snapshot graphs an thus protect their privacy.

We denote by G(V,E) the graph with the set of nodes V and set of edges E = E(G).

Definition 2.1. Let G1(V,E1) and G2(V,E2) be two graphs with the same set of nodes.
Then the addition G = G1⊕G2 is the graph G = (V,E) where E = (E1 \E2)∪ (E2 \E1).

We denote by G′ ∈ G (n, p), a random graph drawn from the Gilbert model (or the
Erdös-Renyi model), in which there are n nodes and each edge in G′ is chosen with
probability p.

Definition 2.2 (Noise-graph mechanism [15]). For any graph G with n nodes, and two
probabilities p0 and p1, we define the following noise-graph mechanism:

Ap0,p1(G) = G⊕G0⊕G1,

where E(G0) =E(G′)\E(G) for G′ ∈G (n,1− p0) and E(G1) =E(G′′)∩E(G) for G′′ ∈
G (n,1− p1).

3. Differential Privacy for Dynamic Graphs

In this section we provide the definitions of dynamic graph and local differential privacy
applied specifically to edges in a dynamic graph. Then, we present the definition of the
parallel protection mechanism and a condition so that these mechanism is ε-edge locally
differentially private [12].

We follow the definition of a dynamic graph [16] which is a network observed at
an initial state G0 which is a graph, and at a set of T further snapshots, evenly spaced
at integer times t = 1, . . . ,T . These other graphs are denoted as G1,G2, ...,GT . Note
that it may be assumed that all the graphs have the same set of nodes, considering that
V (Gi) =

⋃
i=0,...,T

V (Gi).

We denote by 1uv(t) the indicator function of edge uv in Gt , that is 1uv(t) = 1 if
uv ∈ Et , and 1uv(t) = 0 otherwise. Similarly, 1A (uv(t)) is the indicator function of edge uv
in A (Gt), the randomized graph.
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Definition 3.1 (Edge-local differential privacy for dynamic graphs). An edge random-
ization algorithm A : G → G , satisfies ε-edge local differential privacy (is ε-eLDP) if
for every pair of nodes u,v ∈V , any timestamp t ∈ {1, . . .T} and x,x′,y ∈ {0,1}:

P(1A (uv(t)) = y | 1uv(t) = x)≤ eε P(1A (uv(t)) = y | 1uv(t) = x′)

Definition 3.2 (Parallel protection mechanism). Let G = G0,G1, . . . ,GT be a dynamic
graph. Then, we define the parallel protection of the dynamic graph with parameters p0
and p1 as the protection process that provides G̃ = G̃0, G̃1, . . . , G̃T with G̃i = Ap0,p1(Gi)
for i = 0, . . . ,T . We denote the parallel protection of a dynamic graph G with parameters
p0 and p1 as A

||
p0,p1(G).

Remark 3.1. The mechanism A
||
p0,p1 is ε-eLDP if eε ≥max

{
1−p1

p0
, p1

1−p0
, p0

1−p1
, 1−p0

p1

}
.

4. Experimental Results

We perform an experiment on a dynamic social network constructed from the Enron cor-
pus [14], which consists of about 0,5 million email messages between 184 Enron em-
ployees from 1998 to 2002, with the same pre-processing as Xu and Hero [13]. In addi-
tion to the email data, the roles of most of the employees within the company (directors,
CEOs, presidents, vice-presidents, managers, traders, and others) are available.

We fit the Dynamic-Stochastic-Block-Model [13] to the data protected with differ-
ential privacy for ε values from 1 to 10. We note that for ε ≥ 7 the estimated probabil-
ities are the same as without any protection, and for ε < 3 the probabilities are almost
constant, for clarity we included only few values in Fig. 1.

Note that in Fig. 1 the trends of the original data are preserved for large enough ε
and flattened for smaller values. Still, it can be observed in Fig. 1a the increase in edge
probabilities from Enron CEOs to presidents as Enron’s financial situation worsened,
while in Fig. 1b other employees edge probabilities remain at their baseline levels until
Enron fell under federal investigation. More specifically, Fig. 1a shows that the effects
of CEO Skilling resignation in week 89 and the resignation of CEO Lay in week 111 are
preserved in the dynamic stochastic block model with differential privacy, since the two
most prominent peaks in the edge probabilities are present in the protected data.

5. Conclusions

In this work, we applied the parallel mechanism to guarantee edge differential privacy in
the dynamic stochastic block model. We carried out an experimental evaluation on the
Enron dataset, and observed that the trends in the edge probabilities obtained through the
dynamic stochastic block model are well preserved for ε values larger than 3. This shows
that it is possible to analyse dynamic network data with the added privacy guarantees.

It remains as future work to carry out a more detailed evaluation of the differentially
private mechanisms for dynamic networks proposed, applying them to different models
and inference procedures to study the dynamics of other time-evolving networks.
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(a) CEOs to presidents (b) Others to others

Figure 1. Estimated edge probabilities obtained by fitting the Dynamic Stochastic Block Model to the pro-
tected data. Note that for ε = 7 (yellow line) the estimated probabilities are the same as those of the Dynamic
Stochastic Block Model without any protection.
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